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a b s t r a c t

Nowadays, offering fast and reliable delivery service has become a vital issue associated with all ship-
ment delivery systems. Due to unpredictable variability in travel times, configuration of transportation
systems plays a key role in ensuring of meeting the delivery service requirement. This paper tries to
investigate the effect of delivery service requirement on the configuration of the transportation system
through a hub-and-spoke network. The primary goal of this paper is to study a bi-objective single
allocation p-hub center-median problem (BSpHCMP) by taking into account the uncertainty in flows,
costs, times and hub operations. The proposed problem is modeled through a bi-objective mixed-integer
non-linear programming (BMINLP) formulation that simultaneously locates p hubs, allocates spokes to
the located hubs, and assigns different transportation mode to the hub-to-hub links. Then, a fuzzy-
queuing approach is used to model the uncertainties in the network. Additionally, an efficient and
powerful evolutionary algorithm based on game theory and invasive weed optimization algorithm was
developed to solve the proposed BSpHCMP model and obtain near optimal Pareto solutions. Several
experiments besides a real transportation case show the applicability of the proposed model as well as
the superiority of the proposed solution approaches compared to NSGA-II and PAES algorithms.

1. Introduction

Hub location problems (HLPs) arise in systems with the need
of transporting flows (e.g., goods or passengers) between origin–
destination (OD) nodes (spokes). In such systems, a direct
transportation of the flows between spokes is neither practical
nor costly efficient. Therefore, one may use a specific network
structure called hub-and-spoke network, wherein the hubs are
intermediate facilities in these networks whose duties are con-
solidating the flows from the origins, transferring the flows
between hubs, and distributing the flows to the destinations.
Transferring the flows via the hub-to-hub links allow us to
exploit transportation flow economies (Ernst et al., 2009). Spokes
can be allocated to one or more hubs based on single or multiple
allocation strategies. A common assumption is that the hubs are
fully interconnected, while there is no connection between
spokes. Therefore, all flows must pass at least one hub on
their route.

In HLPs, the considered objectives are mainly median and center.
The hub median problem is to locate a set of hubs and to allocate
spokes to the located hubs with the objective of minimizing the
total transportation cost. The hub median problems are applied to
airline and telecommunication systems. A drawback of median
design of a hub network is when maximum OD distances are
excessively large. To overcome this weakness, hub center problems
arise when the main objective is to minimize the maximum dis-
tance or cost between OD pairs. This objective is significantly
important for the shipment delivery systems as well as delivery of
perishable or time sensitive items (Campbell et al., 2007).

In shipment delivery systems, most customers are looking for
companies that offer fast, cheap and reliable delivery service as well
as guarantee that when deliveries will be made. However, these
companies have to operate a huge volume of shipments each day
(Sim et al., 2009). To operate a huge volume of deliveries between
many pairs of OD nodes, companies need to design an efficient and
reliable hub-and-spoke network not only to meet delivery
requirements, but also to offer cheap deliveries (Grove and O'Kelly,
1986; Hall, 1989; Sim et al., 2009). Shipment delivery systems
through hub-and-spoke topology benefit from economies of scales
by transferring large volume of flows through hub-to-hub links that
result in faster delivery as well as cheaper transportation. To this
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aim, the hub network should be designed respecting median and
center objectives.

The considered hub location problem in this paper is called the
bi-objective single allocation p-hub center-median problem
(BSpHCMP), where the hubs and the connection links have infinite
capacity. The aim is to locate p hubs and allocate the spokes to
exactly one of the located hubs in such a way that the total
transportation cost (i.e., median objective) besides maximum
transportation time between any OD pair (i.e., center objective) is
simultaneously minimized. After designing the hub network, a
company may evaluate alternative transportation modes for those
OD pairs that are not tightly limited by the time service require-
ment. For example, a single or a combination of slower but lower
cost transportation modes may be used between some particular
OD pairs while their delivery requirement is still met.

Different attributes of such problem, like size, responsibilities,
services, and the nature of spoke allocation have made designing it
quite complicated. Owning to the complexity and several com-
ponents of the hub network, a little uncertainty may cause a huge
disruption in the network, which imposes huge costs and hard-to-
recover effects on the network (Cui et al., 2010). These uncer-
tainties (natural disasters, terrorist attacks, unexpected work
overloads, shortages, labor strikes, etc.) can affect not only costs,
demands and transportation times, but also hub operations. That
is, disruptions can occur and the hubs may become temporarily
unavailable to provide service. In these situations, retrieving of the
hubs yields extra costs and time in the network.

Hub’s disruptions particularly affect the center objective, where
the flows entering the hub must wait until the hub is retrieved then
receive services. These waiting times at the hubs lead to higher
delivery time and increase customer dissatisfaction. Since the flow
entering a hub is uncertain, the queuing theory is needed to analyze
the waiting time of the flows at the hubs. Therefore, the uncer-
tainties of flows, costs, times and hub operations should be taken
into account in network design phase (for uncertainties in network
designs see Mohammadi et al., 2011a, 2011b, 2013, 2014a; Contreras
et al., 2011; Ishfaq and Sox, 2012; Yang et al., 2013a, 2013b, 2014;
Mousazadeh et al., 2015; Zahiri et al. 2014a; 2004b, 2015).

Finally, the primary goal of this paper is to address the
BSpHCMP considering uncertainty in flows, costs, times and hub
operations. We model the proposed problem through a bi-
objective mixed-integer non-linear programming (BMINLP) for-
mulation that simultaneously locates p hubs, allocates spokes to
the located hubs, and assigns different transportation mode to the
hub-to-hub links. The median objective minimizes the sum of total
transportation cost and cost of locating hubs and assigning dif-
ferent transportation modes across the network. The center
objective minimizes the maximum transportation time between
each OD pair in the network.

One of the most challenging issues in HLPs is how to solve them,
since they are known to be NP-hard (Alumur and Kara, 2008).
Solving the proposed BSpHCMP, compared with its single-objective
version, has not been so extensively studied in the literature, and so
far a few papers have developed multi-objective evolutionary
algorithms to deal with the multi-objective HLPs (e.g., Mohammadi
et al., 2013, 2014a and references herein). These articles mainly lack
for efficient and fail to propose powerful algorithms that are able to
find near optimal solutions for a bi-objective HLP.

Accordingly, the second purpose of this paper is to propose an
efficient and powerful evolutionary algorithm, based on game
theory and invasive weed optimization algorithm (Mehrabian and
Lucas, 2006) to solve the proposed BSpHCMP model and obtain
near optimal Pareto solutions.

The rest of this paper is organized as follows. Section 2 reviews
prior researches, first, in the area of center-median HLPs under
uncertainty and, second, in domain of evolutionary algorithms to

solve HLP models. Section 3 describes the modeling framework
and presents the BMINLP formulation. Section 4 describes the
solution approach and develops a meta-heuristic algorithm.
Computational experiments with comprehensive sensitivity ana-
lyses are provided in Section 5. Finally, the conclusion is presented
in Section 6.

2. Literature review

This section is organized in two sections. First, Section 2.1
provides a brief review of HLPs considering uncertainty and dis-
ruption in the hub network design. Next, some relevant papers
developing meta-heuristic algorithms are reviewed in Section 2.2.

2.1. HLPs and uncertainty

Campbell (1994) proposed the first formulation for p-hub
center problem (pHCP) as a quadratic programming model.
Afterwards, several alternative linear formulations for the single
allocation pHCP were proposed by Kara and Tansel (2000). Ernst
et al. (2000) modeled both single and multiple allocation pHCP
through a new mixed-integer linear programming formulation
based on the concept of the radius of hubs. Kara and Tansel (2001)
incorporated an operational-level constraint to the pHCP which
flows departing from a hub cannot leave until all flows entering
the hub have arrived. They called this problem as the latest arrival
hub location problem.

Wagner (2004) explained that the solution of the min–max
version of the latest arrival hub location problem is similar to the
pHCP because the route that determines the longest path in the
network is the one where the transient or waiting times at the
hubs are zero. Yaman et al. (2007) presented a new version of the
latest arrival hub location problem by considering stop overs and
between the spoke and hubs. Campbell et al. (2007) studied the
single and multiple allocation versions of the pHCP, and concluded
that several special cases of the pHCP and latest arrival HLP can be
solved in polynomial time.

For the first time, O’Kelly (1987) formulated a single allocation p-
hub median problem (pHMP) as a quadratic integer program. How-
ever, this formulation resulted in a very difficult problem to be solved.
Next, Campbell (1994) provided new formulation for the p-hub
median problem as an integer program, but this formulation con-
tained many variables and constraints. Yaman (2011) proposed three
different formulations for the uncapacitated r-allocation pHMP. For
more details on pHCP and pHMP formulations, interested readers are
referred to Alumur and Kara (2008) and Campbell et al. (2002) and
more recently Zanjirani Farahani et al. (2013) for surveys on HLPs.

To the best of our knowledge, a few papers have studied the
pHCP and pHMP with uncertainty in flows, costs, and transporta-
tion time. Sim et al. (2009) introduced a stochastic pHCP (SpHCP)
utilizing a chance-constraint method to model the minimum
delivery service requirement by taking the variability in trans-
portation times into account. Yang et al. (2013a) presented a new
risk aversion pHCP with fuzzy travel times by adopting value-at-
risk (VaR) criterion in the formulation of objective function. In
order to solve and validate the model, they first turned the original
VaR pHCP into its equivalent parametric mixed-integer program-
ming problem, and then developed a hybrid algorithm by incor-
porating genetic algorithm and local search (GALS) to solve the
parametric mixed-integer programming problem. Yang et al.
(2013b) proposed a new pHCP with normal fuzzy travel time, in
which the main goal is to maximize the credibility of fuzzy travel
times not exceeding a predetermined acceptable efficient time
point along all paths on a network. Due to complexity of the
proposed model, they applied an approximation approach (AA) to



discretize fuzzy travel times and reformulate the original problem
as a mixed-integer programming problem subject to logical con-
straints. Next, they took advantage of the structural characteristics
to develop a parametric decomposition method to divide the
approximate pHCP into two mixed-integer programming sub-
problems. Finally, the authors developed an improved hybrid
particle swarm optimization (PSO) algorithm by combining PSO
with genetic operators and local search (LS) to update and
improve particles for the subproblems. In another work, Yang et al.
(2014) reduced the uncertainty embedded in secondary possibility
distribution of a type-2 fuzzy variable by fuzzy integral and
applied the proposed reduction method to pHCP. They also
developed a robust optimization method to take uncertainty in
travel times into account by employing parametric possibility
distributions.

