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ABSTRACT 

Centralized electrical networks induce a dependency of local territories for their power supply. 

However, thanks to microgrids, territories can increase their decision-making autonomy to 

design a network that matches their values. Technological and management choices are 

critical to minimize microgrids negative impacts on their environment. Influence of the latter on 

the design space is rarely discussed whereas extending the design space would help to find 

innovative microgrids. The purpose of this paper is to find several microgrids with various 

performances and parameters that are compromises between economic, technical and 

environmental objectives. The solutions’ variety therefore extends the decision-makers’ design 

space. A tool has been developed to answer this goal. Design parameters are both 

technological and management parameters. A physical modelling is implemented in a 

sequential simulation of the microgrid operation. The performance of the simulation allows to 

use genetic algorithms to perform multi-objective non-weighted optimizations. Two two-

objective optimizations are performed. Results show how the solutions’ diversity in terms of 

performances and parameters helps the user choosing innovative microgrids. Especially, it 

underlines the potential of this approach to find microgrids with close performances but 

different parameters.  

Keywords: decision-support tool, microgrid modelling, multi-objective optimization, energy 
system simulation, genetic algorithm 

 

1. Introduction 

1.1. Context 

Electricity plays an increasing role in the energy supply. The economic, technical and 

environmental impacts of the electricity supply depend on the installed technologies and their 

management. In the past century, cost reduction has prevailed over environmental concerns 

to design centralized electrical networks. Many local territories want now to relocate their 

electricity production in order to reduce their environmental impact. Local production is 

possible thanks to distributed energy resources, i.e. small generation units connected to the 

distribution network [1], and storage technologies balancing production intermittency [2]. These 

technologies can be gathered in a microgrid in order to improve the resilience to natural 

disasters or cascading power failure [3]. There is not a unique definition of a microgrid [4], [5]. 

In this article, we define it as a set of distributed energy production, storage and consumption 

devices with their management strategies. From the main network point of view, a microgrid 

acts as a single controllable entity [6]. Microgrids have been studied both numerically [7]–[10] 

and experimentally [11], [12]. Complementarity among technologies is the key to their 

development. 
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1.2. Discussion of the state of the art 

Design of a microgrid has a major influence on its performances. It can improve the decision-

making autonomy by considering microgrids with unconventional characteristics in order to 

shake the designer’s habits. In this paper, embodiment design [13] of a microgrid consists in 

choosing the nature and size of the installed production and storage technologies and their 

management strategies. The decision-maker’s objectives and the design space’s limits 

influence the final microgrid design. Some commercial software [14], [15] or studies [16], [17] 

assess the performances of one specific microgrid but the risk is to study only combinations of 

technologies designers know. Among the optimization studies that search for optimal solutions 

among the design space, a majority of scientific literature and commercial software focuses on 

single-objective optimization. They use a single economic objective [18], [19] or an aggregated 

function [20]–[23]. Therefore, they do not consider all impacts and they reduce the decision-

making autonomy by suggesting a unique solution. Non-weighted multi-objective studies often 

combine two or three economic, technical or environmental objectives. Some of them find 

several solutions [24]–[27] but fewer analyze the design space based on the solutions’ 

parameters [28], [29]. Such analysis of the design space is important to propose innovative 

microgrids. Moreover, in these latter studies, technological parameters are used as 

optimization variables but management parameters are fixed. Due to the impact of 

management on the energy flows and thus on the performances, different strategies could 

highlight microgrids that underperform with the usual strategy. The influence of these 

strategies on the design space is poorly documented today.  

 

1.3. Objectives and contributions  

The purpose of this work is to increase the decision-making autonomy of local territories in the 

design of their microgrid. The design space extension is underlined by the use of a non-

weighted multi-objective optimization (NSGA-II algorithm) and by the consideration of both 

technological and management parameters as design parameters. Economic, technical and 

environmental performances are considered. This article shows how finding various 

compromises helps choosing appropriate and unconventional microgrids. A decision-support 

tool has been created on MATLAB software. Its goals are (1) to find various microgrids with 

different performances and parameters and (2) to find several alternative microgrids having 

the same performances. To reach these goals, the tool needs to complete several features. 

- Modelling of all technologies based on physical phenomena.  

- Simulation of a microgrid operation. 

- Evaluation of economic, technical and environmental performances of a microgrid.  

- Multi-objective optimization of microgrids in order to find several solutions.  

The tool should also be modular in order to accept new technologies, management strategies 

and performance indicators. This way, it will be resilient to changes in the design context: 

evolution of technologies or industrial context, new society’s concerns etc. 

Figure 1 summarizes the features of the developed tool. Inputs of the study are the 

meteorological data and the electrical consumption (in green). Each technology is modelled 

(orange boxes). Blue lines represent the simulation of the microgrid operation. Evaluation 

process to assess microgrid performances is gathered in the blue box. Finally, yellow boxes 

correspond to the optimization steps. At the end of the optimization, the tool displays the 

Pareto-optimal solutions.  
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The main contributions of this work are: 

- Microgrids modelling based on physical phenomena and considering both design and 
management parameters ;  

- Development of a modular decision-support tool finding various microgrids, 

compromises between economic, technical and environmental objectives ; 

- Non-weighted multi-objective optimization that highlights interesting solutions like 

microgrids with close performances but different parameters.  

The rest of the paper is structured as follows. Section 2 presents the state of the art. Modelling 

and simulation methods are described in Section 3. Section 4 deals with the optimization 

method while the case study parameters are presented in Section 5. Section 6 displays the 

case study results and Section 7 analyzes them. Finally, Section 8 contains a conclusion and 

perspectives for a future work.  

 

 

 Figure 1: Main features of the tool, which are the main steps of the presented work 

 

2. State of the art discussion  

2.1. Physical modelling and simulation 

The choice of a local microgrid implies understanding the behavior of each technology and of 

the microgrid in general. Indeed, performance indicators of a microgrid rely on its design 

parameters but also on its operation. Different approaches exist to model and simulate the 

operation of microgrids [30].  
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On the one hand, prospective studies consider large areas and assess technological choices 

over a long-term period [31]–[33]. They take into account main energy flows, economic impacts 

and technological breakthroughs. However, they model the energy system using aggregated 

parameters, sometimes far from the technological parameters, such as capital, labor or climatic 

impacts  [34], [35]. They use daily or even yearly time steps to simulate the long-term operation 

in a reasonable time. They lack accuracy for small-scale studies, simplify the physical 

phenomena involved and reduce the number of design variables available.  

On the other hand, detailed studies assess the performances of specific microgrids [16], [17]. 

Their microgrid models require detailed information about the studied microgrid, in particular 

its architecture. They simulate dynamic behavior of the microgrid with a short time step. Each 

model is made for a specific case study and requires substantial work to be adapted to another 

microgrid. Rare studies use local technological parameters as optimization variables [36]. 

Trade-offs, such as HOMER software, model technologies based on hourly physical 

phenomena, simulate the operation with an hourly time step and are replicable to several case 

study [37]. However, HOMER is a commercial software so one cannot implement new models. 

Furthermore, its optimization process finds a unique solution whereas we want various 

compromises. 

The present work does not focus on the dynamic behavior of electrical systems nor on their 

long-term evolution. It tries to capture the interactions between physical phenomena and 

microgrids performances. Modelling based on physical phenomena helps to understand how 

technological features achieve functional ones and thus to find unconventional microgrids [38]. 

