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Abstract. One of the major challenges of thermoplastic matrix based 
composites is to manufacture finished parts both in one shot process and in 
a reduced time production. For this purpose, two techniques were developed 
to manufacture eco-friendly composites: one is the stamping using hot and 
cold airflow and the second one concern a one shot manufacturing of 
sandwich using infusion process. Then, several quasi-static and dynamic 
analyses were performed to validate the efficiency of the developed 
processes and to confirm the good quality of the material. 

1 Introduction  
Fibres reinforced composites are increasingly used in aerospace, automotive, marine 
industries and civil engineering due to their high specific strengths and modulus, stiffness, 
good corrosion resistance and fatigue properties. However, the use of synthetic fibre 
reinforced composites may become a problem from health and environmental point of view. 
One of the particular challenges is to replace the synthetic fibres by vegetal ones [1-2]. 
Consequently, numerous researches have been carried out on vegetal fibres based composites 
for some years [3-6]. To reduce the environmental impact while providing high specific 
properties, the use of vegetal fibre reinforced polymers (VFRP) is being widely investigated. 
Lots of research have already proven that such materials may be suitable for industrial 
applications that currently use glass fibre reinforced polymers (GFRP) [7, 8]. Moreover, 
thermoplastic composites are also widely being studied because they allow the recycling of 
composite materials - a significant aspect of the end of life management of traditional 
thermoset composites. These composites can also be tailored to provide other attractive 
properties for the automotive and aerospace industrials, such as a good forming ability to 
process large and complex structural parts [9, 10]. Among all vegetal fibres reinforced 
composites, the flax fibres offer interesting mechanical properties and appear as a green 
technological solution [11]. 
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The main problem for industries is the time to produce parts. Therefore, recent developments 
aiming to reduce production time while keeping good properties of structural parts are carried 
out. For example, short carbon fiber/PEEK structures were successfully obtained by thermo-
compression only around 40 minutes at 400 °C which is the melting temperature of the resin 
[12]. Unfortunately, using a hot press equipped with electrical resistances for heating the 
assembly (mould and material) and the compressed air for the cooling is still far from mass 
industrial interests. Another review shows that the Roctool company has successfully 
developed a fast thermal-compression molding process applied to large parts based on 
thermoplastic composites [13]. This technique consists in heating both the punch and the die 
and eventually the material by electromagnetic induction current. The cooling of the mould 
is ensured by injecting cold water through specific channels in the mould. 
Results presented in this paper are coming from two PhD thesis (Arthur Monti and Imed 
Derbali) which dealt with the coupling process – durability trying to reduce the processing 
time. One way was to investigate a process using hot air flow and the second way was to 
manufacture bio-sandwichs with one-shot technique using thermoplastic liquid resin. 

2 Materials and manufacturing 

2.1 Materials 

Two kinds of material are investigated in this study: the first one was a laminated composite 
flax fibres and Polypropylene matrix and the second one a sandwich composite. Both are 
manufacturing using thermoplastic matrix. For the first one resin was polypropylene and 
liquid Acrylic resin for the second one. 
 
2.1.1 Laminated composites 
 
For the laminated composite, comingled fabric with different weave architectures were used. 
These materials were kindly provided by DEPESTELE group. A 2×2 twill weave fabric (310 
g/m2, areal weight) and a satin weave fabric (280 g/m² areal weight) are considered. 300 tex 
ribbons constitute the warp and weft strands. For both fabrics, the mass fraction depends on 
direction: 39% and 61% for the warp and weft strands respectively. For both materials, the 
volume fraction of fibres corresponds to around 50%. Because of the use of fabrics the stack 
of layers respects the following angle direction: [0/90]9, [0/90]18 and [± 45]5s. The number of 
the layers has been defined to obtain a sufficient thickness for mechanical tests. 
 
2.1.2 Sandwich composites 
 
The skin are made of laminated composite with a 200 g/m2 dry FlaxTape manufactured by 
LINEO [14]. It is composed of purely unidirectional technical and elementary flax fibres. 
The resin used is the innovative ELIUM RT-150 thermoplastic liquid resin produced by 
ARKEMA [15]. The low viscosity of this resin allows the manufacturing of thermoplastic 
composites with processes used usually for thermoset composites such as Resin Transfer 
Moulding. Sandwich structures were produced in one-shot liquid resin infusion process at 
room temperature, described in a previous work [16]. BALTEK balsa panels with a density 
of 150 kg.m-3 were used for the core. 
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2.2 Manufacturing 

2.2.1 Laminated composites: 

In this study, an experimental airflow thermo-compression device, shown in Fig. 1a, was 
designed and manufactured at the LAMPA laboratory. The concept consists in shaping the 
desired number of comingled flax/polypropylene fabrics (180 × 90 mm2) above the melting 
point of resin by holding a temperature of 200 °C during 30 seconds under a given pressure. 
Hot and cold airflows for rapid heating and cooling are applied respectively. As a result, 
because of the shape of the available mould, we obtain a V-shaped parts (Fig. 1b).The 
stamping system is composed of a punch/die commutable couple. 
 

