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Abstract

This paper investigates the complex time-dependent behavior of cortex tissue, under adiabatic condition, using a two-phase flow
poroelastic model. Motivated by experiments and Biot’s consolidation theory, we tackle time-dependent uniaxial loading, confined
and unconfined, with various geometries and loading rates from 1 µm/s to 100 µm/s. The cortex tissue is modeled as the porous
solid saturated by two immiscible fluids, with dynamic viscosities separated by four orders, resulting in two different characteristic
times. These are respectively associated to interstitial fluid and glial cells. The partial differential equations system is discretised
in space by the finite element method and in time by Euler-implicit scheme. The solution is computed using a monolithic scheme
within the open-source computational framework FEniCS. The parameters calibration is based on Sobol sensitivity analysis, which
divides them into two groups: the tissue specific group, whose parameters represent general properties, and sample specific group,
whose parameters have greater variations. Our results show that the experimental curves can be reproduced without the need to re-
sort to viscous solid effects, by adding an additional fluid phase. Through this process, we aim to present multiphase poromechanics
as a promising way to a unified brain tissue modeling framework in a variety of settings.
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1. Introduction

The biomechanical characterization of human brain tissue
and the development of appropriate mechanical models is cru-
cial to provide realistic computational predictions. These pre-
dictions can assist in understanding the mechanical environ-
ment involved in neurodevelopment and neurological disorders
[1, 2], in simulating traumatic brain injury, to investigate the
mechanical pathogenesis of head trauma [3] and in studying
head injuries and developing protection systems [4]. Mathe-
matical modeling is also the key to devising brain surgery sim-
ulation for training, assistance and guidance [5, 6].

From an experimental perspective, several sophisticated me-
chanical tests have been proposed and conducted both on hu-
man and animal brain tissue in the past decades (see [7] for a
complete review). These have consistently shown that brain tis-
sue is non-linear, asymmetric in tension-compression and sen-
sitive to loading rates. Moreover, grey and white matter, when
they are isolated, exhibit different stiffness and brain tissue can
be separated into four regions, with their own mechanical pro-
file: cortex, corona radiata, basal ganglia and corpus callosum.
It has been shown that the mechanical response of brain tissue is
sensitive to the time scale and the characteristic length of load-
ing. This has been attributed by several authors to the ultra-soft,
gel-like nature of brain tissue, which implies that effects on very

small length and time scales may hold an important impact on
the overall mechanical behavior [7].

To capture the mechanical response of brain tissue, sev-
eral constitutive models have been proposed based on the type
and range of the strain rates associated with pathological and
normal conditions. In particular, extensive research has been
conducted for brain matter experiencing compression at quasi-
static loading [8, 9]. These studies have shaped our understand-
ing of the hyperelastic time-independent response of human
brain tissue. However, its time-dependent behavior at finite
strains and under various loading conditions remains insuffi-
ciently understood.

Visco-elastic models [10, 11, 12, 13] are typically chosen to
reproduce the time-dependent, hysteresis, preconditioning soft-
ening (regarding this topic, see the review [7] section 3.5) as
well as the stress relaxation observed in experiments. The cou-
pling of large deformation (usually hyper-elastic) and visco-
elasticity has allowed to accurately capture various deformation
types in a large range of strain. These have been employed to
predict the essential features of brain tissue: non-linearity, hys-
teresis, and tension–compression asymmetry. Yet, most mod-
els developed to date have been tailored to reproduce particu-
lar loading scenarios or for specific applications. We conclude
that this specific kind of models, that could be denoted as phe-
nomenological, do not contain the required components to be
transferable from one type of experimental conditions to an-
other. Our aim is to alleviate these deficiencies, so that models∗stephane.bordas@alum.northwestern.edu
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developed for one patient can be used for another patient, and
to make this possible for the most varied types of boundary and
environmental conditions. We propose in this paper a particular
multi-phase poro-elastic model. We show that this model, once
calibrated on a certain set of experiments, can also reproduce
the behaviour of brain tissue observed in completely different
loading conditions. We therefore hypothesise that such a model
could be a sound starting point for a generic mechanical model
of the brain. In the appendix, the interested reader may also
find the indication that, for a viscoelastic model, to mimic the
behavior of a porous material, the parameters must be adjusted
according to the specimen size.

Several studies [14, 15, 16], based on a series of consolida-
tion tests, suggested that extracellular fluid flow dominates the
apparent viscoelastic properties of brain tissue. Based on mix-
ture theory, poroelasticity has been extensively used to model
brain tissue [17, 18, 19, 20, 21]. Porous media mechanics, [22],
which describe the mechanical behavior of a porous solid con-
taining viscous fluid, are compatible with processes which in-
volve low-strain-rate deformations of the brain, such as edema,
hydrocephalus, hemorrhage [23, 24] and infusion [25, 26].
However, single phase flow poromechanics show limitation to
render the highly non-linear behavior of the brain tissue.

Franceschini et al. (2006) [14] conclude that consolidation
(deformation of the solid matrix due to pore fluid flow and its
drainage from the interstitial space) is the leading mechanism
in quasi-static deformation of brain tissue. To achieve complete
adherence between their experimental data and their theoreti-
cal formulations, they conclude that the addition of a viscous
component to the rheological model is necessary.