The level of details of a model and the number of design parameters that need to be taken into 

account can vary according to the scale of the studied system but also the computation-time 

(CPU-time) needed. The present study takes into account hourly physical phenomena affecting 

local conversion and storage of energy.  

 

2.2. Performances indicators 

Regarding the complexity of energy topics, this study considers economic, technical and 

environmental impacts of microgrids. Economic indicators evaluate the costs of a microgrid. 

They can focus on the lifecycle costs, the investment costs, the operation and maintenance 

(O&M) costs, the payback period or the internal rate of return [39]. Each indicator has its 

advantages and limitations and can be discussed, as pointed by [40]. For example, minimizing 

the levelized cost of energy (LCOE, described in Section 3.5.1) leads to a low level of energy 

not supplied, whereas some other economic indicators lead to the contrary [40]. Technical 

indicators define the impact of the microgrid on the power supply. Various indicators can be 

found in the literature: energy not supplied [41], loss of load expectation (LOLE) [41], loss of 

load probability (LOLP) [42], wasted renewable energy [20] or autonomy level [43]. As this 

study focuses on microgrids, the autonomy level (LA) from the main power grid appears to be 

a good indicator of the microgrid ability to replace the main grid. Eventually, environmental 

indicators assess the impacts on the environment such as soil contamination, loss of 

biodiversity or greenhouse gases emissions [44], [45]. Many indicators can represent the 

environmental impact but global warming is undoubtedly a major concern for our societies. 

The developed tool includes several indicators to avoid the use of many different software. 

Economic and environmental indicators are often antagonists [46]. Therefore, only 

compromises between the different objectives can be found. The paper defines one indicator 

of each category: the LCOE, the energy autonomy to the main grid and the greenhouse gases 

emissions (GES). Previous works have compared indicators from different categories [47]. The 
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present work focuses on the tool and its abilities, but does not intend to study in detail all 

indicators. For a specific technology, the relation between economic, technical and 

environmental indicators can be guessed but for a whole microgrid, composed of several 

technologies, it is not trivial and may depend on the local context.  

 

2.3. Multi-objective optimization  

Modelling and simulation of one microgrid allows assessing its performances. Once the 

performance indicators defined, an optimization process is used to find the best microgrids for 

a territory. Many microgrid optimizations have been used in the literature [18], [19], [21]–[26]. 

In the majority of the microgrid optimizations, single-objective (SO) optimization is used with 

an economic objective [18], [19]. Aggregated functions are also used to compute several 

indicators in a single function, such as overall cost and greenhouse gases emissions [20]–[23], 

[48]. However, weighting objectives a priori is subjective and restrains the solution space to 

one unique solution. Due to the objectives’ potential antagonism, it is not adapted to our 

purpose. A multi-objective (MO) optimization without aggregation is more adapted to find 

several compromises and to extend the decision-maker’s possibilities. Some MO optimizations 

without prior weighting are also performed [24]–[26], [49].  

In the case of microgrid models with a sequential simulation, objective functions do not have 

an explicit form, which makes it impossible to use a classic Lagrangian optimization method. 

When it comes to non-explicit formulation problems, metaheuristic methods are an efficient 

way to perform optimization in a wide design space. Therefore, the optimization is based on a 

metaheuristic algorithm that allows studying non-explicit and non-weighted objective-functions 

in order to explore the entire design space.  

Many metaheuristics methods are used in the literature in order to perform MO optimization: 

Particle Swarm Optimization [27], [50] and MO Evolutionary Algorithms (MOEA) methods [49], 

among others. In this field, evolutionary methods present two main advantages: they can deal 

with 0-order objective functions and they explore the total design space. Many evolutionary 

methods are available like Strength Pareto Evolutionary Algorithms (SPEA [51] and SPEA-II 

[52]), Non-dominated Sorting Genetic Algorithms (NSGA and NSGA-II [53]), Pareto Archived 

Evolution Strategy (PAES [54]) or Adaptive Pareto Algorithm (APA [55]). All these methods 

allow finding Pareto-optimal solutions between the various objectives, i.e. solutions that 

dominate the others on at least one objective, which is the objective of this paper. Their main 

disadvantage is their CPU-time due to the repetition of the criteria’s evaluation for each 

individual. However, the model of the microgrid described above is efficient enough, in terms 

of CPU-time, to balance the number of computations of the metaheuristic method. Among 

MOEA algorithms, NSGA-II method shows good performances compared to others, it is freely 

available, easy to handle and modify and already mastered in the laboratory. 

Even though non-weighted MO optimization finds several Pareto-optimal solutions, additional 

post-processing of the tested microgrids can increase the solution space by highlighting near-

optimal solutions. These solutions are very close to the Pareto-front in terms of performances 

and may have different characteristics. For example, authors in [56] use a modified PSO 

algorithm with additional post-processing to provide multiple design options to microgrid 

developers. This design space expansion is very interesting and will be investigated in future 

works. 
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3. Modelling, simulation and evaluation of one microgrid  

In the perspective of a daily work, the tool must perform the optimization process in a few 

hours. Therefore, microgrid model has to be detailed to consider hourly physical phenomena 

and fast to assess numerous microgrids in a few hours during the optimization process.  

 

3.1. Description of a microgrid 

The local context imposes external inputs of the microgrid model such as the electric 

consumption and meteorological data. It also imposes some parameters of the microgrid such 

as available technologies and their technological characteristics.  

In this study, the design parameters of a microgrid are technological and management 

parameters. Technological ones are the size of each generation or storage unit (number of 

wind turbines, surface of photovoltaic panels, battery’s installed capacity…). Management 

parameters are the priority order, in which technologies are solicited to deliver electricity, and 

local management strategy of each power unit. Additional technological parameters are used 

in the models but they are fixed for all the study and do not define a microgrid. Design 

parameters are also the decision variables of the optimization process. 

 

3.2. Local device models  

The production and storage technologies described in this article are wind turbines, 

photovoltaic panels, gas and biomass power plants, battery and pumped-hydroelectricity 

energy storage (PHES). However, others have been modelled (dam, run-of-river dam, fuel cell 

and other power plants like coal or nuclear). All models are based on generic modelling from 

the literature. Generating units are divided into two categories: controllable ones for which the 

output power can be managed and uncontrollable ones relying on intermittent resources. The 

modularity of the tool allows to add new models or new technologies.  

For all models, the chosen convention fixes the power as positive when a unit 

produces/discharges energy and negative when it consumes energy. Energy exchanges 

between the different installations are assumed to be with constant power over a time step. 

 

3.2.1. Uncontrollable production technologies 

 

 Wind turbine 

The model used to compute the power produced by a wind turbine is based on the power curve 

of a specific turbine, the Vestas V90/2MW [57] (see Figure 2). 

𝑃𝑊𝑇 = 𝑃(𝑣)                                                                                                    (1) 

With 𝑣 the wind speed (in m/s).  
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Figure 2: Power curve of the wind turbine Vestas V90/2MW in function of the wind speed 

 

 Photovoltaic panel 

Model for the photovoltaic (PV) panel is the following, commonly used in the literature [58]: 

𝑃𝑃𝑉 = 𝐼𝑟𝑟. 𝑆. 𝜂                                                                                                 (2) 

With 𝐼𝑟𝑟 the solar irradiation (in W/m²), 𝑆 the surface of the installation and 𝜂 the efficiency of 

the panel. 

