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Abstract

Modelling the physical behaviour of fibrous materials still remains a great challenge because

it requires to evaluate the inner structure of the different phases at the phase scale (fibre or

matrix) and the at constituent scale (fibre). X-ray Computed Tomography (CT) imaging can

help to characterize and to model these structures, since it allows separating the phases, based

on the grey level of CT scans. However, once the fibrous phase has been isolated, automatically
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separating the fibres from each other is still very challenging. This work aims at proposing

a method which allows separating the fibres and localizing the fibre-fibre contacts for various

fibres geometries, that is: straight or woven fibres, with circular or non circular cross sections,

in a way that is independent of the fibres orientations. This method uses the local orientation

of the structure formed by the fibrous phase and then introduces the misorientation angle. The

threshold of this angle is the only parameter required to separate the fibres. This paper inves-

tigates the efficiency of the proposed algorithm in various conditions, for instance by changing

the image resolution or the fibre tortuosity on synthetic images. Finally, the proposed algorithm

is applied to real images or samples made up of synthetic solid fibres.

Keywords. X-ray tomography, Fibre separation, Contact identification , 3D fibrous materi-

als, Microstructural descriptors

Notations

α̃ Misorientation angle.

ᾱth Threshold value on α̃.

dcP (ti) Half-chord length in P along ti.

Diso Isotropic dilatation operator.5

D‖ Dilatation operator parallel to ū.

en n-th direction associated to the reference frame.

Fk Set of voxels belonging to the fibre k.

IP Inertia matrix in P ∈ Ωf .

λ Slenderness ratio.10

nt Number of investigated values of ti.

nf Number of identified fibres.

norph Number of voxels in Ωorph.

Ωf Fibrous phase.

Ωf
mult Multiple points, resulting from the dilatation operation.15

Ωorph Subset of voxels in Ωf which are not allocated to any fibre.
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P Considered voxel in Ωf .

ψ Azimuth angle.

r̄ Mean fibre radius.

θ Elevation angle (latitude).20

ti i-th computation direction for dcP (ti).

ū Mean orientation of a single fibre.

uI
P Minor axis of the inertia matrix IP .

subscripts: Voxel index (P ) or fibre index (k)

superscripts: Computational direction index (i) or eigenvalue indices (I, II and III)25

1 Introduction

It is well known that the macroscopic behaviour of fibrous materials is inherited from their microscopic

composition and microstructure1. Their physical properties depend on the volume fraction of fibres

but also on their geometries and 3D spatial repartitions (orientation and fibre-fibre contacts). Their

microstructures have been studied for the last 20 years using X-ray micro-tomography2,3,4. This30

technique allows imaging the inner structure of materials that are opaque to visible light and gives

valuable information about the 3D spatial distribution of each phase. Nevertheless, the analysis of

fibre-fibre contacts and the geometrical characterization of the fibres is still challenging because it

requires to numerically separate the fibres from Computed Tomography (CT) images.

For solid circular fibres, recursive erosions can be applied for separation; then, the connected regions35

can be labelled prior to dilation5,6,7. Another method consists in first extracting the centerlines of

the fibres, also called skeletonization algorithm8. Usually, the skeleton is defined by a series of

control points and a piecewise-defined and smooth function (e.g. splines). Once the skeleton is

computed, the main branches can be used to define each fibre. The skeletonization can be made

manually9 or automatically10,11. In the general case, one would use the 3D euclidean distance40

map12,13 or homotopic thinning14,15,16 to skeletonize the fibrous phase. However, skeleton-based

methods are restricted to low volume fraction and fibres exhibiting nearly isotropic cross sections.
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For hollowed fibres, such as wood pulp fibres, specific algorithm may be used, usually based on the

lumen tracking17,18.

In more complex fibrous media, other methods are based on the local orientation of the structure.45

Some authors19,20 use the grey-levelled images for evaluating a structure tensor, computed from the

convolution of gaussian distributions in the vicinity of each considered voxel. Eberhardt and Clarke 21

used the chord lengths whereas Naouar et al. 22 computed the Grey Level Co-occurrence matrix (GLC

Matrix)23. Miletić et al. 24 used the greyscale gradient of the images to track the surface of each fibre.

In binarized images, orientation characterization is usually based on the morphologies of the ob-50

jects. Sandau and Ohser 25 proposed to evaluate the local orientation from the oriented chord-lengths.

Some authors used the last method to compute either the local inertia matrices26 or the structure

tensor27. Miettinen et al. 28 also used the gaussian convolution to compute the structure tensor from

binarized images.

In each method resulting in a structure tensor or an inertia matrix, the local orientation can55

be evaluated by solving the eigenvalue problem. Once the local orientations are characterized, the

separation of the fibres is usually made based on the local changes of these orientations. Naouar

et al. 22 used the homogeneity parameter29 to separate warp and weft yarns in CT grey-level images

of a 3D textile. Viguié et al. 27 evaluated the local change (called “mean angular deviation”) along

the horizontal plane of this axis on binarized images. Thus, it was possible to separate the fibre60

in CT images by thresholding the mean angular deviation. After separation, the fibres were fully

reconstructed using a recursive anisotropic dilation (dilation along the mean fibre direction). This

method lead to valuable results on various media but it was still restricted to networks with planar

fibre orientations.

It is worth mentioning that recent advances in Artificial Intelligence (AI) have brought novel tech-65

niques for automatic detection of shapes or patterns in 2D or 3D images; still, only few authors30,31

used convolution neural network to seperate fibres in CT images. This is because of the large amount

of data required for training the neural network.