This last point remains a matter of debate. Budday et al.
[7] hypothesised that brain tissue rheology is characterized by
at least two different timescales, which are attributed to vis-
cous and porous effects, respectively. The viscous response
can be related to the intracellular interactions within the net-
work of cells forming the solid phase of the tissue, while the
porous medium behavior is associated with the interaction be-
tween the solid and fluid phase. In a recent study, Comellas et
al. [27] explored in details the interplay between single phase
poro-elasticity and finite visco-elasticity. Their model is ca-
pable of accurately reproducing consolidation, shear stress and
cycle loading tests. However, the respective influence of porous
and viscous components are strongly dependent on the parame-
ters calibration, which could impede the physical interpretation
of the results.

Unlike conventional approaches that combine viscoelastic
and poroelastic behaviors into a single framework [28], we hy-
pothesize in this article that a two-phase flow poroelasticity can
also capture the stress relaxation and the sensitivity of a set of
selected load rates. The two fluid phases, with their respec-
tive dynamic viscosities, allow for reproducing the two different
time scales. As a first step, we limited our study on the cortex
region of the brain, which is known to be soft and isotropic [7].
We first reproduce the experimental results of Franceschini et
al. [14] without the use of a viscoelastic solid and, with the
same model, we reproduce the experimental set of Budday et
al. [29] composed of various indenters, load rates and stress

relaxation.

2. Experimental data

Consolidation tests
The consolidation test (an uniaxial strain under free drainage

conditions) is crucial for poromechanical modeling, as this
strain can not be reproduced by an elastic law and is not adapted
to viscoelastic models [14]. In this contribution we chose to
reproduce the experiment of Franceschini conducted on N=12
specimens. The experimental procedure is briefly reported here.
For more details the interested reader could refer to [14].
Twelve human parietal lobe cylindrical samples of 30 mm di-
ameter and 5 to 8 mm height are harvested, within 12h after
death, and placed into a consolidometer specifically designed
for the tests, shown in Fig. 1A. The top and bottom of the
samples are under free drainage conditions, using a filter paper
against a porous brass employed in geotechnical consolidome-
ter.
We identify three different profiles on the twelve samples,
where the same initial load (6 Newton) will lead deformation
from 3.5% to 6.5%. We retrieve the same three profiles on the
3 Newton load series. As a consequence, we select six sam-
ples from [14] for this study, one of each profile for the 3 and 6
Newton one step loads. We adopt the following nomenclature
for the samples: XN for X Newton load series, followed by the
figure index and letter of [14], e.g. 3N C2 a.

Indentation tests
Due to the difficulties in producing consistent samples, and

due to the alterations to the micro-structural arrangement dur-
ing the sample preparation, it has been reported that stiffness
values using confined compression creep and stress relaxation
tests are often not reproducible and may vary by an order of
magnitude or more. Indentation has been shown to provide a ro-
bust, reliable, and repeatable method to quantify the mechanical
properties in situ without altering the local micro-architectural
arrangement.

Four indentation tests on ex vivo bovine grey matter, within
6 hours after death, are reproduced. These are subsets of the
long range indentation type, on N = 192 samples, described
in [29]. Before any test, all samples are subjected to a 100 µm
indentation depth to stabilize the material response and ensure
parallelism. The experimental design is shown in Fig. 2 A and
the characteristics of the tests can be found in Table 1. Bud-
day et al. present indentation tests with loading rates between
1 µm/s and 100 µm/s, for reason of brevity, we choose to re-
produce these extreme values without the intermediate 10 µm/s
and 20 µm/s. In [29], Budday et al. present mean experimental
curves for each test and indicate 21% of standard deviation in
the set of samples.

3. Mathematical Modelling

The descriptions of cortex tissue as a porous medium can
take several forms: a solid scaffold saturated by a fluid (Hakim



Figure 1: Consolidation tests on ex vivo human cortex [14]. A Experimental design of consolidometer of Franceschini et al. [14] (reproduced with the authorisation
of the authors). B Boundary conditions of the physical problem: the fluids are free to escape to loaded boundary (drained condition), the other boundaries are
impervious; except at the loaded boundary, the displacement of the solid scaffold is allowed only on the tangential direction (slip condition). C Representative
elementary volume (REV) with the phase components of the model framework.

Table 1: Characteristics of the indentation tests on ex vivo bovine cortex
[29]. Test 1, 2 and 3 belong to long range indentation tests, Test 4 is a relaxation
test.

Characteristics Test 1 Test 2 Test 3 Test 4
Indentation depth µm 300 300 300 100
Load rate µm/s 5 5 1 100
Indenter � mm 1 0.75 0.75 1.5
Unloading of 300 µm Yes Yes Yes No
Holding of 600 s No No No Yes

et al. 1976), a visco-elastic scaffold saturated by a fluid [14],
an elastic scaffold separated into two compartments, vascular
and extra-vascular, each saturated by a different fluid [30],
among others. In this study, we focus on ex vivo material,
so the vascular activity will be neglected and the vascular
network will be considered a part of the solid scaffold. Within
the parenchyma, we distinguish two fluid phases: glial g
phase, for which we prescribed a dynamic viscosity close to
gel-like, and interstitial/lymphatic l phase, with a prescribed
dynamic viscosity one order higher than water. A summary
of the representative elementary volume is shown in Fig. 1C.
This specific description of cortex tissue by two immiscible
fluids within a porous solid has no experimental equivalent.
Therefore, we present the quantitative information to set the
initial guess of the parameters from several sources in the
experimental literature.