3.2.2. Controllable production technologies 

Controllable technologies modelled here are gas and biomass power plants. Controllable units 

are characterized by their installed power 𝑃𝑐𝑡𝑟𝑙,𝑛𝑜𝑚 and the output power increase ramp limit 

𝛼𝑐𝑡𝑟𝑙. Therefore, during the sequential simulation, we define the generated power 𝑃𝑐𝑡𝑟𝑙 

according to the needs and the production capacity (see Equation 3).   

𝑃𝑐𝑡𝑟𝑙(𝑡 + 1) = min (𝑃𝑐𝑡𝑟𝑙,𝑛𝑜𝑚 ; 𝑃𝑐𝑡𝑟𝑙(𝑡) + 𝛼𝑐𝑡𝑟𝑙. 𝑃𝑐𝑡𝑟𝑙(𝑡) ; 𝑃𝑛𝑒𝑒𝑑𝑒𝑑(𝑡))                       (3) 

with 𝑃𝑐𝑡𝑟𝑙 the effective electrical output power, 𝑃𝑐𝑡𝑟𝑙,𝑛𝑜𝑚 the nominal power of the controllable 

power plant, 𝛼𝑐𝑡𝑟𝑙 the coefficient representing the power ramp-up limit and 𝑃𝑛𝑒𝑒𝑑𝑒𝑑 the required 

power to balance consumption and optionally to store energy according to the chosen local 

management strategy (see Section 3.3.3), at time step 𝑡.  

 

3.2.3. Storage technologies 

For storage systems, a common linear model has been used with different parameters 

according to the technology [59]. All technologies are defined by their capacity (𝐸𝑠𝑡𝑜, in Wh), 

their (dis)charging rate (C-rate, in h-1), their loss coefficient during charge/discharge (𝛼𝑠𝑡𝑜𝑟), 

their auto-discharge coefficient (𝛼𝑎𝑢𝑡𝑜) and auto-discharge reference period (𝑇𝑟𝑒𝑓). To assess 

the evolution of their charge, we use a common dimensionless criterion, the State of Energy 

(SoE), defined by Equation 4 as the installed capacity percentage. A SoE of 100% represents 

a fully charged state and 0% a complete discharge. However, each storage system has a 

minimum SoE, representing the deep discharge, under which storage systems like batteries 

can be damaged [59]. 

𝑆𝑜𝐸 =
𝐸

𝐸𝑠𝑡𝑜
                                                                                                        (4) 

With 𝐸, the quantity of energy stored at a given time step (in Wh), i.e. the total energy available 

if there were no discharge losses and 𝐸𝑠𝑡𝑜 the installed capacity (in Wh).  
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The following equation defines the evolution of the state of energy of the storage device in 

function of the applied power during the period [𝑡; 𝑡 + ∆𝑡] and the auto-discharge, where ∆𝑡 is 

the time step.  

𝑆𝑜𝐸(𝑡 + ∆𝑡) = 𝑆𝑜𝐸(𝑡) (1 − 𝐸𝑠𝑡𝑜. 𝛼𝑎𝑢𝑡𝑜
∆𝑡

𝑇𝑟𝑒𝑓
) −

𝑃−𝑃𝑙𝑜𝑠𝑠

𝐸𝑠𝑡𝑜
. ∆𝑡       , ∀𝑡                              (5) 

 

           “Auto-discharge”         “Energy exchanged” 

With 𝑃𝑙𝑜𝑠𝑠 = 𝛼𝑠𝑡𝑜𝑟. 𝑃2                                                                                (6) 

With 𝑃 the charge (<0) or discharge (>0) power, 𝛼𝑠𝑡𝑜𝑟 the loss coefficient, 𝛼𝑎𝑢𝑡𝑜 the auto-

discharge coefficient and 𝑇𝑟𝑒𝑓 the auto-discharge reference period. During 𝑇𝑟𝑒𝑓, the storage 

system losses 100 ∗ 𝛼𝑎𝑢𝑡𝑜 percent of its energy. 

The loss coefficient varies linearly with the state of energy: 

- Charge : 𝛼𝑠𝑡𝑜𝑟 = 𝛼𝑐ℎ = 𝛼𝑐ℎ,0 + 𝛼𝑐ℎ,𝑣𝑎𝑟. 𝑆𝑜𝐸      (7)  

 

- Discharge : 𝛼𝑠𝑡𝑜𝑟 = 𝛼𝑑 = 𝛼𝑑,0 − 𝛼𝑑,𝑣𝑎𝑟. 𝑆𝑜𝐸     (8) 

With 𝛼𝑐ℎ,0, 𝛼𝑐ℎ,𝑣𝑎𝑟, 𝛼𝑑,0 and 𝛼𝑑,𝑣𝑎𝑟 technological coefficients of the storage system.   

 

3.3. Links between device models : sequential simulation  

3.3.1. Simulation of a microgrid operation 

The simulation’s purpose is to determine the exchanged powers during the microgrid 

operation. The evolution of the power demand 𝑃𝑑𝑒𝑚𝑎𝑛𝑑 and meteorological data are inputs for 

the whole simulation period.  

Most of the time, simulations are performed on typical days and a time step chosen from 

minutes to hours, considering that it is representative of a longer operation period. In order to 

consider the seasonal variations of the consumption and meteorological data, twelve typical 

days are simulated in a row: one per month. To design the microgrid in the “worst case 

situation”, each typical day is the average of all weekdays of the represented month. Indeed, 

the consumption is higher during the week. Using representative days allows to consider 

seasonal variations of the consumption and weather data while keeping a reasonable 

computation-time for the simulation (crucial when using  a genetic algorithm). Moreover, in 

order to ensure the repeatability of the short-term period, several simulations are computed for 

each microgrid simulated (with different storage state of energy) in order to converge to a 

situation where the storage level remains constant (or higher) at the end of the simulation 

compared to the beginning. That being, authors make sure that the operation period, although 

short, can be repeated several times in a row. 

Besides, it is still possible to perform a one-year simulation of a microgrid with hourly time 

steps when meteorological and electric demand data are available. Nevertheless, in the 

perspective of the implementation of these simulations in metaheuristic optimization 

algorithms, authors want to keep a short CPU-time and thus use simulations over twelve typical 

days of the year.  

The simulation determines for each time step and for each device: 

- 𝑃𝑝𝑟𝑜𝑑_𝑓𝑜𝑟_𝑐𝑜𝑛𝑠: the production systems power used to balance demand ; 
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- 𝑃𝑠𝑡𝑜𝑟: the production systems power used for storage ;  

- 𝑃𝑙𝑜𝑠𝑠: the losses (Joule effect and (dis)charge losses);  

- 𝑃𝑤𝑎𝑠𝑡𝑒𝑑: the available but unused power capacity.   

 

3.3.2. Priority order for production 

The sequential simulation means that, for each time step, generation and storage units are 

solicited one after the other in a specific order, that we call priority order. Many microgrids 

studies consider a fixed priority order during simulation and optimization processes. It is usually 

chosen in function of the marginal cost (merit order) [60]. Therefore, these studies do not 

assess the influence of various priority orders. Limiting the management parameters restricts 

the design space and prevents finding unconventional solutions.  

Our microgrid model fixes a priority order for each simulation but offers the possibility to play 

on it as an optimization variable. As shown in Table 1, six priority orders have been defined 

here, based on technologies modelled. The choice has been made to limit the number of 

possibilities by considering the order fixed inside a category: uncontrollable production, 

controllable production and storage technologies. For example, with order n°1, renewable 

sources are solicited first to balance consumption – PV first and wind turbine second – then 

storage devices are discharged and finally controllable power plants produce the remaining 

energy needed.  

