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On the impact of the erroneous identification of inertial sensors’
locations on segments and whole-body centers of mass
accelerations: a sensitivity study in one transfemoral amputee

Joseph Basel1,2 & Emeline Simonetti1,2,3 & Elena Bergamini2 & Hélène Pillet1

Abstract
The kinematics of the body center of mass (bCoM) may provide crucial information supporting the rehabilitation process of
people with transfemoral amputation. The use of magneto-inertial measurement units (MIMUs) is promising as it may allow in-
the-field bCoMmotion monitoring. Indeed, bCoM acceleration might be obtained by fusing the estimated accelerations of body
segments’ centers of mass (sCoM), the formers being computed from the measured accelerations by segment-mounted MIMUs
and the known relative position between each pair of MIMU and underlying sCoM. This paper investigates how erroneous
identifications ofMIMUs positions impact the accuracy of estimated 3D sCoM and bCoM accelerations in transfemoral amputee
gait. Using an experimental design approach, 215 simulations of erroneous identifications of MIMUs positions (up to 0.02 m in
each direction) were simulated over seven recorded gait cycles of one participant. MIMUs located on the trunk and sound lower
limbs were shown to explain up to 77% of the variance in the accuracy of the estimated bCoM acceleration, presumably due to
the higher mass and/or angular velocity of these segments during gait of lower-limb amputees. Therefore, a special attention
should be paid when identifying the positions of MIMUs located on segments contributing the most to the investigated motion.

Keywords Center of mass . Gait analysis .Magneto-inertial measurement unit . Sensitivity analysis . Transfemoral amputees

1 Introduction

From a mechanical point of view, the motion of the body
center of mass (bCoM) is related to the mechanical actions
that are applied to the human body. In this respect, the analysis
of bCoM kinematics during gait, and more especially of
bCoM acceleration, is of particular relevance. Indeed, it pro-
vides information regarding the overall movement strategy, as

well as mechanical energy exchanges and power [1–5]. Such
information is crucial when investigating altered human gait
patterns, such as in people with lower-limb amputation [4, 6].
Indeed, the parameters derived from the bCoM acceleration
allow to quantify the severity of the disability or functional
changes occurring along the rehabilitation process, and may
thus support the clinical decision process [6, 7]. Parameters
derived from the bCoM kinematics are usually obtained from
force plates, which allow to retrieve the external forces applied
on the body, and therefore, the acceleration of the bCoM from
the application of Newton’s second law [8, 9], or from the
combination of an optoelectronic system and an inertial model
using the segmental analysis approach [9–11]. This approach
consists in modeling each segment of the body as a rigid solid
with known inertial properties, which allows tracking the tra-
jectory of the segment’s centers of mass (sCoM) from
segment-mounted reflective markers, and then, to estimate
the bCoM trajectory through a weighted average of the
sCoM trajectories. Both force plates and optical motion cap-
ture systems impose the gait analysis to be performed in the
laboratory and may not be transferrable to the clinical field. In
this context, there is a growing interest for in-the-field
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monitoring of patients’ gait, which would allow to quantify
walking alterations in a more ecological way with respect to
lab-based gait analysis and to assess the needs of patients
directly during the rehabilitation, in order to act accordingly,
such as by correcting prosthetic alignments [4].