Governing equations
A porous medium consists in a solid scaffold, that is to say all

the material that act as structural solids in the porous medium.
Its volume fraction is denoted εs. The porosity is the volume

fraction saturated by the fluids, denoted ε, and

εs + ε = 1 (1)

We distinguish, in this contribution, the glial phase g from the
remaining fluid phase l. These two phases are assumed to be
immiscible fluids with their respective saturation S l and S g and

S l + S g = 1 (2)

The volume occupied by the liquid phase and by the glial phase
are respectively denoted εS l and εS g.
The mass balance of the porous solid reads:

Ds

Dt
(ρsεs) + ρsεs∇ · vs = 0 (3)

• with Ds

Dt (ρsεs) the evolution of the solid scaffold mass

• and ρsεs∇ · vs its flux term.

The mass balance of the fluids phases reads:

Ds

Dt
(ρgεS g) + ∇ ·

(
ρgεS gvgs

)
+ ρgεS g∇ · vs = 0 (4)

Ds

Dt

(
ρlεS l

)
+ ∇ ·

(
ρlεS lvls

)
+ ρlεS l∇ · vs = 0 (5)

• with Ds

Dt (ραεS α) the evolution of the fluid phase α

• ∇ ·
(
ραεS αvαs

)
the flux term of the phase α where vαs is the

phase α velocity relatively to the solid: vαs = vα − vs

• and ραεS α∇ · vs the contribution of the solid deformation to
the mass conservation of the phase α = l, g



Figure 2: Indentation test on ex vivo bovine cortex [29]. A Experimental design of indentation tests of Budday et al. [29] (reproduced with the authorisation of
the authors). The sample is considered under cylindrical symmetry hypothesis, ui(t) is displacement prescribed by the indenter on the sample surface.
. B Boundary conditions of the physical problem in cylindrical axis symmetry. Boundaries are denoted ΓS the axis of symmetry,
ΓB and ΓC the slip boundaries prescribed in the experimental design, ΓI the indented surface and ΓF the free surface, where three

different boundary conditions are tested.

Constitutive relationships
The glial phase will be denoted as the wetting phase, that is
to say, the phase that preferentially covers the solid scaffold.
Therefore, it is the one that sustains the mechanical load before
transmitting it to the non-wetting phase, namely the liquid
phase. The pressure relationship with the phases saturation is
justified by the simplified entropy inequality of the thermody-
namically constrained averaging theory (TCAT) [31]. At the
microscale equilibrium, it is assumed that the evolution of the
interface surface is negligible compared to the evolution of the
fluid saturation, therefore the interfacial tension between the
phases is directly linked to the pressure difference (see [32]).
This implies a pressure jump between the wetting phase g and
the non-wetting phase l, whose saturation S l depends on the
pressure jump plg = pl − pg (see Eq.6).

From [32], the expression of the liquid phase saturation,
dependent on the difference of the phases pressure, is adapted
from the heuristic formulation of van Genuchten [33]:

S l =
2
π

arctan
(

plg

a

)
(6)

with the theoretical parameter a, which represents the intensity
of the interplay between the solid scaffold and the non-wetting
phase. Its range commonly taken is [500; 800] (see [34], [35],
[36], [37]).

The solid scaffold has its intrinsic permeability ks
int and

follows linear elasticity (Young modulus E, Poisson’s ratio ν):

¯̄σeff = λtr( ¯̄ε)I + 2µ ¯̄ε (7)

with I the identity tensor, ¯̄ε(us) = 1
2 (∇us + (∇us)T ) the

linearised strain tensor, and the Lamé constants λ = Eν
(1+ν)(1−2ν)

and µ = E
2(1+ν) .

The two fluid phases have their own relative permeabili-
ties:

kl
rel = (S l)Al kg

rel = (S g)Bg (8)

with Al and Bg to be calibrated.

The interaction between fluid phases and the solid scaf-
fold are modeled by a generalized Darcy’s flow, deduced from
the linear momentum conservation of fluid phases:

−
kαrelk

s
int

µα
∇pα = εS α(vᾱs) α = g, l (9)

where ks
int is the intrinsic permeability of the solid scaffold, µα,

kαrel and pα are respectively the dynamic viscosity, relative per-
meability and the pressure of each fluid phase α = l, g.

Final system of governing equations
The physical system is governed by the mass conservation of
each phase and by linear momentum conservation of the over-
all system. The primary unknowns of the model are the solid
scaffold displacement us, the glial phase pressure pg and the
liquid phase pressure difference plg.
Eqs.3-5 are treated as follows:

• Eq.3 is injected into Eqs.4-5 thanks to the constraint Eq.1

• the difference of order between the mechanical constrains
and the compressibility of the components allows us to ne-
glect the variation of their density, therefore ρα is consid-
ered constant α = s, g, l. We also assume that the compo-
nent have the same density ρs = ρg = ρl

• the evolution of the glial volume fraction εDsS l

Dt is expressed
with respect to the constraint Eq.2. Its evolution depends
on the interstitial fluid pressure S l(plg), see the constitutive
relationship Eq.6



We obtain the following system:
−ε dS l

dplg
Ds plg

Dt − ∇ ·

[
kg

relk
s
int

µg ∇pg
]

+ S g∇ · vs = 0

ε dS l

dplg
Ds plg

Dt − ∇ ·

[
kl

relk
s
int

µl ∇(pg + plg)
]

+ S l∇ · vs = 0

(10)

The governing equations are completed with the momentum
balance of the system:

∇ · σT = 0 with σT = σeff − βps (11)

where σeff, the effective stress described Eq.7, represents the
solid contribution to the mechanical stress. β is the Biot’s co-
efficient, set to 1 thanks to the hypothesis of the phases incom-
pressibility. ps = S t pt + S l pl, denoted the solid pressure, rep-
resents the fluids’ contribution to the mechanical stress.