Table 1: Description of the priority orders between technologies  

Priority 
order 

1st priority 2nd priority 3rd priority 4th priority 5th priority 6th priority 

1 PV Wind turbine Battery PHES Biomass Gas 

2 PV Wind turbine Biomass Gas Battery PHES 

3 Battery PHES Biomass Gas PV Wind turbine 

4 Battery PHES PV Wind turbine Biomass Gas 

5 Biomass Gas PV Wind turbine Battery PHES 

6 Biomass Gas Battery PHES PV Wind turbine 

 

3.3.3. Local management strategies of each technology 

Once solicited, a power unit can exchange power to balance consumption and/or to store its 

electricity. Local management strategies describe the operation of each power unit. Studies 

focusing on the operation of a specific microgrid usually explore different management 

strategies varying during the simulation to optimize the combination of a renewable energy 

with a storage device [61]. In design decision-making, the management strategy is usually 

constant during the simulation [27], [62]. As the strategy is chosen a priori, based on 

economical or environmental concerns, it is barely considered as a variable in design decision-

making. Like for the priority order, using the management strategy as an optimization variable 

would extend the design space. 

In this paper, local management strategies are constant during a simulation but this parameter 

is an optimization variable. Table 2 details the seven strategies defined (represented by an ID 

letter). They are based on two characteristic power levels: the maximal power for which a 

technology is dimensioned (𝑃𝑚𝑎𝑥) and the optimal power (𝑃𝑜𝑝𝑡𝑖) for which the technology’s 

efficiency is the best (ratio between the output power and the consumed resources). A strategy 

defines the way a given technology is used depending on the situation. In other words, it 

defines if the technology can produce power to balance consumption and fill the storage 
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devices, or only to balance consumption, and defines the maximal power. For example, a 

controllable gas power plant can be limited to the consumption supply whereas a wind turbine 

excess energy will be stored to avoid losing it. Depending on the technologies category (see 

Section 3.2), strategies may apply or not, as indicated in the last three columns of Table 2. For 

example, strategy n°A can be applied to controllable power plants (CTRL) and to storage 

devices (STOR) but not to uncontrollable units (UNCTRL). We choose to apply the same 

strategy to all technologies of a category, which reduces the possible combinations to fourteen. 

Table 2: Description of the local management strategies. The last three columns define the applicability of a 
strategy to the technologies’ categories: controllable (CTRL), uncontrollable (UNCTRL) and storage technologies 
(STOR) 

Strategy 
ID 

Local strategy description 
CTRL UNCTRL STOR 

A Only balance consumption in the limit of 𝑃𝑚𝑎𝑥 X  X 

B Balance consumption and store in the limit of 𝑃𝑚𝑎𝑥 X X  

C Balance consumption in the limit of the 𝑃𝑚𝑎𝑥 and store 
in the limit of 𝑃𝑜𝑝𝑡𝑖 

X   

D Only balance consumption in the limit of 𝑃𝑜𝑝𝑡𝑖 X  X 

E Balance consumption and store in the limit of 𝑃𝑜𝑝𝑡𝑖 X   

F Produce at 𝑃𝑜𝑝𝑡𝑖 in the limit of the consumption and 

storage capacities 

X   

G Store only in the limit of 𝑃𝑜𝑝𝑡𝑖 X   

 

The control strategy of a microgrid (represented by an ID number) is a combination of the local 

strategies of each technologies’ category. Table 3 summarizes all the possible combinations 

of local strategies (see Table 2) forming global microgrid strategies.  

Table 3: Description of the fourteen microgrid global strategies, combinations of local strategies defined in Table 
2. For each combination, the strategy applied to each category of technologies is indicated. 

Microgrid strategy  ID 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

CTRL A B C D E F G A B C D E F G 

UNCTRL B B B B B B B B B B B B B B 

STOR A A A A A A A D D D D D D D 

 

Figure 3 illustrates the sequential simulation process. During the process, we call destination 

the end-user of the produced electricity. It can be the consumer or one of the storage devices. 

For each technology in the priority order, the algorithm computes its available power 

𝑃𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒_𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦. The power that can be received by each destination (consumer 

𝑃𝑑𝑒𝑚𝑎𝑛𝑑_𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔 or storage device 𝑃𝑠𝑡𝑜𝑟𝑎𝑏𝑙𝑒_𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔) is computed too. According to the 

power balance and the technology’s strategy, it defines the power to produce/discharge to fill 

the destination’s need. This power is then allocated between 𝑃𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑_𝑓𝑜𝑟_𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛, 𝑃𝑠𝑡𝑜𝑟, 

and 𝑃𝑙𝑜𝑠𝑠. Before considering the next destination, the algorithm updates the remaining power 

demand, the storable power and the available power of the technology. Power allocation for 

this technology ends when there is no more available power or that all possible destinations 

have been tested. Remaining available power from a renewable source is wasted (𝑃𝑤𝑎𝑠𝑡𝑒𝑑) 

and the next technology in the priority order is investigated. The algorithm repeats this 

allocation process for each time step. Simulation ends when it has recorded all exchanged 

powers and storage states of energy.  
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Figure 3: logical diagram of the sequential simulation process 

The developed tool is able to study any electricity demand scenario (according to the 

phenomena considered by the models), considering the meteorological and geographical 

context of the territory. Figure 4 gives a simulation result example over twelve days with 90 

minutes time steps to illustrate the capacities of the tool. It is composed of two graphs resulting 

from a simulation process with a fixed set of technological parameters, priority order and 

microgrid control strategy.  

In Figure 4.a, the dotted line represents the power demand 𝑃𝑑𝑒𝑚. The bar chart shows the 

cumulated powers produced/discharged and stored by each unit, without the losses. The 

closer a technology is to the abscissa, the better it was ranked in the priority order. 

- When 0 < 𝑃 < 𝑃𝑑𝑒𝑚, the bar chart represents the cumulated power produced or 

discharged 𝑃𝑝𝑟𝑜𝑑 to balance consumption.  

- When 𝑃𝑑𝑒𝑚 < 𝑃 it designates the cumulated power produced to store electricity 𝑃𝑠𝑡𝑜𝑟.  
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- When 𝑃 < 0, the bars shows the allocation of the stored power -𝑃𝑠𝑡𝑜𝑟 in the storage 

devices.  

Figure 4.b shows the state of energy of the storage devices, in kWh, at the end of each time 

step.   

 

Figure 4: Twelve-days (one per month) sequential simulation of a microgrid – (a) Cumulated power (kW) produced/stored 
along with the power demand of 6000 typical homes; (b) State of energy (kWh) of the storage devices for each time step 

Figure 4 allows to visualize the microgrid operation in terms of energy flows. 

 

3.4. Computation time   

With an Intel® Core™ i7-8850H CPU @2.60GHz, using Matlab software and taking into 

account six technologies, a twelve-days-simulation of a microgrid with 192 time steps of 90 

minutes takes approximately 1.2 seconds.  

 

3.5. Performance indicators 

Following the simulation process, we want to assess the performances of a microgrid. 

Figure 5.a represents the Input-Output diagram of the simulation. External inputs and design 

parameters are used to model technologies and simulate the microgrid operation. Simulation 

determines the exchanged powers. We define performance indicators using these powers.  

