

Science Arts & Métiers (SAM)

is an open access repository that collects the work of Arts et Métiers Institute of Technology researchers and makes it freely available over the web where possible.

This is an author-deposited version published in: https://sam.ensam.eu Handle ID: .http://hdl.handle.net/10985/21675

To cite this version :

George CHATZIGEORGIOU, Nicolas CHARALAMBAKIS, Fodil MERAGHNI - Multiscale Modeling Approaches for Composites - 2022

Any correspondence concerning this service should be sent to the repository Administrator : scienceouverte@ensam.eu

Multiscale Modeling Approaches for Composites

George Chatzigeorgiou, Fodil Meraghni, Nicolas Charalambakis

Multiscale Modeling Approaches for Composites outlines the fundamentals of common multiscale modeling techniques and provides detailed guidance for putting them into practice. Various homogenization methods are presented in a simple, didactic manner, with an array of numerical examples.

The book starts by covering the theoretical underpinnings of tensors and continuum mechanics concepts, then progresses to actual micromechanic techniques for composite media and laminate plates. In the last chapters the book covers advanced topics in homogenization, including Green's tensor, Hashin-Shtrikman bounds, and special types of problems. All chapters feature comprehensive analytical and numerical examples (Python and ABAQUS scripts) to better illustrate the theory.

Key features:

- Bridges theory and practice, providing step-by-step instructions for implementing multiscale modeling approaches for composites and the theoretical concepts behind them
- Covers boundary conditions, data-exchange between scales, the Hill-Mandel principle, average stress and strain theorems, and more
- Discusses how to obtain composite properties using various full-field and mean-field approaches
- Includes access to a companion site featuring the numerical examples, Python, and ABAQUS codes

About the Authors

George Chatzigeorgiou is a Research Scientist at CNRS (CR-HDR) based at the Arts et Métiers Institute of Technology, France, and a member of the LEM3-UMR CNRS 7239 laboratory in France. His research is devoted to constitutive modeling of multifunctional materials and homogenization theories of composites.

Fodil Meraghni is a Distinguished Professor at the Arts et Métiers Institute of Technology, France. He is the head of the Composites and Smart Materials Research Group at LEM3-UMR CNRS 7239 in France, working on multiscale modeling using micromechanical approaches for homogenization of polymer composites and shape memory alloys.

Nicolas Charalambakis is a Professor Emeritus in the Department of Civil Engineering at Aristotle University of Thessaloniki, Greece, and a member of the Center for Research and Development of Advanced Materials AUTH and Texas A&M. His research focuses on homogenization and material instabilities.

Related Titles

Aboudi, Practical Micromechanics of Composite Materials (Butterworth Heinemann, 2021): 9780128206379 Kushch, Micromechanics of Composites 2e (Butterworth Heinemann, 2020): 9780128211915

Silberschmidt, Dynamic Deformation, Damage, and Fracture in Composite Materials and Structures (Woodhead Publishing, 2016); 9780081000809

Talreja, Modelling Damage, Fatigue, and Failure of Composite Materials (Woodhead Publishing, 2015): 9781782422860

9 780128 2

ISBN 978-0-12-823143-2

Chatzigeorgiou Meraghni Charalambakis

Multiscale Modeling Approaches for Composites

Multiscale Modeling

George Chatzigeorgiou Fodil Meraghni Nicolas Charalambakis

R elsevier.com/books-and-journals

Contents

About the authors	xi
Foreword	xiii
Preface	XV
Acknowledgments	xvii
C C	

Ι

Tensors and continuum mechanics concepts

1. Tensors

1.1	Tensors in Cartesian coordinates	3
1.2	Cartesian systems and tensor rotation	5
1.3	Tensor calculus	7
1.4	Examples in tensor operations	8
1.5	Voigt notation: general aspects	13
1.6	Operations using the Voigt notation	16
1.7	Tensor rotation in Voigt notation	19
1.8	Examples in Voigt notation operations	24
	References	27
2.	Continuum mechanics	
2.1		20

2.1	Strain	29
2.2	Stress	32
2.3	Elasticity	34
	2.3.1. General aspects	34
	2.3.2. Special symmetries	36
2.4	Reduction to 2–D problems	46
	2.4.1. Plane strain	47
	2.4.2. Plane stress	49
2.5	Examples	50
	References	53