Assumption on the porous medium components and parameters
motivated by literature

The stiffness of the cortex has been intensively studied
([38, 39, 40], among many others). It both depends on the
chosen modeling framework and the sample composition, so
the values of the Young’s modulus E can widely vary. In time-
independent modeling, as linear elastic or hyperelastic, using
linear elastic law leads to scatter values Young’s modulus E,
from 2.5 kPa [41] to 8 kPa [38]. Non-linear hyperelastic mod-
eling has more homogeneous values, with E between 1.1 kPa
[39] and 3 kPa [40]. In the reproduced experimental study [29],
the authors found by contact theory E = 1.389 ± 0.289 kPa.
Conversely, the values of Poisson’s ratio ν are quite consensual
in the literature, as the material is constantly described as
nearly incompressible, with values varying between 0.495 [38]
and 0.45 [42].

In Barnes et al.[43], the extra-cellular matrix (ECM) volume
fraction is estimated to be 20%. In Lei et al. [44], the volume
fraction of the interstitial fluid (IF), added to the ECM, is
estimated to be between 15% and 20%. From Bender and
Klose [45], the IF fraction, strictly limited to the parenchyma,
is estimated to be between 5% and 10%, and the vascular
system (in [44]) between 3% and 5%. Finally, the distribution
indicated by Azevedo et al. in [46] for the cerebral cortex gives
20% neuron, 80% non-neuron with ±2% of uncertainty.
We define the solid scaffold as the sum of the stroma cells
(membrane, epithelial and endothelial cells), the ECM, the
vascular system - because blood circulation is not considered
in ex vivo testing - and the neurons (bodies and axons). Based
on the estimation provided above, we obtain the following
range of values for the solid scaffold fraction: the minimum
at (0.15 − 0.1) + 0.03 + 0.18 = 0.24 and the maximum at
0.2 + 0.1 + 0.05 + 0.22 = 0.57. Its complement, the porosity ε,
is within the range 0.43 ≤ ε ≤ 0.76.
As written in [45], the IF volume fraction estimated to
0.05 ≤ εS l ≤ 0.1. With the estimated range of porosity ε, we
obtain for the liquid phase saturation: 0.065 ≤ S l ≤ 0.232; and
its complement, the glial phase saturation: 0.828 ≤ S g ≤ 0.935.

As initial range of values for the liquid phase dynamic
viscosity µl, we keep different estimation provided in [47] for
cerebral fluid, between 0.7 · 10−3 Pa · s and 1 · 10−3 Pa · s. For
the rheology of the glial phase, as we do not have experimental
data, we choose a value close to literature used for generic cells
(see [34] and [37]) µg ≈ 30 Pa · s.

Regarding the intrinsic permeability ks
int of the solid scaffold,

there is still a large knowledge gap. The important difficulty
to design experiment on living tissue and the preferential use
of single phase solid mechanics rather than poromechanics are
probably partly responsible for this problem. In 2021, Sowinski
et al. [47] reported ranges of values for hydraulic conductivity
K, using in silico magnetic resonance elastography. They
reported hydraulic conductivity values from 2 · 10−11 ms−1 to
2 · 10−10 ms−1. Same year, Jamal et al. in [48], reported range
of values for the intrinsic permeability ks

int, by ex vivo perfusion
experiment. They reported a ks

int mean value of 10−16 m2,
with a strong influence of tissue anisotropy, from 2 · 10−17 m2

to 3.2 · 10−15 m2, with one order of magnitude difference if
perfusion is parallel or perpendicular to the white matter fibers.
Retrieve intrinsic permeability ks

int from hydraulic conductivity

K is not straightforward. If the ratio ks
int
µ

is common to the
different equivalence, the size of the sample, its density and
difference of pressure could be at play. Applying the ratio on
hydraulic conductivity, a dynamic viscosity µ with the order
of 1 · 10−3 Pa · s will lead to an intrinsic permeability ks

int
between 2 · 10−14 m2 and 2 · 10−13 m2, which is two orders
higher than [48]. In [47], Sowinski et al. hypothesise that
in vitro experiments tend to lead to smaller values, due to
pore collapse in sampled tissue. In [48], Jamal et al. claim
that these microstructural changes become significant after
6h post-mortem, hence they perform their experiments within
these 6h. As we do not have sufficient information, we have no
other choice to keep this large range, from 10−17 to 10−13, as
acceptable values of ks

int.

4. Computational framework

Using the FEniCS python libraries, the solution of the prob-
lem has been done with the finite element method, with a mono-
lithic solution process. Boundary conditions for the consolida-
tion tests are shown in Fig.1B and for the indentation tests in
Fig.2B. The computations have been run on a mesh of 4 × 20
elements for consolidation tests and 98×60 for indentation tests,
both are cylindrical axis symmetric representation of the sam-
ple. The same computations have been run with meshes with
three levels of refinement, with the same results.
The boundaries of the consolidation tests are shown in Fig.1B.
The fluids are free to escape to loaded boundary (drained con-
dition) and the other boundaries are impervious. For the solid
scaffold, except at the loaded boundary, its displacement is al-
lowed only on the tangential direction (slip condition). The
boundaries of the indentation tests are shown in Fig.2B. Its
boundary conditions are denoted by ΓS the axis of symmetry,



by ΓB and ΓC the slip boundaries prescribed in the experimen-
tal design. ΓI is the indented surface, where the fluid is assumed
under impervious condition and ΓF the free surface.
All the codes used for computation are available on Github, at
https://github.com/StephaneUrcun/BrainTissue