Contreras et al. (2011) studied stochastic uncapacitated HLPs,
where flows and transportation costs considered to be uncertain.
They showed that the stochastic problems with uncertain flows or
dependent transportation costs are equivalent to their associated
deterministic expected value problem (EVP), in which random
variables are replaced with their expectations. Mohammadi et al.
(2013) developed a stochastic bi-objective multi-mode transpor-
tation model for hub covering problem. They considered the
transportation time between each pair of nodes as an uncertain
parameter that is also influenced by a risk factor in the network.
Similar to Contreras et al. (2011), Adibi and Razmi (2015) devel-
oped a 2-stage stochastic programming for formulating stochastic
uncapacitated multiple-allocation HLP. They considered three
cases, wherein, (1) flow is stochastic, (2) cost is stochastic, and
(3) both flow and cost are stochastic. Unlike Contreras et al. (2011),
the authors concluded that considering uncertainty into formula-
tion could result in different solutions.

To the best of our knowledge, there is no paper considering
uncertainty in hub operations that affect the center objective.
Most of papers considering uncertainty in the location–allocation
problem have studied disruption particularly in facility location
problems (FLPs). Two reliability models called reliable p-median
and reliable uncapacitated fixed-charge location were studied by
Snyder and Daskin (2005). In their model, the uncertainty resulted
in unavailability of the facilities and each customer is assigned not
only to a primary facility but also to a number of backup facilities,
in which at least one facility must be available. If the current
facility fails, the customer is served by the next available backup
facility. They also consider that the failure probabilities are equal
and mutually independent. Li et al. (2010) studied a FLP in a three-
level supply chain problem by taking random disruption for both
suppliers and retailers into account. Their models determine the
optimal locations of retailers, customer assignations and inventory
policy. Peng et al. (2011) introduced the p-robustness criterion so
that the designed network performs well in both disrupted and
normal conditions. Zheng and Ling (2013) proposed a multi-
objective fuzzy optimization problem of emergency transporta-
tion planning, in which disruption is occurred due to natural
phenomena and took into consideration three transportation
modes: air, rail, and road.

There are only two studies that have studied disruption in the
hub network. Parvaresh et al. (2012) formulated a bi-level multiple
allocation pHMP under intentional disruptions with bi-objective
functions at an upper level and a single objective at a lower level.
In their model, the leader aims at identifying the location of hubs
so that minimize normal and worst-case transportation costs.
Finally, the worst-case scenario is modeled in a lower level where
the follower's objective is to identify the hubs that if it is lost, it
will mostly increase the transportation cost. Additionally, they
developed two multi-objective meta-heuristics based on simu-
lated annealing and tabu search to solve their proposed model. In

similar work, Parvaresh et al. (2013) developed a multiple alloca-
tion p-hub median problem under intentional disruptions using
different definitions of a failure probability of the hub in com-
parison to their previous work.

2.2. Solution algorithms

Regarding evolutionary algorithms to solve large-sized instances
of the hub location problems, a tabu search method by Klincewicz
(1992) and Skorin-Kapov and Skorin-Kapov (1994) and a simulated
annealing heuristic by Ernst and Krishnamoorthy (1999) were
proposed for pHMPs. Also for pHCPs, a tabu search based heuristic
was presented by Pamuk and Sepil (2001). Chen (2007) proposed
two approaches to determine the upper bound for the number of
hubs along with a hybrid heuristic based on the simulated
annealing method, tabu list, and improvement procedures to solve
the proposed uncapacitated single allocation HLP (USAHLP). The
computational results demonstrated that the proposed hybrid
heuristic outperforms a genetic algorithm and a simulated anneal-
ing method in solving USAHLP. Cunha and Silva (2007) proposed a
heuristic based on genetic algorithm to solve the problem of con-
figuring hub-and-spoke networks for trucking companies that
operate less-than-truckload (LTL) services in Brazil. Their genetic
algorithm incorporated an efficient local improvement procedure
that was applied to each generated individual of the population.

Randall (2008) applied ant colony optimization in order to
solve a capacitated single allocation HLP. Calik et al. (2009) pre-
sented a tabu search heuristic for the hub covering problem. In
addition, Qu and Weng (2009) developed a path relinking
approach for hub maximal covering location problem. Silva and
Cunha (2009) proposed three variants of a simple and efficient
multi-start tabu search heuristic, as well as a two stage integrated
tabu search heuristic. Yang et al. (2013a) developed a hybrid
algorithm by incorporating genetic algorithm and local search
(GALS) to solve the parametric mixed-integer programming model
of a pHCP. In our designed GALS, the GA was used to perform
global search, while LS strategy is applied to each generated
individual (or chromosome) of the population. Yang et al. (2013b)
designed an improved hybrid particle swarm optimization (PSO)
algorithm by combining PSO with genetic operators and local
search (LS) to update and improve particles. They also evaluated
the improved hybrid PSO algorithm against the other two solution
methods, genetic algorithm (GA) and PSO without LS components.

Saboury et al. (2013) proposed two hybrid heuristics algorithms
to solve the problem, namely SAVNS and TSVNS which incorporated
a variable neighborhood search (VNS) algorithm into the frame-
work of simulated annealing (SA) and tabu search (TS). Their
proposed algorithms were able to easily obtain the optimal solu-
tions for 24 small instances existing in the literature in addition to
efficiently solving new generated medium and large instances.
Bashiri et al. (2013) proposed a hybrid approach based on genetic
algorithm and fuzzy VIKOR to solve a new fuzzy pHCP. Moham-
madi et al. (2013) proposed a hybrid multi-objective imperialist
competitive algorithm (MOICA) incorporating with crossover
operator of genetic algorithm to solve a hub covering location
problem. They also provided a new continuous solution repre-
sentation for the HLP. In a similar work, Mohammadi et al. (2014a)
developed two different meta-heuristic algorithms, namely ICA
and SA, to solve a multi-objective sustainable HLP.

Peiró et al. (2014) proposed a heuristic for the uncapacitated r-
allocation pHMP. Similarly, Martí et al. (2015) presented a scatter
search implementation for an NP-hard variant of the classic pHMP.
Specifically, they tackled the uncapacitated r-allocation pHMP that
consisted of minimizing the cost of transporting the traffics
between nodes of a network through special facilities that acted as
transshipment points.



For many optimization problems, it has been demonstrated that it is
essential to involve some improvement strategies into a heuristic
method to yield effective optimization tools (see Maric et al., 2013; Goh
et al., 2009; Ribeiro and Hansen, 2002; Ishibuchi et al., 2009; Yang and
Liu, 2014; Asl-Najafi et al., 2015). In the literature, there are several
heuristic and meta-heuristic algorithms in different fields such as
genetic algorithm for inspection planning (Mohammadi et al., 2015),
teaching–learning-based optimization algorithm for realistic flowshop
rescheduling problems (Li et al., 2015), GRASP algorithm for humani-
tarian relief transportation problem (Talebian-Sharif and Salari, 2015),
ant colony optimization in solving JIT scheduling problem (Khalouli
et al., 2010), multi-start path relinking algorithm in vehicle routing
problem (Tan et al., 2001, Lacomme et al., 2015), tabu search algorithm
for the maximum independent set problem (Jin and Hao, 2015), vari-
able neighborhood search in flowshop scheduling problem (Gianno-
poulos et al., 2012), simulated annealing and particle swarm optimi-
zation for track train timetabling and HLP (Jamili et al., 2012; Sedeh-
zadeh et al., 2014), swarm intelligence in green logistics (Zhang et al.,
2015), imperialist competitive algorithm in healthcare network design,
HLP, redundancy allocation problems and reverse logistics (Ghodsi et al.,
2010; Mohammadi et al., 2010, 2011a, 2011b, 2013, 2014b; Azizmo-
hammadi et al., 2013; Zahiri et al., 2014a, 2014b; Vahdani and
Mohammadi, 2015; Sedehzadeh et al., 2015), and invasive weed opti-
mization algorithm in hub location problem (Niakan et al., 2014).

In this paper, we proposed a new multi-objective meta-heuristic
algorithm, i.e. bi-objective invasive weed optimization algorithm
(BOIWOA) which is originally developed by Mehrabian and Lucas
(2006) and have been successfully applied to a number of problems
in engineering interests. In addition, this algorithm is hybridized
with game theory to obtain near optimal Pareto solutions.

Some most related works in terms of model formulation and
solution algorithms have been listed in Table 1. According to
Table 1, the contributions of this paper are elaborated as follows:

� Developing a new bi-objective center-median HLP.
� Considering uncertainties in costs, transportation time and hub

operations.
� Modeling the hubs as queuing systems.
� Considering disruption (breakdown) at hub’s queuing system.
� Considering mixed uncertainty in flows (i.e., stochastic flow

with fuzzy levels).
� Developing a hybrid meta-heuristic algorithm based on invasive

weed optimization (IWO) algorithm, variable neighborhood
search (VNS) algorithm, and game theory technique.

� Considering game-based rewarding procedure to evaluate the
solutions of the algorithm.

3. Modeling framework and mathematical formulation

This section presents a modeling framework for the design of
BSpHCMP. The proposed BSpHCMP is represented by a graph in
which nodes represent demand points and arcs represent different
modes of transportation between the nodes. A p number of nodes
are located as hubs and the remained ones (spokes) are allocated
to only one of the located hubs. The set of arcs can include of
different modes of transportation, such as road, rail and air. In this
modeling framework, a shipment between an origin node i and a
destination node j can be traveled either through a pair of hubs (k,
l) or through a single hub. The travel of shipments between each
pair of O–D nodes consists of three parts. The first part is con-
solidation when shipments from the origin node i are consolidated
at the origin hub k. The second part is transferring when ship-
ments are transferred between the origin hub k and destination
hub l. The third part is distribution when shipments are dis-
tributed to the destination node j. In the case of a single hub

Table 1
Review of related works.

Author Year Model formulation Solution algorithm

Objective Uncertainty Objective Mechanism

Center Median Covering Flow Cost Time Hub operation Mixed Single Multi Heuristic Meta-heuristic Hybrid

Kara and Tansel 2000 √ √
Ernst et al. 2000 √ √
Kara and Tansel 2001 √ √
Wagner 2004 √ √
Yaman et al. 2007 √ √
Campbell et al. 2007 √ √
Chen 2007 √ √ √ √
Cunha and Silva 2007 √ √ √
Sim et al. 2009 √ √ √ √
Ghodsi et al. 2010 √ √ √
Mohammadi et al. 2010 √ √ √ √
Yaman 2011 √ √
Contreras et al. 2011 √ √ √ √ √
Mohammadi et al. 2011a √ √ √ √
Mohammadi et al. 2011b √ √ √ √
Parvaresh et al. 2012 √ √ √ √
Yang et al. 2013a √ √ √ √ √
Yang et al. 2013b √ √ √ √ √
Mohammadi et al. 2013 √ √ √ √ √ √
Parvaresh et al. 2013 √ √ √ √
Saboury et al. 2013 √ √ √ √
Bashiri et al. 2013 √ √ √ √ √
Yang et al. 2014 √ √ √ √ √
Mohammadi et al. 2014a √ √ √ √ √ √ √ √
Peiró et al. 2014 √ √ √
Adibi and Razmi 2015 √ √ √ √
Martí et al. 2015 √ √ √
This paper √ √ √ √ √ √ √ √ √ √ √



shipment (k¼ l), the travel consists of only two parts: consolida-
tion and distribution.