Figure 5.b shows a non-exhaustive set of indicators computed: resources consumed, levelized 

cost of energy (LCOE), energy lost (via Joule effects especially), renewable energy wasted, 

energy autonomy, time autonomy and greenhouse gases emissions. Results from the 

simulation can be represented by this kind of radar plot, offering a visual way to compare these 

microgrids (see two illustrative examples on Figure 5.b). Indicators are normalized in the radar 

plot, the higher the better. Such visualization shows an insight of how compromises mixes may 

be illustrated.  
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We choose to describe in the next sub-sections only three performance indicators that will be 

the objective-functions of the optimization. In order to represent the variety of concerns, there 

is one indicator per category – economic, environmental and technical.  

 

Figure 5: (a) Description of the simulation process that computes microgrid performance indicators from the exchanged 

powers between technologies; (b) Radar plot showing the performances of two microgrids according to seven indicators  

 

3.5.1. Economic indicator – LCOE  

One of the commonly used economic indicators in the energy field is the levelized cost of 

energy (LCOE, in €/kWh). It represents the total amount of money spent over the lifetime of a 

power plant divided by its produced energy, as described by Equation 9 [63].  

𝐿𝐶𝑂𝐸 =  
𝑠𝑢𝑚 𝑜𝑓 𝑑𝑖𝑠𝑐𝑜𝑢𝑛𝑡𝑒𝑑 𝑐𝑜𝑠𝑡𝑠 𝑜𝑣𝑒𝑟 𝑙𝑖𝑓𝑒𝑡𝑖𝑚𝑒

𝑠𝑢𝑚 𝑜𝑓 𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑎𝑙 𝑒𝑛𝑒𝑟𝑔𝑦 𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑 𝑜𝑣𝑒𝑟 𝑙𝑖𝑓𝑒𝑡𝑖𝑚𝑒
=

∑
(𝐼𝑛+𝑂𝑛+𝑀𝑛+𝐷𝑛)

(1+𝑑)𝑛
𝑁
𝑛=0

∑
𝐸𝑛

(1+𝑑)𝑛
𝑁
𝑛=0

                    (9) 

With 𝑁 the expected lifetime, 𝑛 the year, 𝐼𝑛 the investment costs, 𝑂𝑛 the operation costs, 𝑀𝑛 

the maintenance costs, 𝐷𝑛 the residual value during year 𝑛 and 𝑑 the discount rate.  

The indicator is simple to use, represents the complete cost of a power plant over its lifecycle 

and takes into account the currency discount over time. LCOE is only relevant to compare 

power plants at the same location, which is fine for the present use. However, it does not take 

into account the provided services like the frequency regulation or the reliability of the 

production and thus needs to be complemented by other indicators. 

One major point of vigilance concerns the definition of the indicator and the data provenance. 

According to the source, different costs can be taken into account or not, such as the land 

lease, the insurance costs, the taxes or the carbon emissions. For data availability reasons, 

sources are different for the producers and storage systems. Investment costs of producers 

come from [64] and O&M costs from [65]. The LCOE obtained can be compared to values 

taken from the Fifth report of the Intergovernmental Panel on Climate Change (IPCC) [46] to 

ensure a consistency between data. As storage costs are not evaluated in the IPCC report, all 

investment costs, operational costs and LCOE values for storage technologies come from [66]. 

LCOE value for the whole microgrid represents the sum of all lifecycle costs per technology 

divided by the provided energy by the microgrid, so the energy demand balanced.  
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Find the best microgrid implies minimizing the LCOE value.  

 

3.5.2. Environmental indicator – greenhouse gases 

In this study, the greenhouse gases emissions’ indicator (GHG emissions, in gCO2eq/kWh) 

represents the environmental impact of a microgrid. As for the LCOE (see Section 3.5.1), it is 

calculated over the expected lifetime of the power plant, depends on the location and requires 

consistency between data to ensure the same processes are taken into account. All the values 

related to the emissions during the construction of generation units have been taken from IPCC 

[46]. As storage emissions are not evaluated in the IPCC report, GHG emissions values over 

the lifecycle for storage technologies (related to installed capacity and exchanged energy 

during operation) come from [67]. 

Optimization process aims at minimizing the GHG emissions. 

 

3.5.3. Technical indicator – autonomy  level 

Usual autonomy indicator represents the portion of time when demand is balanced by the local 

production [68], [69]. To assess more accurately the autonomy, we define an energy autonomy 

indicator (𝐿𝐴𝑒𝑛𝑒𝑟𝑔𝑦). It shows the portion of consumed energy produced by the microgrid over 

its lifetime (operation period).  

𝐿𝐴𝑒𝑛𝑒𝑟𝑔𝑦 = 𝑎𝑢𝑡𝑜𝑛𝑜𝑚𝑦 + 𝑒𝑥𝑐𝑒𝑠𝑠        (10) 

with  𝑎𝑢𝑡𝑜𝑛𝑜𝑚𝑦 =  
𝐸𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑_𝑓𝑜𝑟_𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛

𝐸𝑑𝑒𝑚𝑎𝑛𝑑
             (11)

 𝑒𝑥𝑐𝑒𝑠𝑠 = {

(𝑆𝑜𝐸𝑓𝑖𝑛𝑎𝑙−𝑆𝑜𝐸𝑖𝑛𝑖𝑡𝑖𝑎𝑙)∗𝐸𝑠𝑡𝑜

𝐸𝑑𝑒𝑚𝑎𝑛𝑑
  𝑖𝑓 𝑆𝑜𝐸𝑓𝑖𝑛𝑎𝑙 > 𝑆𝑜𝐸𝑖𝑛𝑖𝑡𝑖𝑎𝑙                                   

                0                           𝑖𝑓 𝑆𝑜𝐸𝑓𝑖𝑛𝑎𝑙 ≤ 𝑆𝑜𝐸𝑖𝑛𝑖𝑡𝑖𝑎𝑙  𝑜𝑟 𝑎𝑢𝑡𝑜𝑛𝑜𝑚𝑦 ≠ 1
   (12) 

With 𝐸𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑_𝑓𝑜𝑟_𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 the total energy produced to balance consumption during the 

period, losses taken into account (in kWh), 𝐸𝑑𝑒𝑚𝑎𝑛𝑑 the total energy demand during the period 

(in kWh), 𝑆𝑜𝐸𝑖𝑛𝑖𝑡𝑖𝑎𝑙 the storage state of energy at the beginning of the simulation, 𝑆𝑜𝐸𝑓𝑖𝑛𝑎𝑙 at 

the end and 𝐸𝑠𝑡𝑜 the storage capacity (in kWh).  

Excess variable represents storage excess at the end of the simulation, i.e. the global 

ability/robustness of the microgrid to respond to an extra demand. If 𝐿𝐴𝑒𝑛𝑒𝑟𝑔𝑦 is above one, it 

means that all consumption has been balanced and that the storage state of energy has 

increased during the period. The bigger 𝐿𝐴𝑒𝑛𝑒𝑟𝑔𝑦, the more robust the microgrid. 

The indicator is calculated over the chosen simulation period. However, that period is often 

shorter than the real lifetime period (for computational time matters), which means the 

repeatability of the simulation must be checked in order to carefully define 𝐿𝐴𝑒𝑛𝑒𝑟𝑔𝑦. The 

relevance of the indicator depends on the variation of the storage state of energy between the 

beginning and the end of the simulation. For example, for a given energy storage at the 

beginning of the simulation, if the storage level is lower at the end of the simulation, there is a 

risk that the operation will not be repeatable. If it is higher, the autonomy indicator might be 

underestimated. Hence, an internal convergence loop computes the indicator again, updating 

the initial SoE values with the final values of the previous run. The loop only stops when the 

storage level remains constant between the beginning and the end of the simulation. This way, 
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the energy autonomy calculated during the last simulation considers that the simulated period 

is repeatable.  