Magneto-inertial measurement units (MIMUs) represent a
valuable alternative to lab-based instruments for the quantita-
tive evaluation of gait. MIMUs are wearable, low-cost, small,
easy to set up, and self-contained sensors, thus allowing the
collection of movement-related information outside the labora-
tory. They are composed of three axial accelerometers, gyro-
scopes, and magnetometers which provide, respectively, 3D
linear acceleration, angular velocity, and magnetic field vector
components. These three signals can be fused to estimate the
orientation of the MIMU with respect to an Earth-fixed refer-
ence frame [12–15]. Therefore, provided a MIMU is rigidly
attached to a body segment, it can be used to estimate the
motion of any point of the segment. Indeed, under rigid body
assumptions, it is possible to quantify the acceleration of any
point of a segment from (i) the known acceleration of a single
point pertaining to the segment, (ii) the known angular velocity
of the segment, and (iii) the known relative position between
both points. In particular, if the position vector of the MIMU
with respect to the segment center of mass (sCoM) is known,
the sCoM acceleration can be estimated from MIMU data.
Thus, if a network of MIMUs located on multiple body seg-
ments is used, the bCoM acceleration can be estimated from a
weighted sum of the MIMU-based sCoM accelerations follow-
ing the segmental analysis method [16–18]. In light of the
above, it is clear that the accurate determination of the position
of each MIMU with respect to the relevant sCoM is crucial to
obtain an accurate estimation of 3D sCoM and bCoM acceler-
ation. Obtaining information about the sensitivity of the accu-
racy of sCoM and bCoM 3D acceleration estimation to errone-
ous identification of MIMU locations is thus of great interest.
While several authors have investigated the suitability of using
wearable sensor networks for the estimation of bCoM kinemat-
ics using the segmental analysis paradigm [16, 17], including
participants with transfemoral amputation [18], none has direct-
ly studied the impact of erroneous positioning of MIMUs on
segments or on erroneous identification of MIMUs locations. It
should be however noted that Tan and coworkers investigated
the influence of placement errors of MIMUs on the accuracy of
the ground reaction force (GRF) estimated from a machine
learning approach in healthy subjects [19]. In their machine
learning framework, GRFs were estimated from raw MIMU
data, expressed in their respective MIMU local frame, rather
than in a common reference frame. Therefore, the estimated
GRF components may be affected by errors in both the position
and the orientation ofMIMUs on body segments. In their study,
MIMU locations were moved by ± 0.1 m along each axis of the
body segment and rotated of up to 25° about the same axes in a
“one-at-a-time” sensitivity analysis; i.e., the impact on the

estimated GRF of each change of position or orientation of each
MIMU was analyzed individually. Position errors were shown
to reduce the estimation accuracy of GRF components by up to
6%. The different approach used in their study for the estima-
tion of the GRF components, that is, using a machine learning
approach rather than a segmental analysis approach, compro-
mises the transferability of their results to segmental analysis-
based approaches. Furthermore, MIMUs data were simulated
from reflective markers trajectories in healthy subjects. Little is
known about the generalizability of these results when real
MIMU data are employed and/or in case of altered walking
patterns, such as those of people with lower-limb amputation.
Lastly, as the authors used a “one-at-a-time” sensitivity analy-
sis, the effect of errors affectingmultipleMIMUs simultaneous-
ly was not investigated. Yet, the simultaneous errors made on
several MIMUsmay affect the accuracy of the estimated bCoM
acceleration differently than if only one MIMU were affected
by an error (interaction effect). Gaining insight into the effect of
simultaneous mislocalizations of multiple segment-mounted
MIMUs on the estimated bCoM acceleration is therefore of
great interest.

This work aims at contributing filling this gap through the
investigation of the impacts of erroneous identification of
segment-mounted MIMU positions on the estimated sCoM
and bCoM accelerations during walking of a person with
transfemoral amputation. To achieve this aim, a mixed
experimental/simulation approach was used. First, experimen-
tal data were collected using a set of segment-mounted
MIMUs to estimate sCoM acceleration during gait using the
rigid body assumption and the knowledge of MIMUs/sCoM
relative positions in an Earth-fixed reference frame. A weight-
ed average of MIMU-based sCoM accelerations allowed to
estimate bCoM acceleration. MIMU-based sCoM and bCoM
accelerations were then compared to reference accelerations
obtained using optical motion capture and force plate data.
Finally, simulated errors in the relative position of MIMUs
and their respective sCoM were introduced to quantify the
impact of simultaneous erroneous identification of MIMUs
positions on the accuracy of sCoM and bCoM acceleration
estimates through a sensitivity analysis. The results of the
present study are expected to allow the identification of
segment-mounted MIMUs for which location errors are the
most critical for sCoM and bCoM acceleration estimation.
Such results will allow to provide recommendations regarding
MIMU positioning and localization over body segments.