The transferring part is the line haul where shipments are
transferred in larger quantities and with higher frequencies. Using
different transportation modes for the hub-to-hub links is an aid
to define competitive and efficient delivery requirement. The
choice of a specific transportation mode m for hub-to-hub travel is
represented by the binary variable Xm

iklj. Although a specific mode
may be selected for the hub-to-hub transfer of shipments for a
specific O–D pair, other O–D pairs may ship through the same
hubs using a different mode of transportation. It should be noted
that for each O–D pair, only one mode is selected. Also note that
shipments are consolidated and distributed using transportation
mode m¼1.

Although most of papers have taken into account only travel time
on the connection links for the path i-k-l-j, it is noteworthy that
arrival shipments cannot be quickly transferred and need to be pro-
cessed. For example, arrival shipments must be unloaded, sorted,
packaged and loaded before transferring to their destinations. Hence,
shipments must spend time at the hub(s). In addition, due to some
recourse limitations at the hub(s), all shipments cannot be processed
at the same time and must wait to be processed. Therefore, the total
travel time is the sum of transportation time on the links and the time
spent at the hub(s). The recourse limitation at the hub(s) causes
shipment delays if the average shipment arrival rate gets closer to the
processing rate at these operations. These delays increase as more and
more shipments are consolidated in the hub to take advantage of the
economies of scale. As these delays significantly affect the delivery
time requirement, spent time at the hubs should be calculated and
taken into account.

Since the hub operations are affected by uncertainties, the
waiting time at hubs are also uncertain. In other words, the
waiting time of the flows directly depends on the disruption at
hubs. Section 3.1 will discuss how to calculate and analyze hub
waiting time under disruption.

3.1. Hub waiting time under disruption

In this paper, arrival shipments to a hub should wait to be
processed and then be transferred to their destinations. This
waiting time contribute a high value to the transportation time
between each O–D pair (Mohammadi et al., 2011a, 2014a) and
significantly affect the center objective. Therefore, in order to
establish a delivery requirement and reach center objective, the
waiting time at hubs needs to be considered. Since the flow
between each pair of O–D nodes are not deterministic, a queuing
approach is considered to analyze the waiting time. In this way,
accounting for uncertain amount of flows and calculation of
waiting times through queue theory makes the proposed model
more attractive in practice.

A number of papers have already justified the use of queuing
approach to analyze the operation of hubs by using both empirical
and simulation procedures (see e.g. van Woensel and Vandaele,
2006; van Woensel et al., 2006; van Woensel and Cruz, 2009;
Mohammadi et al., 2011a, 2014a); where validation results proved
that in order to calculate the waiting time of flows in the hub,
queuing models can adequately be applied. Based on these vali-
dations, a Poisson process was suggested as a good representation
of arrival rates where there is always a variation around scheduled
arrival times (Peterson et al., 1995). Generally, Poisson process can
be considered in other service systems where arrival rates and
capacity levels vary significantly over time.

Despite of literature and in order to model the uncertainty in
the hub operations, we consider that the queue system at each
hub is stochastically disrupted and again retrieved with specific
rates. In case of M/M/c queue system, service times are assumed to

be independent and identically distributed exponentials with rate
μ. During disruptions, the number of operational servers decreases
from c to c0 and the service rates of all servers drop from μ to
μ0Z0. As soon as the hub is retrieved, the number of working
servers and their service rates are restored to c and μ, respectively.
We assume that disruptions arrive according to a Poisson process
with rate v, and the retrieve times are i.i.d. exponentials with rate
r. The flow arrivals are in accordance with a homogeneous Poisson
process with intensity λ.

Within the context of traditional queuing theory, the inter-
arrival times and service times are required to follow certain
probability distributions. However, in many practical applications,
the statistical information may be obtained subjectively, i.e., the
arrival pattern and service pattern are more suitably described by
linguistic terms such as fast, slow (or) moderate, rather than by
probability distributions. Therefore, fuzzy queues are much more
realistic than the commonly used crisp queues (Li and Lee, 1989;
Negi and Lee, 1992; Prade, 1980). Accordingly, in this paper, we
develop a method that is able to provide fuzzy performance
measures for a queue with fuzzified exponential arrival rate and
service rate. Therefore, a FM/FM/1 queue system is considered for
all located hubs, in which the fuzzy mean waiting time, at a hub,
when μ0 ¼ 0, can be calculated as Eq. (1) (Baykal-Gursoy et al.,
2009). In addition, a trapezoidal fuzzy numbering is considered for
the shipment flow, arrival and service rates. The following nota-
tion is used to present the queuing system:

Sets:
i; jA 1;2;…; If g Set of spokes.
k; lAH;HA I Set of hubs.

Parameters:
~sij Fuzzy shipment between spoke i and spoke j.
~μk Fuzzy service time at hub k.
vk Disruption rate at hub k.
rk Retrieve time rate at hub k.

Variables:
Xik 1 if spoke i is allocated to hub k; 0 otherwise. If

Xkk ¼ 1, this indicates that node k has been
located as a hub.

~λk
Arrival rate of shipments to the hub k.

~Wk Mean waiting time at hub k.

~Wk ¼
rkþvkð Þ2þ ~μkvk

rkþvkð Þ rk ~μk� ~λk

� �
� ~λkvk

� �8k ð1Þ

3.2. Mathematical formulation: BMINLP

According to the modeling framework and the explanations in
Section 3.1, this section provides a bi-objective mixed-integer non-
linear programming (BMINLP) formulation for the proposed
BSpHCMP in order to investigate the effect of delivery service
requirement and different sources of uncertainties on the config-
uration of the hub-and-spoke network and to analyze the tradeoff
between center and median objectives. The center objective is
reached by minimizing the maximum travel time between each
O–D pair that is the sum of transportation time on the links and
waiting time at the hubs. The transportation time and waiting
time are represented by fuzzy and fuzzy-stochastic numbering,
respectively. The median objective is also obtained by minimizing
the sum of the total transportation cost and fixed cost of locating
the hubs. We present a bi-objective mathematical model that



simultaneously determines the location of p hubs, allocates spokes
to the located hubs, and assigns different transportation modes to
the hub-to-hub links. Necessary notations are first listed, and the
proposed BMINLP model is then presented as follows:

Sets:
mAM Set of transportation modes.

Parameters:
~cmkl Unit transportation cost over the link from node

k to node l.
~f k Fixed cost of locating a hub at node k.

~t
m
kl

Transportation time on the link from node k to
node l.

σkl Hub-to-hub cost discount factor.
δkl Hub-to-hub time discount factor.

Variables:
Xm
iklj 1 if there exists a path in the network from spoke

i to spoke j through hub k first then hub l by hub-
to-hub transportation mode m.

β Travel time of the longest path in the network.

The BMINLP model is proposed as follows:

min
X
i

X
j

X
k

X
l

~sij ~c1ikþσkl ~c
m
kl þ ~c1lj

� �
Xm
ikljþ

X
k

f kXkk ð2Þ

minβ ð3Þ
s.t.

~t
1
ikþ ~Wkþδkl ~t

m
kl þ ~Wlþ ~t

1
lj

� �
Xm
ikljrβ 8 i; k; l; j ð4Þ

X
k

Xkk ¼ p ð5Þ

XikrXkk 8 i; k ð6Þ
X
k

Xik ¼ 1 8 i ð7Þ

X
m

Xm
ikljZXikþXlj�1 8 i; k; l; j ð8Þ

Xik;X
m
ikljA 0;1f g 8 i; k; l; j ð9Þ

βZ0 ð10Þ
Objective function (2) is the median objective that minimizes

the sum of the total transportation cost and fixed cost of locating
the hubs. Objective function (3) and constraint (4) address center
objective by minimizing the maximum travel time between each
O–D pair in the network. The value of β is set and offered as the
delivery service requirement. Constraint (5) ensures that exactly p
hubs must be located in the network, while constraints (6) state
that a non-hub node i can only be assigned to a located hub at
node k. Constraint (7) imposes the single allocation assumption.
Constraint (8) ensures valid transportation mode assignment
between each pair of located hubs. Finally, constraints (9) and (10)
are domain constraints.

4. Proposed solution approach

The proposed model in Section 3.2 is a bi-objective fuzzy
possibilistic BMINLP (FBMINLP) model. To solve this model, a

two-phase approach is developed in this section. The first phase
converts the proposed FBMINLP model into an equivalent aux-
iliary crisp model by applying an efficient solution methodology
resulted from fuzzy possibilistic programming. Second, a new
multi-objective meta-heuristic algorithm based on fuzzy invasive
weed optimization (FIWO) algorithm, variable neighborhood
(VNS) algorithm and game theory is developed to find near
optimal Pareto solutions of the proposed BSpHCMP.

4.1. Fuzzy possibilistic programming

In order to convert the proposed FBMINLP model into an
equivalent auxiliary crisp model, an efficient possibilistic method
proposed by Jimenez et al. (2007) is utilized as follows.

By assuming that ̃A ¼ a1; a2; a3; a4
� �

is a trapezoidal fuzzy
number, the membership function of A is provided as Eq. (11).