When considered as an objective of the optimization process, the autonomy level is 

maximized. Due to algorithmic reasons, this technical indicator is modified in the optimization 

process so that its minimization corresponds to the maximization of the autonomy level. For 

this reason, authors will only talk about minimization of objectives in the rest of the article.  

 

4. Optimization problem and use of genetic algorithm 

4.1. Principle of the genetic algorithm  

Genetic algorithms (GA) are inspired by the theory of evolution of species: a population of 

individuals, with their initial genes assembled into chromosomes, will evolve over generations 

to form a new population with different genes’ values. In this study, an individual is a microgrid 

composed of genes (technological and management parameters) and a population is a set of 

microgrid that are not related. The best microgrids, i.e. the most adapted to their environment 
regarding the objective functions, are supposed to survive better to this evolution. The final 

population is composed of microgrids, characterized by their design parameters, which are all 

compromises between the objectives. Figure 6 describes the operation stages of the algorithm.  

Two processes are involved in the modification of a microgrid characteristics (genes): 

crossover and mutation. A crossover occurs when two parent microgrids combine their 

characteristics: the child will be a combination of both parents’ genes. For example in this case, 

a combination between the number of technologies of one parent with the management 

strategy of the other parent. In the GA, the crossover may happen between two random 

microgrids and concerns all the decision variables. Mutation is the random modification of a 

gene (i.e. a design parameter). In the NSGA-II algorithm, the usual crossover probability is 

90% and the mutation probability is 10%. 

The GA uses the evaluation process detailed in Section 3 to assess the performances of all 

microgrids. In order to create the next generation, a selection process sorts the best 

compromises. New population has the same size as the initial one in a NSGA-II algorithm. 

Each generation implies a modification, evaluation and selection of the initial population to 

create a new one. The last generation is composed of Pareto-optimal solutions.  

 

Figure 6 : Steps to process the genetic algorithm NSGA-II. Blue boxes represent the assessment of one microgrid (see Section 

3), yellow boxes show the optimization steps and the yellow dotted line represents the overall process to find several 

microgrid compromises between various objectives 

 

4.2. Pareto-front reduction  

Convergence tests have shown that a substantial population size is required to perform an 

optimization with a huge design space (millions of possibilities). The final Pareto-front displays 

all microgrids in the final population (1000 in the case study). Therefore, it is hard to analyze 
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for the decision-maker. A selection process helps reducing the number of relevant microgrids 

to display. We define tolerances for each variable and objective. The reduction process 

eliminates microgrids that are close in terms of performances unless one of their design 

parameters is different. Reduction of the number of relevant results allows reading and 

interpreting them and thus helps decision-makers to design their microgrid. 

 

5. Case study 

The territory (i.e. power demand and meteorological data), the design space (i.e. microgrid 

design parameters) and the objectives of the study (i.e. the economical, technical and 

environmental indicators we try to minimize) define this case study.  

 

5.1. Territory 

The development of a local microgrid is investigated for a 7000 typical homes town connected 

to the main grid and with no local power plants assumed. As explained in Section 3.3.1, we 

consider twelve typical days of the year 2015 (average of the weekdays of each month) and a 

90-minute simulation time step. The inputs of the simulation are the power demand (see the 

evolution of the power demand represented by a dotted line in Figure 4.a) and the 

meteorological data – wind speed and solar irradiation – over the operation period.  

Among the meteorological data, the solar irradiation is taken from the PVGIS dataset for Aix-

en-Provence location. The wind speed comes from a meteorological website Meteociel for Aix-

en-Provence too. Data are measured at a height of 10m and then we extrapolate them at the 

turbine’s height. Electrical consumption is deduced from the French transmission system 

operator’s dataset (RTE). RTE provides national data corresponding to 35 million households. 

Consumption input is then a ratio of this data considering the population size of the territory. 

However, the purpose of this work is not to provide results for a specific case study but to 

analyze a methodology on a realistic dataset. 

 

5.2. Design space 

Table 4 lists all microgrid design potential parameters, also used as optimization decision 

variables.  The range of each parameter, also in Table 4, limits the design space. The 

maximum of the range of power and energy available have been chosen in order to make it 

possible that one technology could fill the electricity demand by itself over the whole operating 

period. The chosen NSGA-II genetic algorithm works with continuous values. Discretization 

values have been chosen to found make sure that the solutions by the optimization algorithm 

are technologically different. These values have been carefully chosen to make sure they 

correspond to realistic data. The may be adapted to manufacturer’s data in the case of a real 

industrial case study. Here, the wind turbine model relies on a real wind turbine’s power curve. 

Other technologies are modelled with generic models [70]. Therefore, their range of values 

and discretization are theoretical. The battery capacity is considered as a global storage 

capacity. It can be realized with battery containers, e.g. 500 kWh-battery containers with a 

maximal charge and discharge power of 500kW. The discretization is bigger than 500 kWh to 

reduce the number of possible combinations.  
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Table 4: List of the decision variables with the range of their values and the tolerance associated 

Decision variables  Range Discretization values 

Number of wind turbines (Vestas V90 – 2MW) 0 – 15  1 turbine 

Surface of PV panels 0 – 300,000 m² 15 000 m² 

Installed power of biomass power plant 0 – 15 MW 750 kW 

Installed power of gas power plant 0 – 15 MW 750 kW 

Battery capacity 0 – 1600 MWh 80 MWh 

Pumped hydroelectric energy storage (PHES) 
capacity 

0 – 1600 MWh 80 MWh 

Microgrid control strategy  14 combinations 1 

Priority order  6 combinations 1 

 

Following convergence tests, for this case study, we have set the size of the initial population 

to 1000 individuals, allowing a good variety of microgrids and ensuring a convergence of the 

algorithm avoiding local minimum. Convergence tests have shown that 300 generations are 

sufficient to stabilize the final population. This number is consistent with other observations 

[71]. The number of microgrids analyzed by the algorithm is thus inferior to 300,000. 

Considering the range of values for each parameter as shown in Table 4, the total number of 

possible combination would be 1,4.109.  

 

5.3. Objectives 

This study considers different categories of impacts: economic, environmental and technical. 

Optimization objective-functions are the performance indicators presented in Section 3.5. The 

optimization process minimizes three objective-functions: the LCOE, the GHG emissions and 

the energy dependence to the main grid. Another way to represent the economic indicator is 

the lifecycle cost. It is the product of the LCOE by the energy produced during the simulated 

period. The advantage is a better discrimination between similar microgrids according to their 

operation. 

Two optimizations are performed, one with LCOE and GHG emissions as objectives and the 

other with lifecycle cost and energy autonomy.  

 

6. Results  

This section presents the results of two optimization processes with different pairs of 

objectives. Representation of the final population takes the form of a Pareto-front with one 

objective on each axis. Each point of the front represents one microgrid solution of the 

optimization. The lower the value, the better the indicator.  

Optimization is performed in approximately 35h depending on the nature and number of 

objectives.  

 

6.1. LCOE and GHG emissions 

Figure 7 shows the Pareto-front of the twenty-five selected microgrids (see Section 4.2) after 

an optimization with LCOE and greenhouse gases (GHG) emissions as objectives. In order to 

ensure a minimal autonomy level, microgrids analyzed during the optimization have been 
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constrained to at least 100% energy autonomy. The cost values are displayed on the abscissa 

and the GHG emissions on the ordinate. Microgrids on the top-left of the figure have low cost 

and high emissions, whereas the ones on the bottom-right have lower emissions but are more 

expensive.  