In this work, the separation criterion proposed by Viguié et al. 27 was revisited for fully 3D oriented

medium. Then, the dilation procedure used by the last authors was also improved to make it valid for70
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either straight or woven fibres with 3D local orientation. We first introduce the separation criterion,

the reconstruction algorithm and some metrics applied to the fibres. In a second task, we investigate

the influence of the parameters used for the separation and the reconstruction of the fibres on the

resulting geometry. Then, the proposed algorithm is applied to different media in order to evaluate

its ability to separate the fibres in different conditions.75

2 Method

2.1 Example of fibrous medium

In this section, the fibrous medium illustrated in Figure 1 is used as an example of the proposed

algorithm. It is constituted of copper fibres with a circular cross section (diameter 200 µm ≈ 12 vx)

Figure 1: Example of a two-phased fibrous material imaged by X-ray tomography: 3-dimensional
surface rendering of the binarized image. The fibrous phase is represented as a red solid
volume whereas the matrix phase is set to transparent. Dimensions are expressed in voxels.

and a mean length of about 10 mm, as detailed elsewhere13. Consider that CT image as a 3D regular80

grid of points (voxels), which belong either to the matrix phase or the fibrous phase. Let Ωf be the

subset of voxels corresponding to the fibrous phase.

The 3D images are stacks of 2D images (slices) where e1 and e2 denote the directions associated

to each slice, whereas e3 denotes the stacking direction.Since the proposed approach is independent

of the voxel size, all dimensions shown in figures are given in voxels throughout this paper.85
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2.2 Description of the overall algorithm

Figure 2 represents the method to identify the fibres and the fibre-fibre contacts from a binarized CT

image, that is a 3D image where the fibrous phase is already identified. This algorithm is composed

of three steps: step 1 refers to the separation of fibres, step 2 refers to the reconstruction of the

fibres and step 3 deals with the analyses of contacts and fibres geometries.90

2.3 Step 1: Fibres Separation

2.3.1 Computation of the chord lengths

Let ti be a given direction and ti1, t
i
2 and ti3 its coordinates in the reference frame (ti = ti1e1 + ti2e2 +

ti3e3). Consider a voxel P ∈ Ωf ; the distance from P to the matrix along ti, denoted dP (ti) below, is

computed using the method proposed by Altendorf and Jeulin 26 . Appendix A provides some details95

about this method.

These distances can be used to compute the half-chord length in P , denoted dcP (ti), as defined

by Sandau and Ohser 25 :

∀i = 1, ..., nt dcP
(
ti
)

=
dP (ti) + dP (−ti)

2
(1)

where nt denotes the number of investigated directions ti.

2.3.2 Local orientation

In P ∈ Ωf , Altendorf and Jeulin 26 define the inertia matrix IP such that:

IP =
1

nt

nt∑
i=1

(
dcP
(
ti
))2

M
(
ti
)

(2)

with:

M
(
ti
)

=
1

‖ti‖2


ti2

2
+ ti3

2 −ti1ti2 −ti1ti3

−ti1ti2 ti1
2

+ ti3
2 −ti2ti3

−ti1ti3 −ti2ti3 ti1
2

+ ti2
2

 (3)
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Binarized 3D image

Chord lenghts

Inertia matrices

Local orientations

Misorientation (α̃)
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Fibre growth

norph = cst?
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(2)

Minor dir.
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(5)

Algo. 1

Algo. 2

(11)–(10)
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(b)
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0 Pre-processing

1 Separation

2 Reconstruction

3 Geom. anal.
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Figure 2: Scheme of the overall proposed algorithm to separate the fibres, reconstruct them, track
the fibre-fibre contacts and characterize the fibre geometries. The first block (which aims
to separate the fibrous phase from the matrix phase) is not detailed in this work. Despite
the fact that all the steps are computed in 3D, the intermediate steps are illustrated in this
figure as 2D slices (at z = 80) taken from the example medium (see Fig. 1): (a) threshold
on the grey level image, (b) misorientation angle, (c) threshold on the misorientation and
results from (d) labelling then (e) reconstruction.
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where ‖ti‖ denotes the euclidean norm of ti.

Let I IP≤I IIP≤I IIIP be the eigenvalues of IP and uI
P , uII

P , uII
P the corresponding normalized eigenvectors.100

For a given fibre, its orientation is characterized by its lowest inertia momentum. In other words,

the minor axis of IP (denoted uI
P above) gives the local orientation of the fibrous phase in P .

Figure 2b illustrates the local orientations uI
P (white arrows) computed in the medium introduced

in Figure 1. It is clear that, away from the contact zones, local orientations appear to be fairly

aligned with the macroscopic orientation of each fibre. On the contrary, contact zones (e.g., with105

coordinates around (35, 95) in Figure 2b) are characterized by large changes in the local orientations.

2.3.3 Misorientation angle

For a given voxel P ∈ Ωf , let NP be the subset of voxels in Ωf and in contact with P , considering its

26-connected neighbourhood. Let α̃ be the misorientation angle, expressed in radian–per–voxel, so

that:

α̃P =
1

δ̃

∑
Q∈NP

6
(
uI
P ,u

I
Q

)
‖PQ‖

with: δ̃ =
∑
P∈NP

1

‖PQ‖
(4)

where 6
(
uI
P ,u

I
Q

)
denotes the bearing angle between uI

P and uI
Q. This definition of the misorientation

angle is a 3D generalization of the mean angular deviation introduced by Viguié et al. 27 . Here, the

angular values are weighted by the inverse of the distance from the central point.110

Figure 2b illustrates the misorientation map (colormap), evidencing the previous observations (e.g.

coordinates around (35, 95)). In the investigated media, this misorientation angle is typically larger

than 5◦ near contacts. On the opposite, the misorientation angle is close to 0◦ away from the contact

zones.