6a xð Þ ¼

f a xð Þ ¼ x�a1
a2 �a1; a1rxra2

1; a2rara3

ga xð Þ ¼ a4 �a
a4 �a3; a3rxra4

0 a14x; a4ox

8>>>><
>>>>:

ð11Þ

The following fuzzy mathematical programming model (12) is
considered, in which, all parameters are defined as trapezoidal
fuzzy numbers:

min Z ¼ ~C
T
X

s:t:
AiXZBi i¼ 1;…; l

AiY ¼ Bi i¼ lþ1;…; I

X;YZ0 or integerð Þ ð12Þ
An equivalent crisp parametric model (i.e., model (13)) can be

found from the model (12) (Jimenez et al., 2007).

min z¼ EV ~C
� �T

X

s:t:

1�αð ÞEAi
2 þαEAi

1

h i
XZαEBi

2 þ 1�αð ÞEBi
1 i¼ 1;…; l

1�α
2

� �
EAi
2 þα

2
EAi
1

h i
YZ

α
2
EBi
2 þ 1�α

2

� �
EBi
1 i¼ lþ1;…; I

α
2
EAi
2 þ 1�α

2

� �
EAi
1

h i
Yr 1�α

2

� �
EBi
2 þα

2
EBi
1 i¼ lþ1;…; I

X;YZ0 or integerð Þ ð13Þ
where

EVð ~C Þ ¼ C1þC2þC3þC4

4
; EA1 ¼

A1þA2

2
; EA2 ¼

A3þA4

2
;

EB1 ¼
B1þB2

2
and EB2 ¼

B3þB4

2

For more details on the method, the interested readers are
referred to Jimenez et al. (2007). According to the above descrip-
tions, the equivalent auxiliary crisp model can be formulated as
follows:

min
X
i

X
j

X
k

X
l

sij1þsij2þsij3þsij4

4

!
c1ik1þc1ik2þc1ik3þc1ik4

4

!(

þσ
cmkl1þcmkl2þcmkl3þcmkl4

4

� �
þ

c1lj1þc1lj2þc1lj3þc1lj4

4

!)
Xm
iklj

þ
X
k

f k
1þ f k

2þ f k
3þ f k

4

4

!
Xkk ð14Þ

minβ ð15Þ
s.t.



α
t1ik3þt1ik4

2

!
þ 1�αð Þ t1ik1þt1ik2

2

!" #
þ αEWk

2 þ 1�αð ÞEWk
1

h i 

þδ α
tmkl3þtmkl4

2

� �
þ 1�αð Þ tmkl1þtmkl2

2

� �� 	
8 i; k; l; j

þ αEWl
2 þ 1�αð ÞEWl

1

h i

þ α
t1lj3þt1lj4

2

 !
þ 1�αð Þ

t1lj1þt1lj2

2

!" #!
Xm
ikljrβ ð16Þ

EWk
1 ¼ rkþvkð Þ2þ μ4

k� μ4
k�μ3

k


 �
α

� �
vk

rkþvkð Þ rk μ4
k� μ4

k�μ3
k


 �
α

� �� λ2k�λ1k
� �

αþλ1k
h i� �

� λ2k�λ1k
� �

αþλ1k
h i

vk
� �8k

ð17Þ

EWk
2 ¼ rkþvkð Þ2þ μ2

k�μ1
k


 �
αþμ1

k

� �
vk

rkþvkð Þ rk μ2
k�μ1

k


 �
αþμ1

k

� �� λ4k�α λ4k�λ3k
� �h i� �

� λ4k�α λ4k�λ3k
� �h i

vk
� �8k

ð18Þ

λ1k ¼
XN
i ¼ 1

XN
j ¼ 1

s1ijþs1ji
� �

Xik8k ð19Þ

λ2k ¼
XN
i ¼ 1

XN
j ¼ 1

s2ijþs2ji
� �

Xik8k ð20Þ

λ3k ¼
XN
i ¼ 1

XN
j ¼ 1

s3ijþs3ji
� �

Xik8k ð21Þ

λ4k ¼
XN
i ¼ 1

XN
j ¼ 1

s4ijþs4ji
� �

Xik8k ð22Þ

Constraints (5)–(10) where the value of EWk
2 , is obtained by α-

cut maximum and minimum value of λk and μk, respectively. Also,
the value of EWk

1 , is obtained by α-cut minimum and maximum
value of λk and μk, respectively.

4.2. Hybrid solution algorithm

There are various solution algorithms in the literature to solve
wide range of engineering problems (Alfi et al., 2013; Shokri-
Ghaleh and Alfi, 2014; Khooban et al., 2013; Darabi et al., 2012; Alfi
and Modares, 2011; Alfi and Fateh, 2011; Vahdani and Moham-
madi, 2015; and lots of other papers). Among them, in this section,
we proposed a new multi-objective meta-heuristic algorithm
based on fuzzy invasive weed optimization (FIWO) algorithm,
variable neighborhood (VNS) algorithm and game theory, so called
GVIWO algorithm. The IWO algorithm was originally developed by
Mehrabian and Lucas, (2006) and has been successfully applied to
a number of problems of engineering domains. First of all, a brief
definition of multi-objective problems (MOPs) is provided and
Pareto solutions are described. Next, the game theory approach is
combined with MOP to introduce a new variant of collaborative
meta-heuristic algorithm.

4.2.1. Multi-objective problems: MOPs
A mathematical programming problem, optimizing multiple

conflicting objective functions simultaneously under given con-
straints, is called an MOP. Unlike single-objective problems (SOP),
in MOPs, there is not a solution that is the best or the global
optimumwith respect to all objectives. Hence, in these problems, a
set of solutions depending on non-dominance criterion are found,
which are called Pareto solutions. In the following, we describe
summary of basic definitions of Pareto optimality and fuzzy
domination (Kundu et al., 2011). Let ci ¼ ci1; ci2;…; cinð Þ, i¼ 1;…; k
denote an n dimensional coefficient row vector of the ith objective

function. Hence, the MOP is represented as model (23):

min Z xð Þ ¼ Cx

s:t:
AxrB; xZ0 ð23Þ

where C denotes a coefficient matrix of the objective functions.

Definition 1. (Pareto-optimality): consider x!AX as a sample
solution vector.

The solution vector x! is determined to be non-dominated
based on set X0DXif and only if there is no solution in X0which can
dominate x!.

(1) The solution vector x! is said to be Pareto-optimal if x! is non-
dominated in the whole solution space X.

4.2.2. Game theory in MOPs
In order to apply game theory to deal with the MOPs, a

matching between MOP and game theory should be designed.
Comparing the MOPs with the game theory, the MOP can be
described as a game as follows: k objectives in MOP can be
described as the k players in game theory; solution space (X) in
MOP can be described as the decision space S in game theory; fi(x)
in MOP (i.e., objective function i) can be described as the utility
function ui in game theory; and finally, constraints in MOP can be
described as the constraints in game theory. By defining the
matching of φi: X-Si and φi:f i-ui, as the decision strategies
space and set, while ⋃k

i ¼ 1Si ¼ X; the game theory model of MOP
can be defined as set (24).

G¼ S;Uf g ¼ S1; S2;…; Sk;u1;u2;…;uk
�  ð24Þ

4.2.3. Evolutionary stable strategy
The initial contribution of game theory is the concept of evo-

lutionary stable strategy (ESS) introduced by a well-known biol-
ogist called Maynard Smith. The ESS is adopted by all members of
a population and cannot be defeated by any invasive mutant
strategy under the influence of natural selection (Maynard-Smith,
1982). The ESS is an improvement of the Nash equilibrium that
excludes the conventional assumption of agent rationality.
Maynard-Smith (1982) show that a game-theoretic equilibrium
can be achieved through a process of Darwinian selection (Ficici
and Pollack, 2001).

The concept of ESS shows that such equilibrium strategies can
be considered as solutions for the multi-objective problems (i.e.,
the ESS is a non-dominated solution of a game, and multi-
objective problems can be embodied by the game). Evolutionary
games consist of several factors and need game players, strategy
sets, and game matrices (Hart et al., 2008). Each game player
having a conflict objective function selects his/her own strategy
and game based on the game matrix of every other player.
Therefore, the fitness domain is changed by the strategy of
opponent player strategy for every game. Consequently, it is cer-
tain that the evolutionary game can be implemented by a co-
evolutionary algorithm (EA) and embodied by a co-EA based on
game theory. For this approach, each population is considered as
game players (individuals). The fitness of individuals in the
population is assessed from each objective function and rewarded
from the game matrix (the fitness function).

4.2.4. Game-based EA and rewarding procedure
In this section, co-EA is briefly described based on the ESS

concept designed for obtaining the Pareto front of MOPs. The game
can be defined as a tool for optimizing the objective functions of
MOPs during an evolutionary algorithm. The competition for this



game-model is the comparison of the optimized result of the
objective function for each weed in the IWO algorithm. A victory in
this game is determined based on the degree of how many each
solution dominates the other solutions. All the weeds in the
population are rewarded as a result of winning or losing the game.
Reward can be determined by the percentage of victories during
the game. In order to design an evolutionary algorithm, we first
establish game players with randomly-generated populations. All
the weeds in each population take “fitness” on the basis of the
rewarded values. During the game, each weed in the first popu-
lation plays the game with other weeds in the remaining popu-
lations and all weeds are rewarded by a specified value as shown
in Fig. 1. In this paper, we defined the reward value and the fitness
of each weed as a result of Eqs. (25) and (26), respectively.

Reward i; jð Þ ¼ e
wa

fa xjð Þ� f a xið Þ
maxf a

þwb
fb xjð Þ� f b xið Þ

maxf b

� �
ð25Þ

Fitness ið Þ ¼

PN
j ¼ 1

Rewardði; jÞ

N
ð26Þ

where f a, f b and N are the value of objective functions a and b, and
the size of population, respectively. Also, xi and xj are the weed i in
the first population and weed j in the second population, respec-
tively. In addition, wa and wb are the importance coefficients of the
objective functions, while waþwb ¼ 1.

4.2.5. Invasive weed optimization (IWO)
IWO is a stochastic population-based evolutionary algorithm

that mimics the colonizing behavior of weeds. This algorithm was
first applied to optimization problems by Mehrabian and Lucas
(2006). This evolutionary algorithm is a bio-inspired numerical
optimization procedure that simulates natural behavior of weeds
in colonizing to find suitable places for growth and reproduction.
There are four steps of the algorithm as described below:

(1) Population initialization: A population of initial solutions
(weeds) is randomly generated over the problem space.

(2) Reproduction: Seeds are produced by the members of the
population based on their relative fitness in the population.

(3) Random distribution: The produced seeds are randomly dis-
tributed over the D-dimensional solution space following
normal distribution with mean equal to zero and a positive
standard deviation. The standard deviation (sd) for the normal
distribution variable at each iteration (iter) is calculated
adaptively according to Eq. (27):

sditer ¼
itermax� iter

itermax

� �pow

sdmax�sdminð Þþsdmin ð27Þ

where sdmax and sdmin are the maximum and the minimum sd
and pow is the nonlinear modulation index. In addition, itermax

is the maximum allow iteration for the algorithm.
(4) Competitive exclusion: Once the population size reaches its

maximum after a number of iterations, an elimination proce-
dure should be employed. In this procedure, the seeds and
their parents are ranked together and those with better fitness
survive and proceed with the algorithm.