Local sensitivity analysis and parameters calibration
As an initial guess, we first set all the parameters within their

ranges given in section 3 paragraph ’Assumption motivated by
literature’. Seven are denoted tissue specific, because they are
general properties, more likely to be shared by all samples: the
porosity ε, the Poisson’s ratio ν, the dynamic viscosity of the
two fluid phases µl, µg, their corresponding tortuosity exponent
Al, Bg and a, the referenced pressure of the cell-ECM interplay.
Young’s Modulus E and intrinsic permeability ks

int, which have
the wider ranges, and the initial liquid phase saturation S l

0 are
denoted sample specific (S l

0 varies for each sample, but within
the prescribed physiological range, see section 3 paragraph As-
sumption motivated by literature).
We perform a variance-based local sensitivity analysis on the
parameters at their initial guess value ±10%, described Ap-
pendix B. We perform first order sensitivity analysis (the pa-
rameters are modified one at a time) as well as second order
analysis (the 45 parameters tuples are tested to quantify param-
eters correlation). The parameters are strongly inter-dependent,
the 45 tuples gather 87.3% of the variance, the parameters can
not be calibrated separately. The weights of the parameter tu-
ples confirm the idea of two parameters subsets: the 21 tuples
of tissue specific parameters gather 49.6%, where the 21 tuples
of tissue v.s. sample specific parameters gather only 35.6%, see
Fig.3A, the 3 tuples of sample specific parameter are less cor-
related, they weigh only for 2.1%. The results of the first order
are in Fig.3B and the details of the Sobol indices can be found
in Appendix B.
The calibration process has been performed on all samples of
the consolidation tests and on the mean curve of Test 1 of the
indentation tests. It consists in a Newton algorithm on the 7
tissue specific parameters, the sample specific parameters be-
ing fixed. Once the algorithm gives no improvement (RMSE
improvement below 10−4), we perform, for each sample sepa-
rately for the consolidation tests and for indentation Test 1, the
calibration of the sample specific parameters E, ks

int and S l
0.

Measure of error
The error between numerical results ynum and experiments

data yexp, evaluated at n points, is measured in percentage by
the relative root mean square error (RMSE):

RMS E =

√√√ n∑
i=1

yexp
i − ynum

i

yexp
i

2

(12)

5. Results

The working hypothesis of this contribution is that the time-
dependent properties of cortex tissue can be modeled using a
two-phase flow poroelasticity framework. This hypothesis is

tested in this section to reproduce the experimental results of
the consolidation tests in [14] and the unconfined indentation
tests in [29]. To emphasise the limit of visco-elasticity com-
pared to poro-elasticity, a 1D confined compression test with
an available analytical solution is reproduced and discussed in
Appendix A.

Consolidation tests
The mechanical response of the six samples is generated us-

ing parameters shown in Table 2. All the samples share the
same tissue specific parameters set. Fig. 4A, B shows the re-
sults of the model for the 3 Newton and 6 Newton load series
respectively. We obtain accurate results for the 6 samples with
an error ranged from 1.1 to 5.6%. These results are obtained by
calibrating three parameters, the Young’s modulus E, the intrin-
sic permeability ks

int, and the initial saturation of liquid phase S l
0

within the physiological range 6.5− 17.2% (with one exception
sample 3N C2 d at 5.9%). All the details are referenced in Table
2.

Indentation tests
The four indentation tests have been reproduced using the

same mathematical modeling (section 3) and computational
framework (section 4) than the consolidation tests. However,
these indentation tests are not specifically adapted to porome-
chanical modeling, so that the nature of the free surface of the
sample ΓF (see Fig.2B) is not clearly prescribed from the flu-
ids point of view. If the cortex slice cut follows a membrane,
it leads to an impervious boundary as eq.13(a). In the case of
a proper fluid drainage, this leads to a homogeneous Dirich-
let condition, eq.13(b). The intermediate case leads to a semi-
pervious boundary. To our knowledge, no investigation has
been done on the passive drainage of the free surface for ex
vivo cortex tissue testing, then we adopt a convective condi-
tion, usual in mass transfer through boundaries in poromechan-
ics [49] eq.13(c).

∂pα

∂n
= 0 on ΓF α = g, l (13a)

pα = 0 on ΓF α = g, l (13b)

∂pα

∂n
= h(pα − pα0 ) on ΓF α = g, l (13c)

Our investigation shows that a semi-pervious boundary on the
sample free surface gives slightly better results than an imper-
vious boundary for the indenter surface response evaluated in
this article. With the same parameters, the influence of differ-
ent boundary conditions on the free surface are shown in Fig. 5.
For the sake of simplicity, we choose an impervious boundary
condition on the free surface.

We identify the parameters of [29] with only one test, the 1
millimeter diameter long range indentation on grey matter, de-
noted Test 1 in this article. Then, we validate these parameters
on the other tests. The parameters of Test 1 are identified by the
same process than consolidation tests, see section 4.
The resulting parameters of Test 1 (12.7% RMSE) are validated

https://github.com/StephaneUrcun/BrainTissue


Figure 3: Results of the second-order sensitivity analysis. A The parameters interaction gathers 87.1% of the solution variance, i.e. the parameters are strongly
correlated. The 21 tuples of tissue specific parameters weight for 49.6%, the 21 tuples of tissue/sample interaction weight for 35.6%, the 3 tuples of sample specific
parameter are less correlated, they weight only for 2.1%. B Details of the weight of parameter independent sensitivity. The Poisson’s ratio ν sensitivity largely
dominates the other parameters.