2.3.4 Thresholding and labelling115

Based on the previous considerations, one can separate fibres in contact using a threshold value ᾱth

on α̃, as illustrated in Figure 2c.

Once the fibres are separated, each one can be considered as a set of voxels, defined as a 3D

connected region. Therefore, the fibres can be labelled using a standard flood-fill algorithm32, asso-

ciating a unique integer to each connected region, as illustrated in Figure 2d. In the present paper,120
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(a)

Ωorph
(i)

D (F1)

D (F2)

F
(i)
1

F
(i)
2

(b)

F
(i+1)
1

F
(i+1)
2

Ωf
mult

Ωorph
(i+1)

Figure 3: Schematic representation of the boolean operations used for dilation: two fibres are rep-
resented (F1 and F2); the dilation is restricted to Ωorph, as defined in (5). (a) at the i-th
dilation step and (b) results at the next one. The set Ωf

mult represents the points that
belong to both the dilated objects (introduced in section 2.4.2).

Fk and nf denote the subset of voxels which belong to the fibre labelled k and the number of identified

fibres, respectively.

When thresholding α̃, some very small disconnected regions may arise. In order to remove these

unrealistic outliers from the labelled regions, regions smaller than a given number of voxels were

discarded. The number of discarded regions and their associated volumes mainly depend on the125

image resolution and the number of contacts.

2.4 Step 2: Fibre reconstruction

As illustrated in Figure 2d, at this stage of the algorithm, about 30% of the voxels belonging to the

fibrous phase are not affected to a labelled fibre. Let Ωorph be this set, consisting in norph orphan

voxels. To allocate these voxels to a fibre, recursive dilations27 on each identified fibre k are applied:

Fk
(i+1) = Fk

(i) ∪
(
D
(
Fk

(i)
)
∩ Ωorph

(i)

)
(5)

where i is the iteration step and D is the dilation operator, described hereafter. Figure 3 illustrates the

previous equation as a Venn diagram. This operation is iterated until Ωorph is stabilized. Algorithm 1

gives the pseudo-code associated to this procedure. A dilation operation is defined for a given kernel.130

The two types of kernels used in this paper, illustrated in Figure 4, are described bellow.
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Algorithm 1 Iterative fibre growth: this operation is performed until the number of elements in
Ωorph (norph) converges.

Ωorph ← orphan voxels
norph ← card (Ωorph)
while norph 6= constant do

for all k = 1 to nf do
dilation of Fk (eq. 5)

end for
Ωorph ← orphan voxels
norph ← card (Ωorph)

end while

2.4.1 Isotropic and longitudinal dilations

The first kernel is an isotropic kernel constituted of 6-connected neighbourhood. The effect of using

the isotropic kernel for dilation is schematically illustrated in Figure 4a.

(a) (b)

ū

ū

Figure 4: Schematic representation of applying either (a) isotropic or (b) longitudinal dilations on a
set of voxels (represented in white). The result from dilation is represented in green. In
each case, the structuring element33 is represented (left-hand side).

The structuring element with planar orientation used by Viguié et al. 27 was improved to make135

it suitable for full 3D orientations. Thanks to the mean orientation ū of each identified fibre (see

section 2.5.1 for details), one can construct a structuring element parallel to ū. The longitudinal

dilation operator, denoted D‖ (Fk), aims at dilating the fibre Fk along its mean direction ūk. The

effect of using the longitudinal dilation is schematically illustrated in Figure 4b. For a considered

voxel, the structuring element used for the longitudinal dilation is composed of a series of elements140

parallel to ū, as illustrated in Figure 4b. In this work, the range used for the longitudinal dilation

was 5 vx (as shown in the last figure) in order to reduce the aliasing effects.
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The evolution of the fraction of orphan voxels at each iteration step is plotted in Figure 5, for each

dilation operator. It appears that the early iteration steps of the isotropic dilation are slower than

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28
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Figure 5: Evolution of the fraction of orphan voxels among all the fibrous phase, as a function of the
iteration step, when applying longitudinal or isotropic dilations.

the ones of longitudinal dilations, mainly because of the size of structuring elements used for the145

dilations. On the contrary, at the end of the process, the longitudinal dilation leaves some orphan

voxels whereas norph converges toward 0 when using the isotropic dilations. The differences between

the two kinds of dilation are discussed in section 3.2.

Figure 5 also illustrates the results from longitudinal dilation after separation on the example

medium (introduced in Figure 1) in terms of geometry. According to this figure, it is clear that the150

procedure quickly converges toward the final geometry as norph converges toward its final value.

2.4.2 Multiple points

When recursively applying the dilation operation, some points may be allocated to several fibres at

once, as schematically represented in Figure 3 and depicted in Figure 6. Let Ωf
mult be this set of

multiple points, as defined below:

Ωf
mult =

nf⋃
k=1

(
nf⋃

k′=k+1

(
Fk ∩ Fk′

))
. (6)
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Figure 6: Multiple points resulting from the recursive dilations on copper fibres (1471 points).

The proposed method to allocate these multiple-points in a deterministic manner is the “least-

misorientations method”. To ascribe these voxels to a single fibre, the principle is first to temporary155

allocate the multiple-points to one fibre, then to recompute the local orientations and the misorienta-

tions (as defined in section 2.3.2) in the considered fibre. The same is done with all candidate fibres,

allowing to evaluate its resulting misorientations for each fibre. Finally, this voxel is allocated to the

fibre leading to its least misorientation. In other words, multiple points are allocated to the fibres in

a way that maximizes the straightness of each fibre. This procedure is summed up in Algorithm 2.