The pseudo code of IWO is shown as Fig. 2.
In the following, we describe a summary of basic definitions of

fuzzy domination to present better description of the MOIWO
(Kundu et al., 2011).

Definition 2. (Fuzzy k-Dominance by a Solution): The mapping
μdom
k ¼ f k Xð Þ-½0;1�, where kA 1;2; ::;nf g defines a given uniform

non-decreasing membership function. A solution p!AX is deter-
mined as k-dominance solution p!AX, if f k x!

� �
o f k p!

� �
. This

relationship is represented as x!!F
k p
!. If x!!F

k p
!, the degree of

fuzzy k-dominance is equal to μdom
k f k p!

� �
� f kð x!Þ

� �
�

μdom
k x!!F

k p
!� �

.

Definition 3. (Fuzzy Dominance by a solution): Solution x!AΨ
is determined as fuzzy dominate solution p!AΨ if and only if
8kA 1;2; ::;nf g, x!! F

k p
!. If x!!F

k p
!, the degree of fuzzy dom-

inance μdom
k x!! F

k p
!� �

is calculated by computing the intersec-
tion of the fuzzy relationships x!! F

k p
! for eachk. Also, the fuzzy

intersection operation, denoted with 00⋂00, is performed using a
family of functions called t-norms and is calculated as (28)

μdom x!!F
k p
!� �

¼ ⋂
n

k ¼ 1
μdom
k x!!F

k p
!� �

ð28Þ

Definition 4. (Fuzzy Dominance in a Population): Let X be a
population of solutions. A solution p!AP is defined to be fuzzy
dominated X if it is fuzzy dominated by any other solution x!AP.
In this case, the degree of fuzzy dominance can be calculated by
performing a union operation } [ } over every possible μdom

x!! F
k p
!� �

implemented with t-conforms. Hence, the degree of
fuzzy dominance of a solution p!AP in the set X is given by (29)

μdom X!F p!
� �

¼⋃
x!AX

μdom x!! F p!
� �

ð29Þ

The Pseudo code of calculating fuzzy dominance is proposed in
Fig. 3 (Kundu et al., 2011).

4.2.6. Multi-objective invasive weed optimization (MOIWO)
In the first step of the proposed MOIWO algorithm, a popula-

tion of randomweeds is generated with size PopSize. The weeds are
then ranked by applying the fuzzy dominance sorting as Fig. 4.

Population 1 Population 2
NO. Country Fitness NO. Country Fitness
1. 10011 011 92 1. 01011010 62
2. 00101101 58 2. 10101000 85
3. 01010101 82 3. 11010001 64
4. 11001101 79 4. 01101101 39
5. 01011011 91 5. 01000011 99
6. 11010000 49 6. 00010000 112
7. 01010100 32 7. 11010100 44
8. 11110011 101 8. 11010011 12
9. 11111100 43 9. 11000100 75
i. 00110011 68 j. 10110011 98
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
N. 00111011 78 N. 00010011 55

Fig. 1. Population architecture for a game model-based evolutionary algorithm.



Afterward, each weed generates a number of seeds based on its
rank; so that the weeds with the higher rank generate higher
number of seeds. Next, a neighborhood search structure (NSS)
procedure is performed to distribute the seeds around the parent
weeds. The reproduced and distributed seeds are added to the
weed population. Indeed, the NSS is a procedure to achieve new
solutions by slightly changing the current solution. In this paper,
the NSS is applied on the weeds at all iterations by utilizing vari-
able neighborhood search-VNS (Mladenovic and Hansen, 1997).

In recent years, VNS has increasingly gained lots of attention
and a large number of successful applications have been reported
(Hansen and Mladenovic, 2001). Using two or more neighbor-
hoods, instead of one, in its structure has differentiated the VNS
from the most other local search heuristics. Particularly, it is based
on the principle of systematic change of neighborhood during the
search (Behnamian et al., 2009). In addition, to avoid costing too
much computational time, the best number of neighborhoods is
often three (Vahdani and Zandieh, 2010; Mohammadi et al., 2013),
which is followed by our algorithm. The three neighborhoods
employed in our algorithm are defined below:

(I) Swap: In the swap operator, places of two random selected
bits are exchanged.

(II) Reversion: In the reversion operator, a random part of a
solution is selected and its permutation is reversed.

(III) Inversion: In the inversion operator, one bit is chosen ran-
domly and its value is replaced with new random value.

It should be noted that the VNS is performed on a percent of
population (PE). Furthermore, the number of outer and inner
iterations of the proposed VNS are equal to ItVNSmax and nRepeat ,
respectively. This procedure continues until the population size
exceeds a predefined upper limit (i.e., Popmax). The population is
again ranked in order to select best Popmax weeds. This procedure

continues until the stopping criterion is met. The number of
function calls-NFC (Črepinšek et al., 2012) has been considered as
the stopping criterion in the proposed GVIWO. Finally, the Pseudo
code of the proposed GVIWO is provided as Fig. 4.

4.2.7. Exploration and exploitation
Any meta-heuristic algorithm must have two capabilities,

exploration and exploitation, in order to better search the space and
find reasonable solutions (Mousavi and Alfi, 2015; Arab and Alfi, 2015).
Exploration refers to the ability of discovering unknown regions in the
solution space to find the global optimum and exploitation indicates
the process of searching those regions of the solution space within the
neighborhood of previously visited solutions (Liu et al., 2009, 2013;
Crepinsek et al., 2011, 2013). Interested readers are referred to a
comprehensive study of exploration and exploitation prepared by
Črepinšek et al. (2013) and references therein.

In the following of this section, we explain how the proposed
GVIWO provides efficient exploration and exploitation through
searching the solution space. In general, the main motivation of
the proposed GVIWO algorithm is to combine the ability of IWO in
global search (Hajimirsadeghi and Lucas, 2009) and the power of
VNS with efficient operators in local search (Fontaine et al., 2013).

In the proposed GVIWO, Reproduction and Random distribution
operators play a key role in exploration. Through the reproduction,
the neighborhood of each weed is globally discovered with high
dependency to the value of sdmax, wherein, the higher the value of
sdmax, the more spaces that are explored. In this paper, the value of
sdmax is considered high enough to better explore the solution space.
It is worth mentioning that by Eq. (27) the proposed GVIWO starts
with high rate of exploration and during the algorithm, the exploi-
tation rate is continually increased. This mechanism helps the algo-
rithm to initially discover the majority of the solution space then
focus on improving the quality of the solutions by local searches.

Fig. 2. Pseudo code of IWO.

Fig. 3. The pseudo code of calculating fuzzy dominance.



On the other hand, in order not to avoid from local optimums
during the algorithm and efficiently explore the space, the diver-
sity of the population must be kept. Diversity is defined as dif-
ferences among individuals at genotype or phenotype levels
(Črepinšek et al., 2013). Based on McPhee and Hopper (1999),
“Progress in evolution depends fundamentally on the existence of
variation of population. Unfortunately, a key problem in many
Evolutionary Computation (EC) systems is the loss of diversity
through premature convergence. This lack of diversity often leads
to stagnation, as the system finds itself trapped in local optima,
lacking the genetic diversity needed to escape.” In this paper, the
diversity at the phenotype level is used to calculate the fitness
function through the ESS method from game theory. By this
method, all the solutions in the both populations are considered to
calculate the fitness of each individual and those individuals in the
unexplored areas receive better values in terms of fitness function
(see Eqs. (25) and (26)).

In order to measure the exploration and exploitation abilities of
the proposed GVIWO algorithm, the measures called the

“Exploration ratio” and “Exploitation ratio”, are computed by using
an ancestry tree and calculating the percentage of nodes in the
tree for which the distance between parent and children indivi-
duals is over a threshold (Liu et al., 2013).

4.2.8. Solution representation
A solution encoding in the proposed BSpHCMP should deter-

mine location of p hub nodes and allocation of spokes to the
located hubs. In this paper, a continuous solution representation
(CSR) is devised which avoids creation of infeasible solutions
during the search process and makes the solving process much
easier. The proposed CSR includes three parts indicating (1) loca-
tion of hubs, (2) allocation of spokes to the located hub,
(3) assignment of transportation mode between hubs, which are
explained in detail hereafter.

4.2.8.1. CSR for the location of hubs. The first matrix corresponds to
the location decision presented by a 1� Nð Þ matrix, in which N
denotes the number of nodes. This matrix is filled with random

Fig. 4. The pseudo code of the proposed GVIWO.



numbers belonging to ½0;1�. In this matrix, the first maximum
Hnumbers are considered as located hubs as depicted in Fig. 5. In
Fig. 5, three hubs must be located among six nodes. Therefore, the
first, fourth and sixth nodes are located as hubs.

4.2.8.2. CSR for the allocation of spokes to located hub. This part of
solution representation corresponds to the allocation of
spokes to the located hub. To this aim, a N � Nð Þmatrix is filled
with random numbers belonging to ½0;1�. The maximum ran-
dom number among the intersection arrays of each row cor-
responding to the spoke nodes with the columns corre-
sponding to the located hubs denotes the allocation scheme as
Fig. 6.

4.2.8.3. CSR for the transportation mode between hubs. In order to
show the assignment of transportation modes on the links
between hubs, a N � Nð Þ matrix is generated with random num-
bers belonging to½0;1�. All bits of the matrix are multiplied by the
number of modes and then rounded up. The value of arrays cor-
responding to the link between hubs denotes the number of
modes assigned to that link. For example, consider the above-
mentioned example, in which, there are links between hubs 1–4,
1–6 and 4–6 and also three different transportation modes. In
Fig. 7, modes number 2, 1 and 3 are assigned to the links between
hubs 1–4, 1–6 and 4–6, respectively.

5. Computational experiments

In order to validate the correctness of the proposed BMINLP
model and the performance of the proposed solution approach,
several numerical experiments are done and the related results are
reported in this section. First of all, the performance of the pro-
posed game based MOIWO (GMOIWO) is investigated in compar-
ison with well-known exact epsilon-constraint solution method
(Haimes et al., 1971). The performance of the proposed GVIWO has
been evaluated in comparison to well-known algorithms in the
literature such as imperialist competitive algorithm (ICA,
Mohammadi et al., 2013), particle swarm optimization (PSO,
Goksal et al., 2013), simulated annealing (SA, Abdinnour-Helm,
2001), non-dominated sorting genetic algorithm (NSGA-II, Niakan
et al., 2014), Pareto archive evolutionary strategy (PAES, Moham-
madi et al., 2013), scatter search (SS, Martí et al., 2015), tabu search
(TS, Jin and Hao, 2015) and differential evolution (DE, Zahiri et al.,
2014; Mohammadi and Tavakkoli-Moghaddam, 2015). Due to
space limitation, the comparison between two of these algorithms
(PAES and NSGA-II) is provided. All the mathematical models were
coded in the GAMS optimization software utilizing BARON solver.