 

 

(a) (b) 

Fig. 1. (a) Airflow thermo-compression device, (b) V-shape sample. 

 
2.2.2 Sandwich composites 
 
For this study we used the infusion technique (Fig. 2) which is made possible by the low 
viscosity of the new thermoplastic resin. To facilitate the resin infusion, balsa panels cut into 
regular elementary blocks (25 mm x 50 mm x 15.9 mm) and assembled as a thin mesh grid 
were needed. The gaps between adjacent blocks facilitate the migration of the resin from the 
upper to the lower sides.  
 

 
Fig. 2. Infusion process. 
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3 Experimental techniques 

Different techniques were used to measure the mechanical properties of both composite 
materials. 

3.1 Tensile tests 

A testing machine Zwick with a capacity of 100 kN was used. The principal strains ԐI and 
ԐII, used for estimating Young’s Modulus and Poisson’s ratio, were measured by both strain 
biaxial gages glued on the samples (90 × 25 × 2 mm3) and an extensometer. Each test was 
conducted using a cross-head speed of 2mm/min. 

3.2 Shear tests 

The same sample geometry was used. Here, the fibres are oriented at 45° relative to the load 
direction according to the EN ISO 14129 standard. The stacking sequence of the composite 
was [±45]5s. To calculate the shear modulus from the tensile test two biaxial gages are 
necessary. One must be glued in the direction of the tensile load and the second one 
perpendicularly. 

3.3 Three point bending test 

Rectangular specimens [0/90]18, with dimensions (90 × 15 × 4.5 mm3), were cut from V-parts 
manufactured by using the new device. They were realized according to ISO 14125 standard. 
The tests were carried out using another Zwick machine with a capacity of 10 kN. Tests were 
conducted at room temperature with 65% of air humidity by using a cross-head speed of 2 
mm/min. The length/thickness ratio of the sample was 14.2. It allows to neglect the shear 
behaviour. 
The flexural behaviour of sandwich structures was studied using a 3-point bending tests based 
on both ASTM C393 and ASTM D7249 [17-18] standards. For one of them, labelled [0]5, 
skins were made up of 5 unidirectional plies of flax, and for the other one, the skins were 
made up of 4 plies of flax with a [0/90]s stacking sequence. The span length varied from 80 
to 250 mm. Short beam tests were used to determine the shear strength of the core whereas 
long beams tests were used to measure the ultimate properties of faces. 

3.4 Skin core interface strength testing 

Specific tests were used for sandwich samples to assume the interface strength between skins 
and core. The skin-core interfacial strength was investigated through flatwise tensile tests 
performed according to the ASTM C297/C297M [19] standard. This experimental test 
consists in loading sandwich square samples under stress along an axis parallel to the 
thickness. 

 

3.5 Fatigue tests 
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To investigate the fatigue behaviour of the sandwich structure, 3-point bending dynamic 
cyclic tests were performed for [0/90]s specimens. Two different span lengths (d=110 mm 
and d=250 mm) were used in order to distinguish the flexural and shear dynamic behaviour. 
The fatigue tests were displacement-controlled with a frequency of 5 Hz. For the span length 
d=250 mm, specimens were loaded with an average displacement Dm defined as 50% of the 
failure displacement under quasi-static monotonic 3-point bending tests. The amplitude of 
displacement was then varied in order to increase the loading ratio r defined by: 

𝑅𝑅 = 𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚𝐷𝐷𝑚𝑚
 Eq. 1 

where Dmax is the maximum displacement applied during the cycle. For the span length d=110 
mm, the average displacement Dm was defined as 40% of the failure displacement, in order 
to avoid early core shear failure. 

3.6 Microstructural observations 

Microstructural observations were realized on the tested specimens in order to analyse 
materials at microscale to find damages. An Axio Ziess Optical Microscope (OM) was used 
for that in the cross section of the manufactured materials. Additionally, specimens were cut 
in the cross section and coated with a thin layer of gold in order to be examined with a Zeiss 
Supra 25 Scanning Electron Microscope (SEM). 