Algorithm 2 Least-misorientation method. AP ,k denotes the tabular data, containing the misori-
entation value in P assuming that P ∈ Fk.

for all k = 1 to nf do
Ftmp ← Fk ∪ Ωf

mult // Consider that Ωf
mult belongs to Fk

Compute α̃, considering only Ftmp

for all P ∈ Ωf
mult do

AP,k ← α̃P // Store the resulting misorientation at P
end for

end for
for all P ∈ Ωf

mult do
K ← arg mink(AP,k) // P ∈ FK minimizes the misorientation
FK ← FK ∪ {P} // Add P to Fibre K

end for

160
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2.5 Step 3: Geometrical analyses

2.5.1 Mean orientation of a fibre

The method proposed by Woodcock and Naylor 34 was used to evaluate the mean orientation of each

fibre. Let Ak be the mean fabric tensor of fibre Fk, so that:

Ak =
1

nk

∑
P∈Fk

uI
P ⊗ uI

P (7)

where nk is the number of voxels in Fk and ⊗ denotes the tensorial product. The largest eigenvalue

of Ak is an estimate of the distribution variance (comprised between 1/3 and 1) and its associated

eigenvector, denoted ūk below, is an estimate of the mean orientation of Fk
19.165

2.5.2 Mean radius

Consider a voxel P ∈ Ωf and its parent fibre Fk with mean orientation ūk. For slightly woven fibres,

Altendorf and Jeulin 26 give the following equation to evaluate the local radius of the fibre Fk in P ,

given by the half-chord length measured along ti:

∀P ∈ Fk, rP
(
ti
)

= dcP
(
ti
)

sinϕi
k (8)

with ϕi
k = 6 (ūk, t

i). The more parallel ti and ūk are, the less the evaluation of rP (ti) is relevant.

Hence, the evaluation of the mean radius was made by weighting the local radii based on the sine of

ϕi
k:

∀P ∈ Fk, r̃P =
1∑

i sinϕi
k

nt∑
i=1

rP
(
ti
)

sinϕi
k . (9)

Let r̄k be the mean radius of Fk. It comes:

r̄k =
1

nk

∑
P∈Fk

r̃P . (10)

13



2.5.3 Contact identification

Let Fi and Fj be the volumes associated to two distinct fibres i and j. The set of voxels which belong

to the fibre i and are in contact with the fibre j can be defined as follows:

Ci,j = Fi ∩Diso (Fj) . (11)

3 Choice of the parameters of the algorithm

The objective of this section is to propose guidelines to use the algorithm summarised in section 2

and to gauge the errors made on the identification of the fibres in terms of geometry (length and170

diameter) and location (position and orientation). For that purpose, the following methodology is

applied: (i) a synthetic medium, representative of one of the various fibre networks mentioned in the

introduction, is generated, (ii) the influence of one parameter on the fibre identification is gauged

and (iii) guidelines are provided.

3.1 Computational directions175

3.1.1 Example medium

In order to investigate the effect of increasing the number of computational directions of the chord

length (denoted nt in this paper) on the computation of the mean orientation, a “hedgehog-like”

fibrous medium was numerically generated, as depicted in Figure 7a. In order to avoid the influence

of contacts on the evaluation of local orientations, each fibre of this hedgehog was not in contact to180

each other. These fibres have a nominal length of 35 voxels and two nominal radii are investigated,

respectively 3 and 5 voxels. Fibres were generated for several different orientations, resulting in 133

individual fibres, as illustrated in Figure 7b.

According to Altendorf and Jeulin 26 , the computed directions (uI
P ) undergo an attraction toward

each direction ti. As a result, the set of investigated directions must be balanced so that it leads to185

an isotropic bias. In other words, the sum of the local inertia matrices, as defined in (3), must be

proportional to the identity matrix. Different sets of computed directions were used for evaluating

14



(a) (b)

ψ=0◦

ψ=90◦

θ=0◦ 30◦ 60◦ e1

e2

ψ=0◦

ψ=90◦

θ=0◦ 30◦ 60◦

Figure 7: Numerically generated medium: (a) 3D view of the hedgehog-like fibrous phase and (b)
pole figure of the mean orientation of each fibre (stereographic projection).

the chord lengths in the hedgehog, resulting in nt ranging from 13 to 61. These sets are schematically

presented in Appendix B (see Figure 23).

3.1.2 Mean orientations190

The mean orientation of each fibre of the hedgehog was evaluated according to the procedure detailed

in section 2.5.1 with different values of nt. Then, the calculated mean orientations were compared to

the theoretical ones, as summed up in Figure 8. In this figure, (ψ, θ) denotes the spherical coordinates

(ψ stands for the azimuth angle from e1, whereas θ denotes the elevation angles toward e3). In each

case, the orientation of fibres lying along the frame directions appear to be accurately evaluated.195

Since these directions are parallel to the reference frame (see Figure 23), this is in agreement with

the theory introduced by Altendorf and Jeulin 26 . On the contrary, the other directions appear to lead

to wrong estimates, specially with nt = 13. With nt = 25, all directions characterized by θ = 30◦ or

60◦ appear to be well predicted but that with θ = 15, 45 and 75◦ lead to largest errors. nt = 37 gives

better results for the later orientations without worsening the evaluation of other orientations. When200

nt = 49 and 61, it is clear that all orientations (except the ones lying along the frame directions) are

not accurately evaluated. For the special case θ = 0◦, some orientations appear to be 180◦ off the

theoretical ones; this is due to round-off errors and the ambiguous azimuth angle for an horizontal

fibre ((ψ, θ = 0) ≡ (ψ + π, θ = 0) for non-signed orientations).