Moreover, the meta-heuristics were coded in Cþþ and tested on a
Pentium 4 CPU with 3.0 GHz CPU and 6GB of memory.

5.1. Tightness of GVIWO and effect of game theory

This section not only shows the gap between the Pareto solu-
tions of the proposed GVIWO algorithm with optimal solutions
obtained from BARON solver, but also illustrates the effect of game
theory method on obtaining high-quality Pareto solutions. In this
regard, two experiments are done on two randomly-generated
numerical instances (i.e., P1 and P2). The details of P1 and P2 have
been shown in Table 2. In order to show the effectiveness of game
theory, the classical MOIWO algorithm (Kundu et al., 2011) is
applied to find the Pareto solutions. Figs. 8 and 9 illustrate the
Pareto frontiers of the GVIWO and MOIWO algorithm as well as
GAMS software for both P1 and P2, respectively.

To generate the trapezoidal fuzzy parameters according to
Jimenez et al. (2007), the four prominent points are first deter-
mined. For this aim, consider a trapezoidal parameter
̃A ¼ a1; a2; a3; a4

� �
. Two values of a2 and a3 are first generated

randomly by utilizing the uniform distribution functions specified
in Table 2, where a2oa3. Then, without loss of generality, two
random numbers (r1, r2) are generated between .2 and .8 using a
uniform distribution by which the a1 and a4 are then calculated as
a1 ¼ 1�r1ð Þa2;a1 ¼ 1þr2ð Þa3. The value of α-cut is considered
equal to .5 in all experiments.

It can be seen from Figs. 8 and 9 that the proposed GVIWO can
obtain Pareto solution very close to the optimal Pareto frontier
obtained by GAMS. In addition, the effectiveness of the game
theory method can be shown by comparing the Pareto frontiers of
the GVIWO and MOIWO. The proposed GVIWO, by the competitive
between objectives (players in the game theory), the solution
space is better searched and high-quality solutions are found,
while the classical MOIWO is disable to find solutions in the
middle of the Pareto frontier.

5.2. Performance of the proposed GVIWO

In this section, the performance of the proposed GVIWO is
compared with NSGA-II and PAES with respect to four different
comparison metrics, namely quality (QM), spacing (SM), diversity
(DM) and mean ideal distance (MID) metrics (Mohammadi et al.,
2013). Before running the algorithms, the tuned parameters of the
proposed MOIWO, NSGA-II and PAES, employing well known
response surface methodology (RSM) (Mohammadi et al., 2013),
for small- (S) and large-sized (L) instances are tabulated as Table 3.

Some special numbers of hubs have been considered for each
number of nodes. Also, each problem instance is shown as
“Number of nodes # number of hubs”, for example, 50#8 means 50
nodes and 8 hubs to be located. In order to compare the perfor-
mance of the proposed GVIWO with NSGA-II and PAES, 67 differ-
ent test problems varying from 10 to 100 nodes are randomly
generated and the results are expressed in Tables 4–9. Table 4
reports the results of QM and SM and Table 5 shows DM and MID
for small-sized problems. Besides, Tables 6–9 correspond to large-
sized instances. It can be seen that for almost all test problems, the
proposed GVIWO outperforms NSGA-II and PAES regarding all
comparison metrics, where better results have been bolded.

According to Tables 4–9, some benefits of the proposed GVIWO
are as follows:

Potential Nodes
1 2 3 4 5 6

H=3 0.94 0.45 0.02 0.67 0.11 0.59 1 0 0 1 0 1

Fig. 5. Hub location scheme.

Potential Nodes
1 2 3 4 5 6

Location of Hubs 1 0 0 1 0 1

Hub 1 0.81 0.27 0.95 0.79 0.67 0.70
Spoke 2 0.90 0.54 0.48 0.95 0.75 0.03
Spoke 3 0.72 0.95 0.80 0.15 0.74 0.27

Hub 4 0.91 0.96 0.14 0.03 0.39 0.04
Spoke 5 0.63 0.15 0.42 0.84 0.65 0.99

Hub 6 0.09 0.97 0.91 0.93 0.17 0.82

Fig. 6. Allocation scheme.



� Proposed GVIWO can obtain a greater number of Pareto optimal
solutions with higher qualities in comparison with NSGA-II
and PAES.

� Proposed GVIWO provides Pareto solutions that are more uni-
formly distributed in the Pareto front with less average values of
the spacing metric.

� The average values of the diversity metric in the proposed
GVIWO are considerably greater than NSGA-II and PAES (i.e.,
GVIWO finds Pareto solutions with more diversity).

� In most of the test problems, the values of MID in the proposed
GVIWO are smaller than those of NSGA-II and PAES.

� Proposed GVIWO leads to better results in larger problems.

It should be noted that through four comparison metrics, QM is
the most important metric that directly corresponds to the quality
of the solutions. From Table 4 to 9, it was concluded that the
proposed GVIWO algorithm outperforms other algorithm in terms
of QM in all the problems. In other metrics, in almost all test
problems, GVIWO shows higher performance. In order to see
whether the significant difference exists between the performance
of the GVIWO, NSGA-II and PAES in terms of SM, DM and MID
metric, two analyses are conducted called “paired t test” and “non-
parametric Friedman test”. In “paired t test”, let Di be equal to
difference between the calculated values of two algorithms for test

problem i. So the statistics are as (30):

t ¼
ffiffiffi
n

p � D
!

SD
where D

!¼
P

D
!

n
and SD ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
Di� D

!� �2
n�1

vuut
ð30Þ

We conducted both analyses by 67 test problems in the SPSS
software. The analytical results for “paired t test” and “non-para-
metric Friedman test” have been provided in Tables 10 and 11,
respectively.

With referencing to the t table, for 66° of freedom the sig-
nificances (2-tailed) are closed to 0.000. The detailed statistics are
shown in Table 10. These tests show that there are statistical sig-
nificant difference between solutions obtained by GMOIWO and
those of the improved NSGA-II and the PAES.

Table 11 reports the test statistic (χ2) value (“Chi-square”),
degrees of freedom (“df”) and the significance level (“Asymp. sig.”),
which is all we need to report the result of the Friedman test. From
Table 11, it can be seen that there is an overall statistically sig-
nificant difference between the mean of the related algorithm in
terms of SM, DM and MID metric.

It should be noted that the non-parametric Friedman test is an
omnibus analysis and it tells us whether there are overall differ-
ences between algorithms, but does not pinpoint which algorithms
in particular differ from each other. For this aim, we run “post hoc
tests”. To do so and examine where the differences actually occur,

Potential Nodes
1 2 3 4 5 6

Location of Hubs 1 0 0 1 0 1

Hub 1 0.81 0.27 0.95 0.49 0.67 0.20 3 1 3 2 3 1
Spoke 2 0.90 0.54 0.48 0.95 0.75 0.03 M

ultiplied 
by 3 and 

rounded up

3 2 2 3 3 1
Spoke 3 0.72 0.95 0.80 0.15 0.74 0.27 3 3 3 1 3 1

Hub 4 0.91 0.56 0.14 0.03 0.39 0.74 3 1 1 1 2 3
Spoke 5 0.63 0.15 0.42 0.84 0.65 0.99 2 1 2 3 2 1

Hub 6 0.09 0.97 0.91 0.93 0.17 0.82 1 3 3 3 1 3

Fig. 7. Structure of hub network.

Table 2
Sources of random generation of the parameters.

Problem no. Parameters

P1 I H M c f t
10 3 2 (100,600) (105,3�105) (100,300)
s μ v r σ δ

Poison(300) Poison(600) Poison(20) Poison(50) .90 .80

P2 I H M c f t
20 5 3 (400,900) (106,5�106) (200,500)
s μ v r σ δ

Poison(400) Poison(1000) Poison(30) Poison(60) .80 .70
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we need to run separate “Wilcoxon signed-rank test” on the dif-
ferent combinations of the algorithms. The results of “Wilcoxon
signed-rank tests” have been provided in Tables 12–14 for SM, DM
and MID metric, respectively.

Referring to Tables 12–14, it can be shown that there are sta-
tistically significant differences between each pair of algorithms in
terms of SM, DM and MID metric. Consequently, the superiority of
the proposed GVIWO is demonstrated by these analyses.

At the final remarks of this section, an experiment is conducted
to analyze the performance of the proposed GVIWO in terms of
CPU time. To do so, 20 test problems are solved by three algo-
rithms and the CPU time that is needed to reach the best solutions
are reported for each algorithm. Size of the test problems are as
follows: IA 10;200½ �, HA 2;30½ �, and MA 2;4½ �.

This comparison has been illustrated in Fig. 10. It can be seen
that the proposed algorithm also outperforms NSGA-II and PAES in
terms of CPU time. In addition, the CPU time of all the algorithms
are increased by increasing the size of test problems. Among them,
the CPU time of the proposed GVIWO is linearly increased while

Table 3
Result of RSM and tuned parameters.

Algorithm Parameters and values

GMOIWO PopSize Popmax itermax Smax

15(S), 40(L) 70(S), 110(L) 125(S), 250
(L)

7(S), 9(L)

Smin sdmin sdmax pow
1(S), 2(L) .55(S), 0.8(L) .01(S), 0.02

(L)
1(S), 1(L)

PE ItVNSmax nRepeat NFC
0.3(S), 0.65
(L)

17(S), 20(L) 6(S), 8(L) 10,000(S),
20,000(L)

NSGA-II PopSize PCrossover PMutation NFC
100(S), 250
(L)

.7(S), .9(L) .1(S), .3(L) 10,000(S),
20,000(L)

PAES PopSize NFC
100(S), 250
(L)

10,000(S), 20,000
(L)

Table 4
QM and SM for small-sized problems.