Π

Micromechanics for composite media

3. General concepts of micromechanics

VI Contents	
3.1 Heterogeneous media	57
3.2 Homogenization	59
3.3 Homogenization principles	62
3.3.1. Average theorems	63
3.3.2. Hill–Mandel principle	66
3.3.3. Concentration tensors	69
3.4 Bounds in the overall response	71
3.4.1. Voigt and Reuss bounds	72
3.4.2. Hashin–Shtrikman bounds	73
3.5 Examples	74
References	82
4. Voigt and Reuss bounds	
4.1 Theory	83
4.1.1. Voigt upper bound	84
4.1.2. Reuss lower bound	84
4.2 Simple methods for fiber composites	86
4.3 Composite beams	90
4.3.1. Essential elements of beam bending theory	90
4.3.2. Beam made of two materials	92
4.4 Examples	96
References	99
5. Eshelby solution-based mean-field meth	ods
5.1 Inclusion problems	101
5.1.1. Eshelby's inclusion problem	102
5.1.2. Inhomogeneity problem	105
5.2 Eshelby-based homogenization approaches	109
5.2.1. Eshelby dilute	111
5.2.2. Mori–Tanaka	112
5.2.3. Self-consistent	114
5.3 Examples	116
References	126
6. Periodic homogenization	
6.1 Preliminaries	127
6.2 Theoretical background	128
6.3 Computation of the overall elasticity tensor	130
6.4 Particular case: multilayered composite	132

0.1	r articular case, matchayerea composite	101
6.5	Examples	135
	References	143

•

7. Classical laminate theory

7.1	Introduction	148
7.2	Stress-strain relation for an orthotropic material	149
	7.2.1. From tensor to contracted (Voigt) notation	149
	7.2.2. Hooke's law for orthotropic material in Voigt notation	152
7.3	Hooke's law for an orthotropic lamina under the assumption of plane stress	156
7.4	Stress-strain relations for a lamina of arbitrary orientation: off-axis loading	158
	7.4.1. Stress and strain in global axes $(x - y)$	159
	7.4.2. Off-axis stress-strain relations	160
	7.4.3. Off-axis strain-stress relations	162
	7.4.4. Engineering constants and induced coefficients of shear-axial strain mutual	al
	influence in an angle lamina	163
	7.4.5. Example	168
7.5	Macromechanical response of a laminate composite thin plate	170
	7.5.1. Laminate code and convention	171
	7.5.2. Laminated thin plates and Kirchhoff–Love hypothesis	173
	7.5.3. Kinematics of thin laminated plates and strain–displacement relation	174
	7.5.4. Stress variation in a laminate	177
	7.5.5. Force and moment resultants related to midplane strains and curvatures	178
	7.5.6. Physical meaning of some coupling components of the laminates stiffness	
	matrices	183
	7.5.7. Workflow and summary	187
	7.5.8. Example	189
	References	195

III

Special topics in homogenization

8. Composite sphere/cylinder assemblage

8.1	Composite sphere assemblage	199
8.2	Composite cylinder assemblage	208
8.3	Eshelby's energy principle	221
8.4	Universal relations for fiber composites	226
8.5	Examples	229
	References	235

9. Green's tensor

9.1	Preliminaries	237
	9.1.1. Fourier transform	237
	9.1.2. Betti's reciprocal theorem	238
9.2	Definition and properties	239
9.3	Applications of Green's tensor	244

viii	Contents	
9.4	9.3.1. Infinite homogeneous body with varying eigenstresses 9.3.2. Eshelby's inclusion problem Examples References	244 246 247 248
10.	Hashin–Shtrikman bounds	
10.1 10.2 10.3 10.4	Preliminaries 10.1.1. Positive and negative definite matrices 10.1.2. Calculus of variations Hashin–Shtrikman variational principle Bounds in a bi–phase composite Examples References	251 255 256 262 267 269
11.	Mathematical homogenization theory	
11.1 11.2 11.3 11.4 11.5	Preliminaries Variational formulation 11.2.1. Functional spaces 11.2.2. Homogeneous body 11.2.3. Heterogeneous body with a surface of discontinuity 11.2.4. Approximating functions 11.2.5. Finite element method Convergence of the heterogeneous problem 11.3.1. Weak convergence 11.3.2. Mathematical homogenization Asymptotic expansion approach Examples References	271 273 273 275 277 278 279 280 282 283 286 288 296
12.	Nonlinear composites	
12.1 12.2 12.3 12.4	Introduction Inelastic mechanisms in periodic homogenization Inelastic mechanisms in mean-field theories 12.3.1. Inhomogeneity problem with two eigenstrains 12.3.2. Mori–Tanaka/TFA method for composites with inelastic strains Examples References	299 300 302 303 307 308 322
A.	Fiber orientation in composites	
A.1 A.2 A.3	Introduction Reinforcement orientation in a plane Reinforcement orientation in 3–D space	325 325 327

	Contents	ix
A.4	Examples References	330 337
Inde	ex	339
For com bool	additional information on the topics covered in the book, v panion site: https://www.elsevier.com/books-and-journa k-companion/9780128231432	visit the ls/