Figure 9a represents the mean and the largest angular errors between the computed orientations205
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(a)
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(b)
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(d)
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(e)
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e1

e2
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Figure 8: Pole figure of the mean orientations of each fibre of the hedgehog (Figure 7), illustrating the
influence of the number of computational directions of the chord lengths: (a) nt = 13, (b)
nt = 25, (c) nt = 37, (d) nt = 49 and (e) nt = 61. Blue crosses ( ) represent the computed
orientations whereas the red circles ( ) give the theoretical ones, as a comparison. For the
sake of readability, the θ axis is not shown (see Fig. 7b for details).
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and the theoretical ones for each value of nt. This plot confirms that the evaluation of the orientations

(a)
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Figure 9: Results from the geometrical analyses on the hedgehog: (a) evolution of the mean angular
error (darker bars) as a function of nt, depending on the nominal fibre radius (r), lighter
bars give the largest angular error; (b) distribution of the fibres’ radii evaluated on the
hedgehog (with nt = 37), depending on the nominal radius.

of the hedgehog’s fibres is better with nt = 37 than with nt = 49 and 61. The same procedure was

used on another “hedgehog-like” medium with a nominal radius of 5 vx, evidencing the same trend,

as illustrated in Figure 9a (red bars). Since the computation of the inertia matrices runs in linear

time with nt, using nt = 37 appears to be the best compromise between execution time and precision.210

Preliminary tests, not described in this article, were carried out with hedgehog of various steps. As

a result, nt = 37 appears to produce the lowest error regardless the spacing of the hedgehog; thus,

all analyses detailed below were done using this value.

3.1.3 Mean radii

Since the orientation of each fibre is well computed, the evaluation of the mean radius (detailed in215

section 2.5.2) can be done. With nt = 37, the computation of the mean radii of the two aforemen-

tioned hedgehogs lead to the distributions given in Figure 9b. For the fibres with a nominal radius

of 3 vx, the mean value of r̄ was 3.41 vx (standard deviation: 0.19); for the fibres with a nominal

radius of 5 vx, the mean value of r̄ was 4.94 vx (standard deviation: 0.24). Therefore, it appears that

the radii are well computed in both cases, leading to slight overestimation for smaller value.220
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3.2 Structuring element

3.2.1 Fibrous networks made up of straight fibres

In order to investigate the influence of the structuring element for the dilation algorithm (i.e. D =

Diso vs. D = D‖ in (5)) on the resulting geometries, we considered a medium, characterized by two

straight fibres with circular cross-section, as illustrated in Figure 10a. These fibres were separated

(a) (b)

Figure 10: Two straight cylindrical fibres (copper). (a) Fibrous phase and (b) separated fibres
(ᾱth=15◦) before dilation.

225

using the separation procedure proposed in this paper, as illustrated in Figure 10b.

After separation of the fibres (Figure 10b), they appear to be well defined, except near the contact

zone. As a result, fibres obtained using isotropic dilation are really similar to the ones obtained using

longitudinal dilation, as illustrated in Figure 11. Details of the 2D sections illustrate the differences

(a)

(b)

Figure 11: Results after (a) isotropic and (b) longitudinal dilations of the fibres presented in Fig-
ure 10. Details of the resulting cross sections are given by the 2D sections (at x = 63).

18



in terms of cross section of each fibre. The isotropic dilation leads to the penetration of the green230

fibre into the blue one.

3.2.2 Fibrous networks made up of woven fibres

Now let us consider three wavy fibres, with circular cross-section, as illustrated in Figure 12a. They

(a) (b)

(c) (d)

Figure 12: Woven cylindrical fibres: (a) binarized fibrous phase, (b) result from separation with
ᾱth=4◦ and reconstruction using (c) isotropic or (d) longitudinal dilations. Shaded regions
correspond to the remaining orphan voxels at the end of the recursive dilation procedure.

were separated according to the same procedure, leading to the results presented in Figure 12b. The

results obtained using isotropic and longitudinal dilation are illustrated in Figure 12c and Figure 12d,235

respectively. Thus, the differences are evidenced by the remaining orphan voxels (see shaded regions),

even after the recursive dilations, when using the longitudinal dilation. Figure 12d shows that the

dilation of the green fibre results in a flattened fibre.

3.2.3 Synthesis

As a conclusion, the following statements can be made:240
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� longitudinal dilation is recommended for straight fibres because it retains the fibre morphology

and leads to better evaluation of the contacts (avoids penetration);

� isotropic dilation is recommended for wavy fibres because it does not leave orphan voxels and

does not flatten the fibres.

3.3 Influence of the geometry245

In order to assess the robustness of the proposed algorithm against image quality and morphological

parameters, two fibres with cylindrical geometry (with radius r̄ = 10 vx), in contact to each other,

were generated with varying nominal angle (denoted β below) between their axes. In addition,

these geometries were generated for different values of the slenderness ratio λ (ratio of lenght to the

diameter).250

Then, all these geometries were down-sampled by a factor 2, 3 and 4. In the present section, s

denotes the down-sampling factor (s = 1 corresponds to no down-sampling and s = n corresponds to

retaining each n-th voxel on each direction). Among all these sets, three geometries are illustrated

in Figure 13. Table 1 gives the resulting geometrical parameters (length and diameter) in each case.