Table 2: Model parameters calibrated of the consolidation tests on ex vivo human cortex [14]. Seven parameters, ε, ν, µl (Pa · s), Al, µg (Pa · s), Bg and a (Pa)
denoted tissue specific, are common to all samples. Three parameters, E (Pa), ks

int (m2) and S l
0, within the prescribed range [0.065; 0.232], are calibrated specifically

for each sample. Only one sample, 3N C2 d, is slightly below S l
0 prescribed range.

Sample E (Pa) ks
int (m2) S l0 RMSE

3N C2 b 4130 2.2e−13 0.075 0.056
3N C2 d 9300 2.1e−13 0.059 0.036
3N C2 e 3740 4.7e−13 0.100 0.016
6N C3 a 4330 2.9e−13 0.114 0.011
6N C3 b 3500 6.1e−13 0.169 0.017
6N 6 7100 2.1e−13 0.094 0.015
Shared parameters S l0 ε ν µl (Pa · s) Al µg (Pa · s) Bg a
(tissue specific) [0.065;0.232] 0.6 0.49 8e−3 1 35 2 800

on Test 2, 3 and 4, see Fig.6. It shows that the calibrated param-
eters lose accuracy but remain capable of reproducing the dif-
ferent tests. The change in the indenter diameter Test 2 slightly
increases the error (13.5% RMSE). The results degradation is
more significant when loading rates change in Test 3 (16.7%
RMSE) or for the relaxation Test 4 (18.3% RMSE). Test 4 has
been calibrated independently (10.3% RMSE), see Fig. 7, giv-
ing a different profile with E almost twice higher, see Table 3.
The calibrated parameters of Test 1 give a value of S l

0 below
the prescribed physiological range (< 6.5%), whereas the cal-
ibrated S l

0 of Test 4 is closer to the physiological range (see
Table 3).

6. Discussion

The strong time-dependent mechanical behavior of the cor-
tex is generally attributed to both the intrinsic viscoelasticity
of the solid phase and fluid flow-induced poroelasticity but
the relative contributions of the two are unclear. Conventional
approaches combine viscoelastic and poroelastic behaviors
into a single framework to be able to reproduce experimental
data [14, 28].

In this contribution we propose to implement a two-phase
flow poroelastic model of the cortex to capture the consolida-
tion, the relaxation and the sensitivity of a set of selected load
rates and investigate the dissipation mechanisms. Two sets of
experiments are reproduced: the consolidation test of [14] and
the unconfined indentation test of [29]. Our results show that
the experimental curves can be reproduced without the need to
resort to viscous effects, by adding an additional fluid phase.

First, we note that we examine in this paper two mechanical
tests which are considerably different. For the consolidation
test a load as high as 6 Newton is applied on the delicate
structure of the cortex, which corresponds to a pressure of
8440Pa. In the indentation test, the load is approximately 0.6
mN (that is 4 orders of magnitude smaller), corresponding to
a 20Pa pressure. The two tests are therefore very dissimilar in
the way the sample is loaded, deformed and, possibly, damaged.

We estimate material parameters associated with the models
we develop. We then compare those parameters with those
published in the literature. We consider those parameters
through the lens of the PhD thesis of Fanny Morin [50]
(Chapter 6). Within this scope, we focus on rheological
parameters extracted from confined/unconfined experiments on



Figure 4: Numerical reproduction of Franceschini et al. consolidation tests on ex vivo human cortex [14]. Time (minutes) vs. Displacement (mm). A 3 Newton
load series. Sample 3N C2 b (experimental green circle; numerical green dotted) is reproduced with 0.056 RMSE (see Eq.12); Sample 3N C2 d (experimental
orange triangle; numerical orange dotted) with 0.036 RMSE; Sample 3N C2 e (experimental blue square; numerical blue dotted) with 0.016 RMSE. B 6 Newton
load series. Sample 6N C3 a (experimental green circle; numerical green dotted) is reproduced with 0.011 RMSE; Sample 6N C3 b (experimental orange triangle;
numerical orange dotted) with 0.017 RMSE; Sample 6N 6 (experimental blue square; numerical blue dotted) with 0.015 RMSE.

Table 3: Parameters for indentation tests on ex vivo bovin cortex. Validation (V) on Test 2, 3 and 4 of the calibrated (C) parameters of the Test 1. Specific
calibration (C) of the Test 4. Seven parameters, ε, ν, µl (Pa · s), Al, µg (Pa · s), Bg and a (Pa) denoted tissue specific, are common to all samples.

Sample E (Pa) ks
int (m2) S l0 RMSE

Test 1 (C) 605 2.8e−12 0.027 0.127
Test 2 (V) 605 2.8e−12 0.027 0.135
Test 3 (V) 605 2.8e−12 0.027 0.167
Test 4 (V) 605 2.8e−12 0.027 0.183
Test 4 (C) 1100 4.2e−12 0.047 0.099
Shared parameters S l0 ε ν µl (Pa · s) Al µg (Pa · s) Bg a
(tissue specific) [0.065;0.232] 0.5 0.47 3−3 1 30 1 400