Problem no. Quality metric (QM) Spacing metric (SM)

PAES NSGA-II GVIWO PAES NSGA-II GVIWO

10#3 0.00 0.20 0.80 0.720 0.633 0.419
10#4 0.00 0.00 1 0.749 0.780 0.318
15#3 0.00 0.05 0.95 0.735 0.579 0.498
15#4 0.00 0.10 0.90 0.583 0.512 0.275
15#5 0.00 0.00 1 0.620 0.798 0.475
20#3 0.00 0.15 0.85 0.688 0.700 0.273
20#4 0.00 0.00 1 0.592 0.692 0.347
20#5 0.00 0.25 0.75 0.838 0.862 0.454
20#6 0.00 0.10 0.90 0.578 0.744 0.512
25#3 0.00 0.00 1 0.590 0.747 0.232
25#4 0.00 0.00 1 0.568 0.844 0.572
25#5 0.00 0.03 0.97 0.591 0.823 0.511
25#6 0.00 0.00 1 0.674 0.731 0.395
30#3 0.00 0.20 0.80 0.624 0.573 0.374
30#4 0.00 0.00 1 0.870 0.596 0.379
30#5 0.00 0.00 1 0.672 0.855 0.322
30#6 0.00 0.00 1 0.574 0.511 0.243
30#7 0.00 0.00 1 0.862 0.696 0.312
30#8 0.00 0.00 1 0.892 0.567 0.452

Table 5
DM and MID metric for small-sized problems.

Problem no. Diversity metric (DM) Mean ideal distance (MID)

PAES NSGA-II GVIWO PAES NSGA-II GVIWO

10#3 0.802 1.076 0.852 0.781 0.609 0.674
10#4 0.764 0.880 1.106 0.758 0.534 0.241
15#3 0.944 1.030 1.190 0.819 0.470 0.252
15#4 0.883 0.856 1.012 0.812 0.483 0.271
15#5 0.948 0.886 0.845 0.835 0.762 0.283
20#3 1.020 0.827 0.933 0.686 0.670 0.511
20#4 1.038 0.973 0.876 0.808 0.587 0.487
20#5 0.686 1.005 0.940 0.767 0.765 0.226
20#6 0.662 0.964 1.020 0.719 0.441 0.666
25#3 0.914 0.928 1.064 0.618 0.698 0.565
25#4 0.642 0.993 1.029 0.834 0.695 0.569
25#5 0.836 0.994 1.238 0.701 0.625 0.231
25#6 0.839 1.004 1.059 0.782 0.473 0.631
30#3 0.988 0.991 1.272 0.823 0.639 0.668
30#4 0.818 1.084 1.119 0.631 0.520 0.693
30#5 0.777 0.862 1.279 0.638 0.453 0.630
30#6 0.902 1.013 0.920 0.765 0.485 0.593
30#7 0.934 0.871 1.138 0.746 0.758 0.457
30#8 0.834 0.835 0.944 0.868 0.428 0.288

Table 6
Comparison metrics for 40-sized problems.

Problem no. PAES NSGA-II GVIWO PAES NSGA-II GVIWO

Quality metric (QM) Spacing metric (SM)
40#3 0.00 0.08 0.92 0.896 0.558 0.444
40#4 0.09 0.18 0.73 0.884 0.521 0.315
40#5 0.00 0.20 0.80 0.803 0.409 0.385
40#6 0.00 0.00 1 0.897 0.395 0.373
40#7 0.00 0.00 1 0.830 0.608 0.359
40#8 0.00 0.00 1 0.701 0.359 0.282
40#9 0.00 0.05 0.95 0.799 0.608 0.274
40#10 0.00 0.00 1 0.673 0.595 0.335

Diversity metric (DM) Mean ideal distance (MID)
40#3 0.821 1.123 1.194 0.816 0.663 0.379
40#4 0.816 1.142 0.956 0.933 0.545 0.320
40#5 0.849 0.829 1.293 0.921 0.677 0.431
40#6 0.768 1.061 1.255 0.829 0.620 0.352
40#7 0.856 1.104 1.014 0.908 0.660 0.307
40#8 0.754 0.969 1.074 0.984 0.834 0.587
40#9 1.098 1.098 1.182 0.936 0.661 0.429
40#10 0.742 1.125 1.259 0.912 0.656 0.589

Table 7
Comparison metrics for 50-sized problems.

Problem no. PAES NSGA-II GVIWO PAES NSGA-II GVIWO

Quality metric (QM) Spacing metric (SM)
50#3 0.00 0.00 1 0.958 0.572 0.303
50#4 0.00 0.00 1 0.860 0.450 0.243
50#5 0.00 0.00 1 0.798 0.409 0.586
50#6 0.00 0.10 0.90 0.716 0.516 0.303
50#7 0.00 0.05 0.95 0.939 0.527 0.394
50#8 0.00 0.00 1 0.703 0.662 0.476
50#9 0.00 0.00 1 0.628 0.783 0.314
50#10 0.00 0.00 1 0.946 0.775 0.521
50#11 0.00 0.00 1 0.902 0.583 0.442
50#12 0.00 0.00 1 0.922 0.496 0.276

Diversity metric (DM) Mean ideal distance (MID)
50#3 0.923 0.959 1.070 0.827 0.624 0.219
50#4 0.871 0.976 0.969 0.704 0.599 0.421
50#5 0.807 0.862 1.154 0.726 0.557 0.310
50#6 1.002 0.930 1.329 0.646 0.478 0.296
50#7 1.060 0.925 1.092 0.846 0.689 0.297
50#8 0.992 1.158 1.248 0.788 0.562 0.261
50#9 0.863 0.899 1.214 0.722 0.609 0.483
50#10 1.076 0.924 1.125 0.842 0.609 0.575
50#11 0.802 0.963 1.137 0.620 0.556 0.528
50#12 0.913 1.083 1.375 0.886 0.417 0.492



the CPU times for two other algorithms are increased exponen-
tially, particularly for PAES algorithm.

At the end of this section, the performance of the proposed
GVIWO is investigated through Fig. 11 to show the behavior of the
GVIWO algorithm in exploration and exploitation. For this aim, the
values of MID metric that shows the quality of the solutions are
reported after each function call during the search algorithm.

Fig. 11 demonstrates that the proposed GVIWO algorithm bal-
ances between optimization and convergence, wherein we noticed
that the GVIWO’s exploration drops drastically before 2000th
function call and reaches to stable after 15,000th function call.
Accordingly, we conclude that the GVIWO algorithm’s exploration
has been performed efficiently toward finding the “right” direc-
tions quickly after around 2000 function calls. Afterward, then
exploitation power dominates to search local optima in a finer
manner. This may be the reason that the GVIWO algorithm better
balances between optimization and convergence.

5.3. Sensitivity analysis

In order to recognize the most significant parameters of the
proposed model, several sensitivity analyses are carried out and the
impact of parameters alteration on the objective functions is
investigated. To do so, different experiments are performed on the
test instance P2. Figs. 12 and 13, respectively, illustrate the sensi-
tivity of the first and second objective functions vs. number of hubs
in the network. As shown in Fig. 12, the value of the first objective
function is increased smoothly when Hr6 and then increased with
higher slope for H46. In Fig. 12, when the number of hubs (H) is
increased, the fixed cost is also increased but the spokes can be
allocated to more close hubs resulting in lower transportation cost.
Since the value of fixed cost is higher than transportation cost,
therefore, the first objective function is smoothly increased by
increase in H. On the other hand, when the value H becomes greater

than 5, the allocation of the spokes is not changed. Consequently,
the increase of the first objective function directly corresponds to
the fixed cost increase. Hence, the increase rate of the first objective
function for H46 is higher than a situation when Hr6.

In Fig. 13, the value of the second objective function is
decreased when the number of hubs was increased. Since the
number of hubs is low, higher volume of flows are consolidated in
the hubs that results to higher congestion and consequently
higher waiting time. Hence, the value of the second objective
function is increased. By increasing the number of hubs, allocation
of spokes to the hubs is getting balanced and consequently the
waiting time is decreased. It should be also mentioned that after
7 hubs in the network, the second objective function is not
changed when the allocation topology of the hub-and-spoke
network remains constant.

In the following, the effect of hub failures and retrieve rates on
the structure of the network is investigated. To this end, Figs. 14
and 15 depict the sensitivity of the second objective function
under alteration of vk and rk, respectively. It can be seen from
Fig. 14 that by increasing the rate of breakdowns in the hubs (vk),
the value of the second objective function is increased in a poly-
nomial way. In addition, Fig. 15 illustrates that the second objec-
tive function is decreased when the retrieve rate in the hubs is
increased (i.e., hub are retrieved quickly). In Fig. 15, the failure rate
v is fixed to 20. These two experiments demonstrate the impor-
tance of taking uncertainty in hub’s operation into account, while
this paper not only considers hub failures, but also considers the
rate of failures uncertain (i.e., fuzzy number).

Another important experiment is performed to investigate the
effect of α-cut in Section 4.1. Higher values of α deal with tighter
constraint. In most of problems, α-cut that equals to 1 results in

Table 8
Comparison metrics for 70-sized problems.

Problem no. PAES NSGA-II GVIWO PAES NSGA-II GVIWO

Quality metric (QM) Spacing metric (SM)
70#3 0.00 0.00 1 0.957 0.517 0.423
70#4 0.00 0.00 1 0.812 0.657 0.359
70#5 0.00 0.00 1 0.683 0.601 0.224
70#6 0.00 0.00 1 0.729 0.552 0.512
70#7 0.00 0.04 0.96 0.631 0.562 0.335
70#8 0.00 0.10 0.90 0.852 0.772 0.443
70#9 0.00 0.00 1 0.612 0.703 0.497
70#10 0.00 0.00 1 0.901 0.641 0.242
70#11 0.00 0.05 0.95 0.883 0.774 0.251
70#12 0.00 0.00 1 0.856 0.531 0.420
70#13 0.00 0.00 1 0.921 0.724 0.394
70#14 0.00 0.00 1 0.936 0.721 0.557
70#15 0.00 0.00 1 0.774 0.669 0.520
70#16 0.00 0.00 1 0.889 0.555 0.494

Diversity metric (DM) Mean ideal distance (MID)
70#3 0.929 0.872 1.379 0.895 0.655 0.282
70#4 0.606 1.065 1.143 0.638 0.636 0.245
70#5 0.617 0.772 1.300 0.669 0.481 0.319
70#6 0.667 0.805 0.971 0.607 0.468 0.312
70#7 0.860 0.758 1.111 0.782 0.496 0.239
70#8 0.893 0.754 1.358 0.633 0.649 0.330
70#9 0.859 1.048 1.296 0.722 0.647 0.227
70#10 0.780 0.932 1.380 0.866 0.571 0.385
70#11 0.819 0.920 1.228 0.764 0.572 0.203
70#12 0.718 0.758 0.917 0.711 0.486 0.372
70#13 0.898 1.042 1.325 0.662 0.610 0.437
70#14 0.675 0.949 1.367 0.732 0.639 0.270
70#15 0.875 0.840 1.240 0.887 0.532 0.334
70#16 0.673 0.905 1.279 0.637 0.534 0.371

Table 9
Comparison metrics for 100-sized problems.