(a) (b) (c)

Figure 13: Examples of the generated geometries for the investigation of the influence of the image
parameters on the separation: (a) β = 3◦, λ = 2, not down-sampled (b) β = 20◦, λ = 5,
s = 2 and (c) β = 90◦, λ = 10, s = 4.

On each geometry, attempts were made to separate the two fibres using the method detailed in255

section 2.3. In each case, the largest thresholding value ᾱth leading to separation of the fibres was

recorded, as plotted in Figure 14.

For λ ≥ 3, ᾱth appears to be an increasing function of the angle between the fibres. On the opposite,
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Table 1: Geometrical parameters (radius r̄ and length `, in voxels) of the generated fibres, depending
on the down-sampling factor s and the slenderness ratio λ.

Down-sampling factor

λ 1 2 3 4

2 r̄: 10 5 3 2.5
`: 40 20 12 10

3 r̄: 10 5 3 2.5
`: 60 30 18 15

5 r̄: 10 5 3 2.5
`: 100 50 30 25

10 r̄: 10 5 3 2.5
`: 200 100 60 50

0◦

10◦

20◦

30◦

40◦

ᾱ
th

s = 1 s = 2

0◦ 10◦20◦30◦ 45◦ 60◦ 90◦
0◦

10◦

20◦

30◦

40◦

β

ᾱ
th

s = 3

0◦ 10◦20◦30◦ 45◦ 60◦ 90◦

β

s = 4

λ = 2 λ = 3 λ = 5 λ = 10

Figure 14: Largest values of ᾱth leading to the separation of the generated fibres, as a function of the
angle between the two fibres β, the slenderness ratio λ and the down-sampling factor s. .
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ᾱth appears to randomly depend on β when λ = 2. This result indicates that the separation process

somehow behaves randomly when one attempts to separate short fibres. As a conclusion, the present260

algorithm seems to work on fibres characterized by λ ≥ 3.

On higher down-sampling factor (s = 4), the separation process can not be performed with β < 20◦,

whatever the slenderness ratio is. According to the geometrical parameters given in Table 1, it

appears that a radius larger than 2.5 vx is required to ensure the ability of the present algorithm to

separate the fibres.265

As the proposed algorithm is based on the local change in fibre orientation, the separation of fibres

nearly parallel to each other (β ∼ 0◦) is not possible with the proposed algorithm. In this case, one

should use other methods based on skeletonization8,9,10,11.

3.4 Wavy fibres: influence of the wrap angle

In order to investigate the ability of the algorithm to separate wavy fibres wrapped around each270

other, theoretical geometries were numerically generated, as presented in Figure 15. In each case, the

geometry consisted in two fibres wrapped around each other, with a given wrap angle γ ∈ [0◦, 180◦],

as detailed in Figure 15a. These geometries were generated for different values of the fibre radius

(a)

γ

6r̄

2r̄

(b) (c)

0◦ 45◦ 90◦ 135◦ 180◦
0◦

20◦

40◦

60◦

80◦

Wrap angle γ

ᾱ
th

r̄ = 2.5 vx
r̄ = 5 vx
r̄ = 10 vx

Figure 15: Separation of wavy touching fibres: (a) schematic view of the synthetic geometry, intro-
ducing the wrap angle and (b) example of geometry with γ = 150◦ and r̄ = 10 vx; highest
values of ᾱth leading to the separation of the fibres wrap around each other, as functions
of wrap angle mean fibre radius.

and the wrap angle. In each case, the maximum value of ᾱth resulting in the separation of the two

fibres are reported in Figure 15c.275
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When γ 6= 0◦, the values of ᾱth appear to be almost constant for a given radius, with mean values

equal to 21.7◦, 17.8◦ and 15.2◦ if r̄ = 2.5 vx, 5 vx and 10 vx, respectively. As a conclusion, this

separation method is very efficient on various morphologies of wavy touching fibres regardless the

wrap angle.

3.5 General guidelines to use the algorithm280

Based on the previous results, the following guidelines can be provided to ensure the ability of the

proposed approach to accurately separate and characterize the fibres:

� nt = 37 investigated directions for the computations of chord lengths appears to be the best

compromise between execution time and precision;

� each fibre should have a diameter larger than 5 vx and a slenderness ratio larger than 3;285

� longitudinal dilation should be used for straight fibres, since it keeps their straightness and

avoids unrealistic inter-penetration;

� isotropic dilation should be used for wavy fibres because it leads to almost zero orphan voxels

at the end of recursive dilatations;

� wavy fibres can also be separated, as long as parts of them are straight segments.290

No guideline has been raised about the choice for ᾱth. Since it is used as a global parameter (de-

pending on the type of fibrous network), one can simply find the adequate value by trial-and-error.

4 Application: fibre identification in various fibre networks

4.1 Considered media

In order to investigate the ability of the proposed algorithm to separate and reconstruct the fibres on295

complex media, CT images of various materials were used, as summed up in Figure 16. These media

were chosen to investigate whether the proposed algorithm can be applied for fibre identification in
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(a)

(b)

(c)

(d)

(e)

Figure 16: 3D images of the investigated media: (a) nylon fibres in candle gel (b) carbon fibres in
polymer matrix (c) Sheet Moulding Compound (d) woven textile with monofilament with
circular cross-section (e) woven fabric (plain weave) with filament-based yarns (synthetic).
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various volume fraction of fibres (e.g. (a) vs. (b)), for various shapes of fibres’ cross sections (e.g.