human/animal grey matter.
The stiffness values (Young’s modulus) reported in the liter-
ature, computed by considering grey matter as a monolithic
solid, are widely scattered (1.1 to 8 kPa). In the unconfined
indentation case, these stiffness values are much higher than
those we obtain (0.6-1.2kPa). This observation is explained
by the fact that the stiffness we “measure” consists in both a
solid component and a fluid component, thereby decreasing
the effective stiffness contribution of the solid phase Young’s
modulus. The values we obtain for E in the confined con-
solidation tests are six times as high as those obtained in the
unconfined indentation case (E = 5.35 ± 2.12 kPa). This could
seem surprising. The possibility of different stiffness between
humain and animal - simian, bovine and porcine - brain have
led to contradictory results (see [51] and [52]). We looked
for a possible explanation for this stiffness discrepancy within
environmental conditions such as: sample preservation, hydra-

tion and temperature. The loss of hydration and temperature
have cumulative effects. All other conditions remaining equal,
temperatures of 24◦C and 37◦C will lead to a stiffness 40%
lower, but the same variation with dehydration will lead to a
stiffness 5 fold higher (see Forte et al. [53] for a detailed study
on this topic). However, according to the ranges given in [53],
the confined consolidation and unconfined indentation tests
were made in sufficiently close environmental conditions to
rule out this hypothesis.

We therefore hypothesise that, during confined consoli-
dation, pore locking may take place, leading to the creation
of fluid “pockets” within the structure. This incomplete
consolidation results in an effective stiffening of the sample
and thereby in an increase of the apparent Young’s modulus.
Regarding the Poisson’s values, they correspond to the liter-
ature consensus with ν = 0.47 in the unconfined case, and



Figure 5: Influence of the free surface boundary condition on the indenter
surface response. Shared parameter set: E = 730 Pa, ks

int = 3 · 10−3 m2,
S l

0 = 0.063, ε = 0.6, ν = 0.49, µl = 3 · 10−3 Pa · s, Al = 1, µg = 30 Pa · s and
Bg = 2. Experimental (gree dotted); Neumann (black) impervious condition
eq.13(a); Dirichlet (blue) drained condition eq.13(b); Convective (green), with
the additional parameter h = 10−4, eq.13(c) semi-pervious condition.

ν = 0.49 in the confined case.

In the confined case, we obtain one order of magnitude
smaller permabilities than in the unconfined case. The intrinsic
permeabilities we evaluate, amended by their respective rela-
tive permeabilities, are however within the experimental range
provided in the literature. Such decrease in permeability can
be caused by the pore locking phenomenon described above.
Moreover, the consolidation tests were performed within 12
hours, as opposed to 6 hours for the indentation tests. This time
delay could lead to significant changes in the microstructure
[48], which also alters the permeability.

The review of Budday et al. [7] pointed out the promising
coupling of poro-viscoelasticity, as it takes account of both the
interplay between interstitial fluid and stroma and the time-
dependent response of cellular phase. The model proposed
by Franceschini et al. in [14] along with their experiments is
an example of this coupling. We show in this article that a
one-phase flow coupled with a viscoelastic solid, in the repro-
duced loading scenarii, can be replaced by a two-phase flow
with an elastic solid. The two different dynamic viscosities
(µl = 5.5 ± 2.5 10−3 Pa · s and µc = 32.5 ± 2.5 Pa · s) give
two different characteristic times. They are comparable to the
two-terms Prony series proposed in the viscoelastic parameter
identification of human brain tissue of Budday et al. in [11]
characterised by τ1 = 0.18 s and τ1 = 63.5 s. Moreover, our
parameters are not dependent on the geometry, as shown in the
Appendix A. The fact that the tissue characteristics are build
upon experimental findings offers a reliable way for a tissue
specific pre-calibration. The sample calibration is only done on
three parameters, which is equivalent, in computational cost, to
the classic hyperelastic models (Yeoh [54], Ogden [55]).

Even if we endeavour to build our model on experimental
matter, we are aware of its limits. A solid scaffold described

as the sum of the stroma, the vascular network and the ECM
is obviously non-linear. We have not included dependency
between permeability and porosity in our model (the interested
reader could find a presentation in [56]), whereas in confined
deformation with an incompressibility hypothesis, the main
part of the deformation is absorbed by the pores. Adding this
relation would lead to closer values of intrinsic permeability ks

int
between indentation and consolidation, and partially suppress
the artificial stiffness of consolidation parameters, by increas-
ing the fluids supported stress. We can also point out that the
total stress relationship we used, along with a Biot coefficient
equal to 1 is a strong hypothesis. The incompressibility of the
fluids is not to be questioned. Yet, micro-structural changes
due to post-mortem experiments or mechanical damage may
increase solid scaffold compressibility. Only three load rates
are reproduced in this paper (1 µm/s, 5 µm/s and 100 µm/s),
a large panel still remains to explore. Likewise, our model
response on various loading scenarii - tension or shear - or
experimental condition - such as temperature dependency -
remains open. As a consequence, our results are only relevant
at room temperature under humidity control.

The results in this paper indicate that multi-phase models
could be a strong basis for the description of biological tissue
such as the brain, ex vivo and in vivo, as some advanced models
can reproduced interplay of vessels and tissue [57, 30]. We
hope this contribution will encourage the community to de-
velop new experimental techniques which are compatible with
poro-mechanical models. More specifically, the enforcement of
boundary conditions on free surfaces could help the modeling
of different drainage conditions.