4 Results 

4.1 Laminated composite manufactured by hot air flow device 

Sample to realize tension loading were cut from the V-shape structures (Fig. 1b) 
manufactured by the newly-developed thermal-compression device. 
As-received samples exhibit porosity and debonding between fibrous yarns and matrix. It is 
the main problem of this type of material. 

 
Fig. 3. Microstructures of flax/PP composites satin based fabric. 
The three main parameters of the process were investigated and their influences were 
measured on the mechanical properties using the following experimental design: 

- 1, 3 and 5 bars of pressure at 200 °C for 30 s; 
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- 0, 30, 60, 120, 240 s of holding time at 200 °C and 5 bars; 
180, 200, 220, 235 and 250 °C under 5 bars for 30 s.The Fig. 4 shows the influence of 
pressure, temperature and holding time on the tensile behaviour at 200 °C for 30 s of flax/PP 
satin based fabric composites. All these composite samples were loaded in the weft direction.  

   
a) b) c) 

Fig. 4. Influence of pressure (a), holding time effect (b) at 200°C for 30s and 
temperature (c) on composite based on weft strand satin fabric made by the 
new-developed thermal-compression process.A similar bilinear behaviour of the 
stress-strain evolution for the different applied pressures is observed (Fig. 4a) but significant 
differences due to the pressure level on the curves can be noticed. Temperature is also a very 
influential parameter on the quality of the materials produced (Fig. 4c). It requires a precise 
identification of its optimum value so that to obtain the lowest resin viscosity without 
degrading the lingo-cellulosic fibres. In general, vegetal fibres do not support high processing 
temperatures, not higher than around 200 °C. It is possible that the degradation of natural 
fibres may occur before the resin melts when the processing temperature is too high. More 
particularly, for flax fibres and polypropylene resin, the melting temperature of resin is 
around 200 °C that makes possible this process. In fact, there is a compromise between 
obtaining good impregnation and avoiding fibres degradation. 
The following table gives mechanical properties of the material manufactured by the new 
process compared to one manufactured using a conventional thermo-compression press. We 
can notice that values are very close. 

Table 1. Tensile properties of composite parts made by new optimized and conventional thermo-
compression processes. 

Process Material 
Loading 
direction 

E 
(MPa) 

σe 
(MPa) 

σult 

(MPa) 
Ԑult(%) Ѵ 

New device Satin Weft 16.6±0.5 18.0±0.5 145±5 1.50 0.12 
Conventional 

press 
Satin Weft 16.6±0.6 18.0±0.5 133±5 1.48 - 

Process Material 
Loading 
direction 

E 
(MPa) 

σe 
(MPa) 

σult 

(MPa) 
Ԑult(%) Ѵ 

New device 
Twill 

Warp 9.9±0.5 11.5±0.3 94±5 1.77 - 

Weft 15.5±0.5 18.0±0.5 130±5 1.59 0.12 

Satin 
Warp 8.8±0.5 10.0±0.2 90±5 2.08 - 
Weft 16.6±0.5 18.0±0.5 145±5 1.50 0.12 

4.2 Sandwich composite using thermoplastic liquid resin 
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The good properties of the skin/core interface are the most important point in sandwich 
design. Indeed, the flexural properties of structures depend on this parameter at microscale. 
For this reason, flatwise tensile tests were performed to measure the interfacial strength of 
this bio-based sandwich and to compare it to those of existing materials. The interfacial 
failure stress is shown in Table 1, which compares results obtained with those of several 
authors for different kinds of sandwich materials tested in flatwise tension [20-23]. 

Table 2. Material properties and skin/core interfacial strength of different sandwich materials. 

Specimen Skin Core 
ρc 

(kg.m-3) 
σi 

(MPa) Source 

A 
Carbon Fiber / 

Epoxy Aluminum Honeycomb 39 0.8 Hou et al. 2010 

B Flax/Elium Balsa core 150 2.3 Experimental 

C Glass/Epoxy PU foam 96 0.8 
Tuwair et al. 

2015 

D Glass/Epoxy PP honeycomb 110 0.8 
Correia et al. 

2012 

E Carbon/Epoxy PU foam 160 1.0 Sok et al. 2012 
 
Fig. 5. Failure stresses normalized by core density. The specific interfacial strength of the 
Flax/Elium/Balsa sandwich appears to be very promising, compared to PVC foam 
sandwiches. 

 
Fig. 5. Flatwise tensile tests results: specific interfacial strength of different sandwich materials. 