2 Methods

2.1 Experimental method

This study was approved by the local ethical committee
(Comité de Protection des Personnes (18/02/2015), CPP



NX06036). A transfemoral amputee subject (mass: 83.1 kg,
height: 1.69 m) gave his written informed consent to partici-
pate to the study. He was equipped with a set of 5 MIMUs
(Xsens Technologies B.V., Enschede, The Netherlands, 100
Hz) located on the trunk (over the sternum), both prosthetic
and sound thighs (ThighP, ThighS) and shanks (ShankP,
ShankS), as these segments were shown to contribute the most
to the bCoM acceleration in people with transfemoral ampu-
tation [18, 20]. Each MIMUwas inserted in a customized 3D-
printed rigid support equipped with 4 reflective markers (Fig.
1). Additionally, as described in Al Abiad et al.’s work [21],
59 reflective markers were positioned on patient’s anatomical
landmarks, and an optical motion capture system (OMC) was
used to record the 3D trajectory of all markers (Vicon system,
Oxford Metrics, UK, 100 Hz). The participant was asked to
walk in a straight line at his self-selected speed along an 8-m
pathway embedding three force plates (AMTI, Advanced
Mechanical Technology, Inc., MA, USA, 1000 Hz) located
in the middle of the walkway. OMC, force plates, and MIMU
data were synchronized with an electronical trigger. Only the
prosthetic strides performed at steady state walking speed and
occurring on the force plates were considered in the analysis.

2.2 Data processing

All raw data from the acquisition were filtered using a
Butterworth zero-lag 4th-order low-pass filter with cutoff fre-
quencies set at 5 Hz (MIMUs and markers) and 10 Hz (force
plates). Relevant data are available in a data repository [22].

2.2.1 Reference accelerations

The 3D positions of all sCoM were estimated from OMC
measurements combined with a 15-segment inertial model
as reported in Pillet et al.’s work [11]. To obtain the reference
sCoM accelerations, these positions were differentiated and
low-pass filtered using the same Butterworth filter described
above with cutoff frequencies set at 8 Hz and 10 Hz for the
first and second differentiation, respectively [23]. Reference
3D bCoM acceleration was obtained from the filtered force
plate data by dividing the values of the body-weight-
subtracted GRF components by the participant’s mass. Both
sCoM and bCoM reference accelerations were expressed in
the OMC inertial reference frame ROMC such that the y-axis
was aligned with the direction of progression (anteroposterior,
AP), the z-axis vertical and opposing gravity (vertical, V), and
the x-axis orthonormal to both (mediolateral, ML).

2.2.2 MIMU-based accelerations

The 3D orientation (RMIMU) and position of each MIMU local
frame with respect to ROMC were computed using the markers
located on the 3D-printed rigid cluster (Figure 1). Indeed, the
3D-printed rigid cluster was designed such that both the ori-
entation of the MIMU local frame and the orientation of a
technical frame defined by the markers positioned on the rigid
cluster are known in the computer-aided design reference
frame. Therefore, the relative orientation between the MIMU
local frame and the technical frame is obtained for each
MIMU, which allows in turn to compute the transformation

Fig. 1 Face photo of the subject equipped with the optoelectronic
markers and seven MIMUs on the trunk, thighs, shanks, and feet (not
used in the present study), with a zoom on the 3D-printed custom rigid
support in which was inserted the trunk-mounted MIMU. On the photo,
the MIMU/rigid supports were covered with a strap band to avoid sliding
of the MIMUs while walking. The 3D-printed rigid support allowed to

obtain the position (oIMU) and orientation of the MIMU frame (xIMU,
yIMU) relative to the technical frame associated to the 3D-printed support
(xCAO, yCAO). The support was equipped with 4 reflective markers
allowing to define the orientation of the MIMU frame in the optical
motion capture reference frame during the acquisitions



matrix from RMIMU to ROMC obtained and to express both
gravity-free accelerations and angular velocities measured by
each MIMU in ROMC.