(a) vs. (c)), for various fibres orientations distributions (e.g. (a) vs. (b)), for straight and woven

fibres (e.g. (b) vs. (d)) and even on filament tows (e).300

The fibrous medium (a) was constituted of short pieces of nylon fibres of identical length35.

Medium (b) was constituted of short carbon fibres of different lengths embedded in a polymer ma-

trix. Medium (c) was a Sheet Moulding Compound (SMC) made up of planar random glass fibre

bundles36. Medium (d) was imaged during an in situ bias test of a woven textile (plain weave of

metallic fibres with circular cross sections). Medium (e) was an artificial 3D image of a woven textile,305

where each yarn consisted in a series of slender filaments with circular cross section. This image was

generated using the WeaveGeo module as part of the Geodict software37.

Medium (a) was imaged on TOMCAT beamline at the Swiss Light Source (SLS). Medium (b) was

imaged on ID19 beamline at the European Synchrotron Radiation Facility (ESRF). Media (c) and

(d) were imaged on a laboratory tomograph (3SR Lab, Grenoble, France, RX Solutions apparatus).310

The structural properties of each medium are detailed in Table 2. In each case, the threshold value

of the misorientation angle (ᾱth) used for separation and the kernel used for dilations (D ) are given

in this table.

4.2 Straight short fibres

Figure 17a represents the fibres identified in the medium composed of nylon fibres (see Figure 16a).315

1318 distinct fibres were identified.

The mean orientation of each fibre is presented in the Pole Figure 17b. In this figure, the diameter

of each dot is related to the corresponding fibre length. One can see a near transverse isotropic

orientation distribution, with almost all fibres nearly lying along the horizontal plane (x, y), with

θ < 30◦.320

In Figure 17a, one can see that if two fibres are in contact and nearly parallel to each other, they

can not be separated. This is in accordance with the cases corresponding to the lower values of β in

section 3.3.
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Table 2: Properties of the media used as applications of the proposed approach, presented in Fig-
ure 16, and corresponding parameters used for separation (ᾱth) and reconstruction (D ).

Material Volume fraction Nominal diameter ᾱth D

(a) Nylon fibres 33.4 % 16 vx 4◦ Longitudinal
(b) Carbon fibres 6.12 % 11 vx 4◦ Longitudinal
(c) SMC 25.9 % - 4◦ Longitudinal
(d) Woven fibres 5.76 % 10 vx 10◦ Isotropic
(e) Woven tows of fibres 43.1 % 300 fib./tow, fib.: 4 vx 8◦ Isotropic

(a) (b)

ψ=0◦

ψ=90◦

θ=0◦ 30◦ 60◦ e1

e2

ψ=0◦

ψ=90◦

θ=0◦ 30◦ 60◦

=200 vx

Figure 17: Result from separation of nylon fibres: (a) 3D representation and (b) pole figure illustrat-
ing the mean orientation of each fibre; a unique colour is attributed to each fibre; dot size
is related to the corresponding fibre length.
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4.3 Polydisperse and randomly oriented short fibres

Figure 18a represents carbon fibres (introduced in Figure 16b) after separation, where 446 fibres325

were identified. From this figure, it appears that the present algorithm is able to separate randomly

oriented fibres (3D distribution), while that proposed by Viguié et al. 27 is only efficient if fibres show

a near-planar distribution.

(a) (b)

ψ=0◦

ψ=90◦

θ=0◦ 30◦ 60◦ e1

e2

ψ=0◦

ψ=90◦

θ=0◦ 30◦ 60◦

=200 vx

Figure 18: Results from separation of carbon fibres: (a) 3D representation and (b) pole figure illus-
trating the mean orientation of each fibre; a unique colour is attributed to each fibre; the
dot size is related to the corresponding fibre length.

Figure 18b represents the mean orientation of each fibre (the dot size is related to the corresponding

fibre length), emphasizing that the orientation distribution is fully 3D.330

4.4 Sheet moulding compound

Figure 19 shows the identified fibres in the SMC. It appears that most of the fibres were identified

despite the random shapes of their cross sections. From these data, the contacts were identified,

leading to a coordination number (defined as the mean number of fibre-fibre contact per fibre) equal

to 6.57. This value is similar to the ones reported in other SMCs38.335

In Figure 19, it appears that the fibres are well-separated despite their random cross sections

and their highly anisotropic cross sections. Nevertheless, some fibres have been broken up by the

separation, since they appear discontinuous. These splits may be due to the low number of voxels in
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Figure 19: Results of separation of the fibres in a SMC. A unique colour is randomly attributed to
each fibre.

thickness combined with a large coordination number.

4.5 Woven plain weave of circular wires340

Figure 20 illustrates the application of the present algorithm on the image from the in situ bias test

(introduced in Figure 16d). Efforts were made to keep each fibre connected despite the large number

Figure 20: Illustration of the contact zones found in the woven fibres, shown in red (fibres are repre-
sented in transparency).

of fibre-fibre contacts, leading to local break-up of the fibres. It appears that the contacts are well

retrieved despite the moderate waviness of the wires.
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4.6 Woven plain weave of dense yarns345

Attempts were made to separate the tows from the binary image of a textile constituted of filament

tows (introduced in Figure 16d), as depicted in Figure 21. After separation, it appears that each

Figure 21: Identified fibres after separation of the textile composed of filament yarns. The circles
show locations where the contacts are not accurately defined.

yarn is well separated from each other, despite the woven structure and the large volume fraction.