 

Figure 7: Pareto-front with the selected solutions of the LCOE-GHG emissions optimization process 

Table 5 indicates the parameters’ values of these microgrids. Each line is a microgrid solution 

of the optimization, with the microgrid ID in the first column, the value of all other parameters 

in the following height columns and the performances values in the three final columns. Table 

5 also displays the energy autonomy indicator but it is not an objective-function of the 

optimization. Parameters’ ranges are indicated in Section 5.2. 

Table 5: Parameters values from thirty-eight selected energy mixes after the optimization process, trade-offs between 
economic (LCOE) and environmental (GHG emissions) objectives 

ID 
Number 
of WT 

PV 
surface 

(m²) 

Biomass 
installed 
power 
(MW) 

Gas 
installed 
power 
(MW) 

Battery 
capacity 
(MWh) 

PHES 
capacity 
(MWh) 

Microgrid 
control 
strategy 

Priority 
order 

LCOE 
(€/kWh) 

GHG 
emissions 
(kgCO2eq) 

Autonomy 
(% of 

energy 
demand) 

LG1  -     45 000   12,0   3,8   -     -    9 6 0,076  433 230  100% 

LG2  12   45 000   1,5   9,0   80   -    10 2 0,159  396 902  101% 

LG3  13   45 000   1,5   9,0   80   -    10 2 0,160  379 763  101% 

LG4  14   45 000   1,5   9,0   80   -    10 2 0,161  365 049  101% 

LG5  13   45 000   3,0   7,5   80   -    10 2 0,163  335 368  101% 

LG6  12   45 000   3,8   6,8   80   -    10 2 0,164  328 348  101% 

LG7  14   30 000   3,0   7,5   80   -    10 2 0,164  315 125  101% 

LG8  15   30 000   3,8   6,8   80   -    10 2 0,166  286 497  101% 

LG9  13   45 000   5,3   5,3   80   -    10 2 0,167  283 272  101% 

LG10  12   45 000   6,0   4,5   80   -    10 2 0,168  279 522  101% 

LG11  14   45 000   5,3   5,3   80   -    10 2 0,168  274 879  101% 

LG12  13   45 000   7,5   3,0   80   -    10 2 0,171  248 998  101% 

LG13  15   45 000   6,8   3,8   80   -    10 2 0,171  246 849  101% 

LG14  14   45 000   8,3   2,3   80   -    10 2 0,173  238 197  101% 

LG15  15   45 000   9,0   0,8   80   -    10 2 0,175  226 834  101% 

LG16  14   -     8,3   2,3   -     80  8 2 0,232  198 204  101% 

LG17  15   -     8,3   1,5   -     80  8 2 0,232  190 508  101% 

LG18  15   -     6,0   -     -     160  8 2 0,438  165 365  102% 

LG19  15   -     3,8   -     -     240  8 2 0,659  143 320  100% 

LG20  14   -     3,8   -     -     240  8 2 0,668  143 175  100% 

LG21  15   -     3,0   -     -     320  8 2 0,858  136 040  100% 

LG22  14   -     3,0   -     -     320  8 2 0,870  135 153  100% 

LG23  15   -     7,5   -     -     320  8 1 0,947  122 730  100% 

LG24  15   -     5,3   0,8   -     400  8 1 1,132  119 419  100% 

LG25  15   -     3,8   -     -     480  8 1 1,327  106 766  100% 
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6.2. LCOE and autonomy   

Figure 8 shows the Pareto-front of the thirty selected microgrids after an optimization with 

LCOE and energy autonomy as objectives. Graph shows the cost values on the abscissa and 

the autonomy ones on the ordinate. Microgrids on the top-left of the figure have low cost and 

are not autonomous, whereas the ones on the bottom-right are fully autonomous but are more 

expensive.   

 

Figure 8: Pareto-front with the selected solutions of the LCOE-autonomy optimization process 

Table 6 indicates the parameters’ values of the microgrid solutions. Last column represents 

the GHG emissions indicator even though it is not an optimization objective.  

Figure 9 graphically represents the microgrids parameters from Table 6. For the three bar 

charts, the abscissa shows the thirty selected solutions ranked based on their id. In Figure 9.a, 

each microgrid is defined by four bars representing the values of installed power, in W, of the 

four considered technologies: wind turbines, PV panels, biomass and gas power plants. In 

Figure 9.b only two bars are assigned to a microgrid: the battery and the PHES installed 

storage capacity, in kWh. Eventually Figure 9.c describes the chosen priority order (see Table 

1) and control strategy (see Table 3) for each microgrid. 

 

Figure 7: for each Pareto-optimal solution of the reduced final population, (a) power installed per technology in W, (b) 
installed storage capacity in kWh, (c) chosen control strategy and priority order number 
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Table 6: Parameters values from thirty selected energy mixes after the optimization process, trade-offs between economic 
(LCOE) and technical (energy autonomy) objectives 

ID 

Num
ber 
of 

WT 

PV 
surface 

(m²) 

Biomass 
installed 

power 
(MW) 

Gas 
installed 

power 
(MW) 

Battery 
capacity 
(MWh) 

PHES 
capacity 
(MWh) 

Microgrid 
control 
strategy 

Priority 
order 

LCOE 
(€/kWh) 

Autonomy 
(% of 

energy 
demand) 

GHG 
emissions 

(tons 
CO2eq) 

LA1  -     30 000   -     -     -     -    3 2 0,020 11% 34 319 

LA2  -     45 000   -     -     -     -    2 3 0,020 17% 51 478 

LA3  -     45 000   -     -     -     -    2 2 0,020 17% 51 478 

LA4  -     60 000   -     -     -     -    3 3 0,020 22% 68 299 

LA5  -     75 000   -     0,8   -     -    1 2 0,023 33% 158 159 

LA6  -     75 000   -     2,3   -     -    2 2 0,027 44% 302 533 

LA7  -     75 000   -     4,5   -     -    1 2 0,029 61% 502 517 

LA8  -     60 000   -     6,8   -     -    2 2 0,031 74% 708 350 

LA9  -     60 000   -     6,8   -     -    3 2 0,031 74% 708 350 

LA10  1   60 000   -     12,0   -     -    2 2 0,034 98% 940 866 

LA11  3   45 000   -     12,8   -     -    3 2 0,035 100% 869 767 

LA12  3   45 000   -     14,3   -     -    3 1 0,036 100% 878 237 

LA13  3   75 000   -     13,5   80   -    1 2 0,150 101% 850 179 

LA14  4   75 000   -     13,5   320   -    1 2 0,490 104% 834 098 

LA15  4   -     -     13,5   480   -    10 2 0,720 107% 1 079 343 

LA16  8   -     4,5   9,8   480   -    1 5 0,747 107% 1 065 993 

LA17  5   105 000   -     13,5   720   -    1 2 1,061 110% 845 063 

LA18  6   75 000   -     12,8   1 040   -    1 2 1,513 115% 844 886 

LA19  4   -     -     13,5   1 120   -    10 2 1,628 116% 1 269 577 

LA20  5   105 000   -     13,5   1 360   -    1 2 1,967 119% 930 262 

LA21  5   -     -     13,5   1 520   -    10 2 2,197 121% 1 312 602 

LA22  9   75 000   -     12,0   1 600   160  1 2 2,658 125% 821 329 

LA23  8   90 000   -     12,0   1 600   240  1 2 2,831 126% 860 986 

LA24  6   15 000   -     12,8   1 600   240  10 2 2,833 126% 1 257 026 

LA25  -     90 000   -     15,0   1 600   400  10 5 3,183 128% 1 586 208 

LA26  3   180 000   6,0   11,3   1 520   640  10 2 3,612 130% 1 075 336 

LA27  10   90 000   -     11,3   1 600   640  1 2 3,703 131% 819 019 

LA28 0  90 000   -     15,0   1 600   960  10 5 4,398 136% 1 643 063 

LA29 3  105 000   -     13,5   1 600   1 200  10 5 4,926 139% 1 599 486 

LA30 0  105 000   -     15,0   1 600   1 520  10 5 5,615 144% 1 694 613 

 