As sandwich structures are mainly subjected to flexural loadings, different tests were 
conducted to investigate the flexural behaviour of Flax/Elium/Balsa sandwich beams. First, 
two sets of [0]5 and [0/90]s beams were tested in 3-point bending with a span length of 250 
mm. Error! Reference source not found..a presents the Force/Displacement curves 
obtained. [0]5 specimens appear, as expected, stiffer and more resistant due to the higher 
mechanical properties of the skins. Moreover, the linear elastic domain is more pronounced. 
On the contrary, [0/90]s specimens exhibit a shorter elastic domain and a lower Young 
modulus followed by a nonlinear behaviour. 
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Fig. 6. Quasi-statique tests performed on sandwich beams with two different skins configuration 
monotonique 3-point bending. 

The Young’s modulus of the Flax/Elium skins and the shear modulus of the balsa core can 
be deduced from equations. Taking into account that Ef and Ec are respectively the Young’s 
modulus of the skins and the core all data are in the following table. 

Table 3. Elastic and ultimate properties of the skins and core. 

 Ef
[0]5 σfc

[0]5 Ef
[0/90]s σfc

[0/90]s Gc τc 

Unit GPa  MPa  GPa  MPa  MPa  MPa  

Average 24 120 11 90 225 2.5 

Standard Dev 1 8 1 7 48 0.5 

To determine the flexural and shear ultimate properties of the sandwich beams, monotonique 
3-point bending tests were performed on [0]5 specimens with different span lengths. At least 
5 beams were tested up to failure for every boundary condition. For the longest beams, a 
compressive failure of the upper skin was observed, whereas for the shortest beam, a core 

shear failure of the core occurred (Fig. 7). The results of c obtained are presented in Table 
3. 
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Fig. 7. Main failure modes observed: a) compressive failure of superior skins and b) core shear 
failure. 

The flexural fatigue behaviour of [0/90]s Flax/Elium/Sandwich beams was also investigated. 
Fatigue tests were performed to determine the lifetime of this structure under different 
loading ratios and to compare their fatigue performance to those of GFRP-foam cored 
sandwiches. In this case, two different span lengths were used, d=110 mm and d=250 mm, 
in order to analyse the shear and flexural properties of the beams. 
It’s worth noticing that whatever the loading ratio, beams tested with d=110 mm present a 
higher degradation rate and fail earlier than beams tested with a span length d=250 mm. 
For both sets of specimens, endurance diagrams were plotted to determine the end of life 
according to a N10 criterion for different loading ratios r. This criterion is satisfied when a 10 
% decrease for the maximal applied load is observed. Fig. 8 presents the Wöhler diagrams 
corresponding to both span lengths d=110 mm and d=250 mm. 

 
Fig. 8. Endurance diagram for [0/90]s sandwich beams and for two different span lengths and b) 
fatigue performances of the Flax/Elium/Balsa sandwich compared to other non bio-based material 
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5 Conclusions 
This work focuses on the experimental analysis of the static and dynamic flexural properties 
of bio-based composites: laminated and sandwich materials. 
Two processes are used: one was the one shot liquid resin infusion process for the sandwich 
and the second one was a rapid thermo-compression using a hot air flow process. Both are 
interesting perspectives in the manufacturing of eco-friendly composite structures. 
 
For the sandwich structure: flatwise tensile tests revealed good interfacial strength for the 
sandwich. This interesting property was attributed to the use of a low-viscosity resin with an 
open-cell balsa core made of assembled elementary blocks. 
Then, quasi-static 3-point bending tests were performed to determine the elastic and ultimate 
properties of both skins and core. 
Sandwich beams were tested with different span lengths in order to analyse the flexural and 
shear response of the structure. High scattering of the failure load was observed for a specific 
span length, corresponding to the transition between a core shear failure mode and a 
compressive failure mode of the upper skin. In addition, the fatigue behaviour of this material 
was studied under 3-point bending. The fatigue performances appear slightly lower than 
those of GFRP/foam cored sandwiches, but remain promising. 
 
For the laminated materials: parameters of the process were optimized using a temperature 
of 200 °C and a holding time of 30 s. As expected, the pressure has a strong effect on the 
void rate in the material and the temperature has to be lower to a given level which induces 
the degradation of the fibres. The holding time has a slight effect on the quality of the 
material. 
To optimize these parameters the materials manufactured by this new device were compared 
to those coming from a classical thermo-compression apparatus manufacturing. This 
comparison has shown that the mechanical properties of the two batches were closed. 
 
One can conclude that these eco-friendly materials would be suitable for some semi-structural 
applications currently using GFRP/foam sandwich structures and subjected to fatigue 
loadings. 
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