Nevertheless, some regions appear to be allocated to wrong fibres near contacts (see circles in Fig-

ure 21). Indeed, because of the filaments, each tow can be divided into subregions. The difficulty of350

separating such a medium is because it can be considered at different scales: the filament or the tow

scale. In addition, because the filaments within each tow are nearly parallel, the proposed algorithm

is unable to properly separate them. Thus, other techniques based on morphological analysis5,6,7 or

skeletonization8,11 may be used in such a context.

4.7 Performances355

The computational time of the methods proposed in this paper are strongly dependent on the

medium. For instance, the computation time of the chord lengths is linear with the number of

voxel in Ωf , i.e. linear time with the volume fraction and the volume of the CT image. Since the

Least-Misorientation method (detailed in section 2.4.2) requires to consider each fibre at a time, it

runs in linear time with nf . This algorithm was developed in Matlab®, using the Parallel Comput-360

ing and Image Processing toolboxes. Hence, some routines were parallelized (e.g. local orientations
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and recursive dilations) in order to speed up the process. In addition, the dilation operations (used

in sections 2.4 and 2.5.3) take advantage of bit packing39, making the corresponding algorithms very

efficient.

Among all media presented in section 4, the image of nylon fibres (Figure 17a) lead to the longest365

computational time (about 36 h on a 6-core CPU). Lastly, it is worth mentioning that this time could

by highly reduced by using Graphics Processing Unit (GPU) computing.

5 General conclusion

We proposed a method to identify the solid fibres in various fibrous media with volume fraction

up to 45%. Starting from binary 3D images, chord lenghts and inertia matrices, as introduced370

by Altendorf and Jeulin 26 , are computed first; then the misorientation angle is used as a criterion for

separation. In order to fully reconstruct the fibres geometries, two dilation algorithms were studied

(namely isotropic and longitudinal). As a result, this approach relies on three main parameters: the

threshold value on misorientation, the number of considered neighbours for the computation of the

chord lenghts, and the dilation operator to be used. All these parameters were analysed, leading to375

optimum values, depending on the properties of the fibrous network. This approach works well, even

on complex media such as:

� high volume fraction of fibres,

� random cross sections,

� wavy fibres.380

The efficiency of the proposed method for separating the fibres was evaluated on elementary cases.

It was shown that a minimum radius of 5 vx and a slenderness ratio larger than 3 is required to

ensure the fibre separation between straight fibres in contact to each other. The error made on the

radii and the fibres orientations was estimated. For woven fibres, no restriction on the fibre radius

was observed.385
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Since the fibres can be separated, the contact surface between them can be evaluated. In order to

get more detailed informations about the contacts, one may mesh the corresponding surface (instead

of using the regular grid, inherited from the voxels), for instance using the marching cube method40,

based on the grey level of CT images.

In this paper, the fibres are either considered as wavy or perfectly straight. In a further work, the390

fibres may be defined piecewise, allowing to investigate the local orientations (such as bending) and

local cross sections. This improvement may be in great interest for the dilation procedure.
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Appendix A: Computation of the chord lengths

In this paper, the method proposed by Altendorf and Jeulin 26 have been used to compute the chord

lengths at voxel P , denoted dP here. Figure 22 schematically illustrates how dj(t
i) and dj(−ti) are405

defined.
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ti ti

dP (ti)

dP (−ti)

Figure 22: Schematic representation of the method used for computing of the chord lengths dj along a
given direction ti at a given location (red square): the white squares illustrate the fibrous
phase nested in the matrix (black squares).

Appendix B: Investigated directions for computation of the

chord lenghts

According to the definition of the half-chord lenght dcP (ti), given in (1), it is clear that dcP (−ti) =

dcP (ti). This means that the computation of IP based on the N-connected neighbourhood can be

reduced to nt = N/2 directions. In addition, because of the way the chord lenghts are computed

dcP (ti) (see for instance Figure 22), it appears that:

∀k, dcP
(
kti
)

= dcP
(
ti
)
. (12)

In other words, if dcP (ti) has already been computed, the computation of the half-chord length

along any direction parallel to ti would be redundant for the evaluation of IP . Thus, all sets of410

computational directions ti used for computing the chord lengths, as investigated in section 3.1, are

presented in Figure 23.
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Foster, Christoph Arns, and Dunja Perić. Gradient-based fibre detection method on 3d micro-ct

tomographic image for defining fibre orientation bias in ultra-high-performance concrete. Cement

and Concrete Research, 129:105962, 2020. ISSN 0008-8846. doi: 10.1016/j.cemconres.2019.

105962. URL https://www.sciencedirect.com/science/article/pii/S0008884619305332.500

[25] K. Sandau and J. Ohser. The chord length transform and the segmentation of crossing fibres.

Journal of Microscopy, 226(1):43–53, 2007. ISSN 1365-2818. doi: 10.1111/j.1365-2966.2007.

01748.x. URL 10.1111/j.1365-2966.2007.01748.x.

[26] Hellen Altendorf and Dominique Jeulin. 3d directional mathematical morphology for analysis

of fiber orientations. Image Analysis & Stereology, 28(3), 2009.505

36

10.1007/s10853-009-4016-4
http://www.sciencedirect.com/science/article/pii/S0263822314002189
10.1046/j.1365-2818.2002.01009.x
http://www.sciencedirect.com/science/article/pii/S0263822315005474
http://www.sciencedirect.com/science/article/pii/S0263822315005474
http://www.sciencedirect.com/science/article/pii/S0263822315005474
https://www.sciencedirect.com/science/article/pii/S0008884619305332
10.1111/j.1365-2966.2007.01748.x
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