7. Discussion 

This section analyzes the results of the optimization processes. Both results show the interest 

of the tool to find various efficient microgrids following several indicators and to increase the 

decision-making autonomy. First, results of the optimization with LCOE and GHG emissions 

as objectives show how the diversity of performances the tool can find improves the decision-

making autonomy. Second, the optimization with LCOE and energy autonomy illustrates the 

variety of parameters in the results. Eventually, an analysis of this last optimization underlines 

the proximity in terms of performances of microgrids with different parameters.  

 

7.1. Performances’ diversity  

Results of the first optimization with LCOE and GHG emissions as objectives show the 

developed tool’ ability to find several microgrids that are compromises between economic and 

environmental performances. Results are well distributed in the performance space, with 

cheap but pollutant microgrids at the top-left and expensive but cleaner ones at the bottom-

right. The tool suggests several solutions but the final choice is up to the decision-maker. The 

variety of results allows to satisfy users with different priorities. Moreover, the interest of having 

various microgrids suggested is that one can modify its priorities. For example, microgrids 

n°LG17 and n°LG18 (see Table 5) have close emissions values but microgrid n°LG18 is almost 

twice as expensive as microgrid n°LG17. When a substantial improvement of one objective 

implies a small deterioration of the other, it can lead the decision-maker to consider the 

alternative. This opportunity is only possible with a non-weighted MO optimization exploring 

the entire design space, whereas it would depend on the weights of the different objectives in 
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other methods. With this approach, microgrid design does not rely on a design space 

restrained to usual solutions but on decision-making rationale [38]. 

 

7.2. Parameters’ diversity  

Results of the second optimization with LCOE and energy autonomy as objectives still present 

a good performance variety. The Pareto-front displays cheap but partially autonomous 

microgrids (top-left) and others expensive but fully autonomous (bottom-right), ensuring 

robustness towards external event when autonomy goes up to 100%. Besides, microgrids in 

the front present diversified parameters. This diversity of solutions allows considering 

microgrids with storage or not, with a high share of renewable sources or mostly controllable 

ones and different management strategies and priority order. The decision-maker can select 

afterward a microgrid according to the optimization’s objectives but also according to other 

discriminating criteria that may not be objectives of the optimization strictly speaking. One can 

consider other performance indicators (see Section 3.5) or a criterion linked to the parameters’ 

values (social acceptance of the wind turbines for example). Compared to methods restraining 

the design space a priori, this shows the ability of the developed tool to increase the decision-

making autonomy and opens to unconventional solutions.  

For example, microgrid n°LA18 (see Table 6) differs from microgrid n°LA19 by the presence 

of PV panels, the number of wind turbines and the level of gas installed power and battery 

capacity. This way, microgrid n°LA18 is cheaper by 7% compared to microgrid n°LA19 with a 

similar autonomy. Apart from the objectives, one way to distinguish the two microgrids is to 

compare their number of wind turbines, knowing that their social acceptance is a challenge, or 

their GHG emissions (microgrid n°LA18 being less pollutant). 

These two microgrids also highlight the importance of the control strategy choice. Microgrid 

n°LA18 is driven by the control strategy n°1, which means that both controllable and storage 

technologies are used to balance the power demand but are not allowed to store energy. 

Microgrid n°LA19 is driven by strategy n°10, which means that the controllable technologies 

are allowed to store. This difference in control strategy results in two microgrids composed of 

different technologies, both Pareto-optimal solutions. Thus, considering control strategies as a 

parameter of the optimization also widen the design space.  

 

7.3. Different Microgrid with similar performances  

Interestingly, some solutions of the previous optimization show similar performances but 

different parameters. For example, microgrids n°LA15 and n°LA16 (see Table 6) have close 

objectives but the first one favors wind turbines production whereas the other favors 

controllable power plants production. If their performances match with the decision-maker’s 

priority, it will give additional choice for the selection step. Besides, this feature widens the field 

of possibilities and offers unconventional solutions to the user, increasing the decision-making.  

This particular example underlines again the advantage of multi-objective optimization to give 

multiple choices to the user for the same effective results.  
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8. Conclusion  

The presented work focuses on the design of microgrids. In order to improve the decision-

making autonomy, the developed tool is able to find various microgrid compromises between 

economic, technical and environmental objectives. The main steps to achieve this decision-

support are the physical modeling of microgrids, the simulation of their operation, the 

evaluation of performance indicators and finally the use of this process in a metaheuristic 

optimization algorithm. 

The first contribution of the authors is to consider both technological and management 

parameters in the microgrid design parameters and to use sequential simulation to assess 

several categories of indicators (economical, technical and environmental).  Physical modelling 

of a microgrid relies on technological parameters. Choice has been made to consider the 

influence of hourly physical phenomena on the performances. For that, a sequential simulation 

assesses the microgrid behavior according to two management parameters: priority order and 

control strategy. The tool is able to simulate the operation of a wide range of microgrids in any 

local territory (defined by geographical and meteorological data) and assess its performances. 

Its modularity allows to consider new technologies, management strategies and performance 

indicators in the simulation. Besides, the computation-time is sufficiently small for its use inside 

a metaheuristic optimization loop.  

The second contribution of this article is the use of a non-weighted multi-objective optimization 

process, using genetic algorithm NSGA-II. It enables to find several microgrids adapted to a 

local electricity demand, finding the best compromises between economical, technical and 

environmental indicators. The use of metaheuristic methods without a prior weighting of the 

indicators increases the design space. Optimizations’ results display the possibility of 

proposing various solutions with a wide range of performances and characteristics. It also 

underlines situations where two much different microgrids can have close performances. This 

allows the decision-maker to select microgrids afterward according to its own criteria and 

opens to a wider variety of microgrid possibilities.  

The main novelty of this article is the consideration of management parameters in the multi-

objective, non-weighted, optimization of microgrids design in order to explore a wider design 

space. On a theoretical level, this work shows the interest of the non-weighted optimization 

approach to find various trade-offs, including microgrids with different parameters but close 

performances. Moreover, considering management strategies as a parameter of the 

optimization extend the design space. On a practical point of view, the developed tool will be 

able to provide several feasible solutions, and especially unconventional ones, to local 

decision-makers. In addition, local decision-makers can design microgrids according to their 

priorities without having to master several performances assessment software.  

Beyond the present article, an objective of this work is to question current habits and business 

rules to find innovative microgrids. This implies using detailed technological parameters as 

decision variables and analyzing the design space limits. This will be done in a future work. 

Moreover, a perspective of the present work is the improvement of the repeatability of the 

simulated period in order to ensure that the computed indicators are representative of a long-

term operation. 
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