Problem no. PAES NSGA-II GVIWO PAES NSGA-II GVIWO

Quality metric (QM) Spacing metric (SM)
100#3 0.00 0.00 1 0.872 0.433 0.315
100#4 0.00 0.00 1 0.732 0.419 0.236
100#5 0.00 0.00 1 0.506 0.521 0.431
100#6 0.00 0.05 0.95 0.548 0.534 0.474
100#7 0.00 0.00 1 0.845 0.510 0.419
100#8 0.00 0.00 1 0.694 0.629 0.370
100#9 0.00 0.00 1 0.838 0.588 0.458
100#10 0.00 0.00 1 0.683 0.632 0.359
100#11 0.00 0.00 1 0.721 0.680 0.472
100#12 0.00 0.00 1 0.752 0.692 0.454
100#13 0.00 0.10 0.9 0.512 0.457 0.579
100#14 0.00 0.00 1 0.746 0.441 0.283
100#15 0.00 0.00 1 0.645 0.609 0.484
100#16 0.00 0.00 1 0.519 0.428 0.294
100#17 0.00 0.00 1 0.696 0.858 0.247
100#18 0.00 0.00 1 0.577 0.559 0.443

Diversity metric (DM) Mean ideal distance (MID)
100#3 0.771 1.033 1.212 0.862 0.569 0.255
100#4 0.793 1.022 1.240 0.698 0.673 0.258
100#5 0.648 0.724 1.098 0.795 0.743 0.302
100#6 0.836 0.860 1.084 0.893 0.621 0.480
100#7 0.690 0.911 1.394 0.622 0.797 0.317
100#8 0.754 0.867 0.918 0.776 0.527 0.282
100#9 0.833 0.963 1.343 0.724 0.596 0.245
100#10 0.700 0.951 1.357 0.793 0.653 0.319
100#11 0.716 0.817 1.298 0.679 0.518 0.312
100#12 0.847 0.873 0.949 0.828 0.718 0.239
100#13 0.706 0.706 1.031 0.899 0.667 0.330
100#14 0.930 1.094 1.068 0.656 0.659 0.227
100#15 0.994 0.767 1.240 0.835 0.749 0.385
100#16 0.892 0.742 0.968 0.658 0.758 0.203
100#17 0.737 0.849 1.261 0.898 0.737 0.372
100#18 0.834 0.779 0.953 0.841 0.595 0.437



infeasible problem. Since there is no constraint with fuzzy numbers
in this paper, variation of α-cut only affects the values of the second
objective function while the first objective is not influenced by the
α-cut value. Fig. 16 illustrates the effect of α-cut increase on the
second objective function value. As it can be seen, second objective
is increased once the α-cut is increased. It has been found that the
second objective function is completely sensitive to the alteration of
α-cut in comparison to the first objective. It is noteworthy that by
increasing the α-cut the second objective function is increased in a
polynomial way with degree 3 (see dashed line in Fig. 16).

As an important managerial insight, companies that notify more
the center objective are more vulnerable regarding the uncertainty.
Therefore, these companies should try to better control the uncer-
tainty by designing hub network by taking uncertainty into account.

Table 10
Detailed statistics of paired t test.

Metric Pair Paired differences t df Sig. (2-tailed)

Mean Std. deviation Std. error mean 95% Confidence interval of the difference

Lower Upper

SM GVIWO NSGA-II � .22330 .14833 .01812 � .25948 � .18712 �12.322 66 .000
DM .20752 .18412 .02249 .16261 .25243 9.226 66 .000
MID � .22188 .18467 .02256 � .26692 � .17684 �9.835 66 .000

SM GVIWO PAES � .32184 .17026 .02080 � .36336 � .28031 �15.473 66 .000
DM .30881 .19944 .02436 .26016 .35745 12.674 66 .000
MID � .39251 .16623 .02031 � .43306 � .35196 �19.327 66 .000

Table 11
Detailed statistics of non-parametric Friedman test.

Metric Test statistics

N Chi-square df Asymp. sig.

SM 67 99.075 2 .000
DM 67 79.669 2 .000
MID 67 104.021 2 .000

Table 12
Detailed statistics of Wilcoxon signed-rank test for SM.

Statistics Pair

PAES vs. NSGA-II PAES vs. GVIWO NSGA-II vs. GVIWO

Z �4.813 �7.090 �6.859
Asymp. sig. .000 .000 .000

Table 13
Detailed statistics of Wilcoxon signed-rank test for DM.

Statistics Pair

PAES vs. NSGA-II PAES vs. GVIWO NSGA-II vs. GVIWO

Z �4.617 �6.890 �6.284
Asymp. sig. .000 .000 .000

Table 14
Detailed statistics of Wilcoxon signed-rank test for MID metric.

Statistics Pair

PAES vs. NSGA-II PAES vs. GVIWO NSGA-II vs. GVIWO

Z �6.625 �7.090 �6.412
Asymp. sig. .000 .000 .000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
GVIWO 11 18 26 39 51 68 79 93 112 129 143 161 183 213 241 282 345 390 453 511

NSGA-II 14 24 32 54 76 89 112 135 157 178 212 267 313 378 437 546 644 812 1243 1978

PAES 21 32 42 67 85 111 134 167 198 221 254 294 343 412 534 678 869 1325 2314 3423
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This paper has attempted to address this concern in the
proposed model.

5.4. Case study

In this section, a real case of passenger transportation in Iran is
studied to validate the performance of the proposed model and
the solution approach in real-world problems. The real case cor-
responds to a transportation network in Iran with 37 cities (see
Fig. 17). This instance has been prepared by Karimi and Bashiri
(2011). Since the flow data is originated from two criteria includ-
ing tourism and industrial, they calculated the importance of cities
by Technique for Order Preference by Similarity to Ideal Solution
(TOPSIS). Then, considering the population of each city and its
importance, flows data between cities were computed.

In this case, three road, rail and air transportation modes have
been considered. The unit transportation cost (cmij ) and transpor-
tation time (tmij ) for all modes can be calculated based on the
distance between cities. The values of σ and δ are considered to be
equal to 0.9 and 0.7, respectively. The value of μk is calculated as
Eq. (31). Failure and retrieve rates, vk and rk, are determined
according to the report of the Iranian Transportation Ministry and
Crisis Management (ITMCM).

In order to generate trapezoidal fuzzy parameters, the four
prominent points for each parameter at each level are determined
based on the data obtained by Karimi and Bashiri (2011). For
instance, consider the fixed cost of opening a hub at node k, f k. The
trapezoidal parameter ̃f k is generated through Eq. (32).

μk ¼ 1þp�1
2

� �P
i;jsij
p

ð31Þ

f k ¼ 1�ϵ1ð Þ 1�ϵ1þϵ2
4

� �
f k; 1�ϵ1þϵ2

4

� �
f k;

h
1þϵ1þϵ2

4

� �
f k; 1þϵ2ð Þ 1þϵ1þϵ2

4

� �
f k
i

ð32Þ

where ε1 and ε2 are randomly generated from the interval [0.2,
0.8] using a uniform distribution. After implementing the pro-
posed model and solution approaches on the real dataset by p¼ 3,
the results obtained by the proposed GVIWO algorithm are illu-
strated in Figs. 18 and 19. Fig. 18 shows the Pareto frontier for the
real dataset obtained by the proposed GVIWO. In addition, Fig. 19
illustrates the structure of the sample solution from the Pareto
frontier shown in Fig. 19.

It can be extracted from Fig. 18 that by increasing the cost only
27%, the maximum traveling time decreases up to 55%.

In Fig. 19, it can be seen that nodes number 10, 15 and 31 have
been considered to be as hubs. In addition, all three modes of trans-
portation have been utilized between hubs number 10 and 31, while
railway has been constructed from hub 10 to 15, road has been used
between hubs 15 and 31, and finally airway is used from hub 15 to hub
31. It was also concluded from Fig. 19 that spokes (cities) are more
likely to be allocated to hubs with lower failure rate (v) as well as
higher service rate (μ). In Fig. 19, the longest transportation time
belongs to the travel between spokes 9 and 32 with 1120 units of time.

In order to investigate another network to minimize the longest
time, Fig. 20 shows the hub network with 4 hubs. Like Fig. 18, a
solution from the middle of the Pareto frontier is selected for fur-
ther information. As it can be seen, the nodes number 31, 12, 2 and
15 have been located as hubs. Having four hubs in the network has
led to lower value for the longest transportation time that belongs
to the travel between nodes 19 and 32 with 935 units of time.

Several extra experiments were conducted on the real dataset
in order to investigate the contribution of each transportation
network to transport the shipments. It was extracted that the road,
rail and air mode are assigned to the hub-to-hub links with 28%,
46%, and 26%, respectively. Therefore, the railways play a key role
in transporting the shipment in the networks with both median
and center objectives.
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Fig. 13. Objective function 2 vs. number of hubs (H).
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6. Conclusion

This paper proposed a bi-objective single allocation p-hub
center-median problem (BSpHCMP) with respect to transportation
modes over the network. The aim of this model was to locate p
hubs, allocate the spokes to exactly one of the located hubs and
assign transportation modes to the hub-to-hub links in such a way
that the total transportation costs as well as maximum transpor-
tation time between each pair of origin–destination nodes were
simultaneously minimized. The first purpose of this paper was to
study the BSpHCMP by taking into account the uncertainty in the
flows, costs, times and hub operations. We modeled the proposed
problem through a bi-objective mixed-integer non-linear pro-
gramming (BMINLP). To this aim, a fuzzy queuing approach was
applied to model the uncertainties in the hub network.
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Fig. 17. Iranian cities in the real dataset.
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Fig. 19. Hub network’s structure for sample Pareto solution with 3 hubs.

Fig. 20. Hub network’s structure for sample Pareto solution with 4 hubs.



Due to the complexity of the BMINLP model, the second pur-
pose of this paper was to propose an efficient and powerful evo-
lutionary algorithm, based on game theory and invasive weed
optimization algorithm (GVIWO) to solve the BSpHCMP model and
obtain near optimal Pareto solutions. Several experiments were
conducted to evaluate performance of the proposed algorithm.
Moreover, the superiority of the proposed GVIWO was shown in
comparison with two well-known algorithms, NSGA-II and PAES.

Several sensitivity analyses were done showing the effect of
uncertainty and the importance of taking uncertainty into account
in hub location problems. It was concluded that the hub failure
significantly affects the structure as well as the objectives values
such that the spokes are more likely to be allocated to the hubs
with lower failures.

Finally, a real transportation case has been studied to show the
applicability of the proposed model and solution approaches of
this paper in real world problems. In addition, the effect of the
number of hubs in the network was investigated as well as the
contribution of road, rail and air transportation modes in design-
ing the hub network.
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