Beyond experimental setups, another open challenge lies
in the ability of models to be transferred from one observa-
tional/experimental situation to another. For this work to have
impact in a clinical setting, methods must be developed to trans-
fer parameters and models from one set of patients to another.
We believe that a quantitative approach to this would be to de-
velop robust model selection approaches from experimental or
clinical data [58].
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Appendix A. Viscoelastic modeling limitation on consoli-
dation test reproduction

Let us consider two reference models: a one solid-one fluid
poroelastic model and a rheological viscoelastic model consti-
tuted by a Kelvin-Voigt chain; and use these two models to
simulate a 1D confined compression test. In this test the tis-
sue is constrained in a cylindrical chamber and compressed at
the top surface with a constant pressure P0. The specimen is



Figure 6: Indentation tests on ex vivo bovine cortex [29]: validation of the calibrated parameters on Test 1. A Example of the simulation results on Test 1.
At 230 µm indentation depth, the glial pressure raised to 780 Pa and flush out the liquid phase (i.e. 0 Pa of pressure difference plg in this area). Note that the liquid
phase is subjected to a pressure pl of a few hundreds of Pascal at the indenter zone and only 40 Pa at the sample boundaries. B Test 1, experimental (green dotted),
numerical (green plain line), RMSE= 12.7%; Test 2, experimental (black dotted), numerical (black plain line), RMSE= 13.5%; Test 3, experimental (blue dotted),
numerical (blue plain line), RMSE= 16.7%; Test 4, experimental (pink dotted), numerical (pink plain line), RMSE= 18.3%.

fully sealed with the exception of the top and the bottom sur-
face where a porous membrane allows drainage of the inside
fluid during the test. The geometry and boundary conditions of
the test are represented in Fig. 4A. The simplicity of the two
considered models jointed with the simplicity of the considered
test allows to derive the analytical solution for both modeling
approaches (see [60] for the poromechanical model). For the
one-fluid one-solid poroelastic model:

pz(z, t) =

P0
4
π

∞∑
k=1

(−1)k−1

2k − 1
cos

(
(2k − 1)

π

2
z
L

)
exp

(
(2k − 1)2 π

2

4
cvt
h2

)
(A.1)

with the consolidation coefficient under the hypothesis of
phases incompressibility:

cv =
kM
µ

(A.2)

with M the longitudinal modulus:

M =
E(1 − ν)

(1 + ν)(1 − 2ν)
(A.3)

E the Young’s modulus and ν the Poisson’s ratio.
For the viscoelastic Kelvin-Voigt chain:

uz(z, t) =
P0z
M

[
1 − exp

(
−

Et
η

)]
(A.4)

We see that the poroelastic model is governed by the parameters
E, ν and the ratio k

µ
and the viscoelastic model by E, ν and η.

However, the analytical solution of the porous model contains
h, the sample height, which strongly influence the consolidation
time. Then, once the parameters of the porous model are cali-
brated, they will remain relevant when the height of the sample
varies.

Appendix B. Variance-based local sensitivity analysis

We performed a variance-based local sensitivity study of the
finite element solution on the parameters as follows:

• A first-order analysis, the 9 parameters are disturbed one
at a time respectively of ±10%.

• Interaction analysis, the 36 parameters tuples are evaluated
simultaneously disturbed.



Figure 7: Indentation tests on ex vivo bovine cortex [29]: calibration of the
parameters of Test 4. Experimental (pink dotted), numerical (pink plain line),
RMSE= 10.3%.

All the results were interpreted with a polynomial model in or-
der to quantify their weights in the solution variance, referred
to as Sobol indices. The initial guess of the parameters set
was: E = 3500 Pa, ν = 0.45, k = 10−13 m2, ε = 0.55,
µl = 8 ·10−3 Pa ·s, µg = 35 Pa ·s, Al = 1, Bg = 2 and S l

0 = 0.012.
It gives the base error J0.

First-order analysis
Each parameter is disturbed one at a time respectively of

±10%, giving the corresponding error J̃. The relative variations
of the error were calculated as follows:

Var =
J̃ − J0

J0
(B.1)

where J0 is the error with the parameters at their initial values.
In order to quantify the impact of each parameter, the following
linear model was set:

Var = 1 +
∑

i

θiαi (B.2)

where αi is an auxiliary parameter ∈ [−1,+1] representing the
perturbations of ±10% of the ith parameter and θi the slope of
the variation.
In a first-order analysis, the influence of the ith parameter is
given by the Sobol indices:

S i =
θ2

i∑
i θ

2
i

(B.3)

The results of the first-order analysis are reported in Table B.4.

Table B.4: Sobol indices of the first-order local sensitivity analysis.
Parameter θ S i(%)
E 0.0426 8.29
ν 0.2384 56.7
ks

int −0.0430 8.74
ε −0.0304 3.32
µl 0.0346 8.17
µg 0.0114 3.70
Al 0.0002 1.58
Bg 0.0208 5.80
S l

0 −0.0256 3.63

Interaction analysis
We evaluate the correlation between parameters. The 36 tu-

ples (αi, α j)i> j have been evaluated at ±10%. The correspond-
ing polynomial model becomes:

Var = 1 +
∑

i

θiαi +
∑
i j,i> j

θi jαiα j (B.4)

with the respective Sobol indices:

S i =
θ2

i∑
i θ

2
i +

∑
i j,i> j θ

2
i j

and S i j =
θ2

i j∑
i θ

2
i +

∑
i j,i> j θ

2
i j

(B.5)

The results are reported in Table B.5.
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Stéphane Cotin, and Stéphane P.A. Bordas. Controlling the error on target
motion through real-time mesh adaptation: Applications to deep brain
stimulation. International Journal for Numerical Methods in Biomedical
Engineering, 34(5):e2958, 2018. e2958 cnm.2958.

[6] Huu Phuoc Bui, Satyendra Tomar, Hadrien Courtecuisse, Stéphane Cotin,
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