Then, for each MIMU, the vector connecting the MIMU
origin to the center of mass of the underlying segment,

MIMU−sCoM���������!
; was obtained in ROMC using the markers lo-

cated on the rigid cluster and the sCoM positions derived from
the inertial model. MIMU-based estimations of the sCoM ac-
celerations in ROMC, aMIMU

SCoM ; were then computed as follows:

aMIMU
sCoM

���! ¼ aMIMU
���!þ dΩMIMU

����!
dt

∧MIMU−sCoM���������!

þΩMIMU
����!

∧ ΩMIMU
����!

∧MIMU−sCoM���������!� �
ð1Þ

with aMIMU
���! and ΩMIMU

����!
being the MIMU-measured gravity-

free linear acceleration and angular velocity signals expressed
in ROMC.

Finally, bCoM acceleration was estimated as a weighted

sum of the estimated sCoM accelerations (aMIMU
sCoM

���!
) following

the segmental analysis approach:

aMIMU
bCoM

���! ¼ ∑n
i¼1

mi

mbody
aMIMU
sCoMi

���! ð2Þ

where n is the number of segments considered and mbody and
mi are respectively the masses of the body and of the ith

segment. The accelerations aMIMU
sCoM

���!
and aMIMU

bCoM

���!
were compared

to reference data using the relative root-mean square error
(rRMSE) [24] and the Pearson’s correlation coefficient along
AP, ML, and V directions and averaged over the analyzed
strides. A significance level of 0.05 was used for the
correlations.

2.2.3 Sensitivity analysis

A sensitivity analysis was performed to investigate the impact
of an erroneous identification of eachMIMU location, namely

an error on the components of the vector MIMU−sCoM���������!
, on

the rRMSE between MIMU-based and reference sCoM and
bCoM accelerations.

To this aim, errors in the identification of MIMU positions
on the relevant body segments reaching up to 0.02 m in all
three directions (AP, ML, and V) were introduced. This range
of errors was est imated experimental ly (see the
“Supplementary information” for details). Simulations were
performed where each MIMU position was varied from its
actual position (p0AP, p0ML, p0V) by ± 0.02 m along each axis
of the ROMC reference frame. The resulting sCoM accelera-
tions were estimated using the following Equation (3):

aMIMU
sCoM

���! ¼ aMIMU
���!þ dΩMIMU

����!
dt

∧ MIMU−sCoMð Þ þΔ
��������������!

þΩMIMU
����!

∧ ΩMIMU
����!

∧ MIMU−sCoMð Þ þΔ
��������������!� �

ð3Þ

where aMIMU
���! and ΩMIMU

����!
are the linear acceleration and an-

gular velocity measured by the MIMU and expressed in

ROMC, and an erroneous term Δ!¼ ΔAPð ;ΔML ;ΔVÞ was

added to the vector MIMU−sCoM���������!
with Δi ∈ {−0.02 m,

0 m, 0.02 m} for i = AP, ML, V.
The rRMSE between the reference- and simulated MIMU-

based sCoM and bCoM accelerations, referred hereafter as

Y sCoMi and YbCoM, was then computed. This allowed to con-
struct a so-called mechanical model for each sCoM or bCoM
acceleration component linking the rRMSE (outputs) to the
input errors Δi.

Using the experimental design methodology [25], the rela-
tion between each component of the rRMSE (AP, ML, V) and
the simulated mislocalization of MIMUs along the AP, ML,
and V axis (hereafter designated as “factors”) can also be
modelled with a polynomial model of degree up to 2 as de-
scribed in Eq. (4), resulting in three models per MIMU (for the
AP, ML, V components of the relevant sCoM acceleration)
and for the bCoM:

Ŷ
acc
stat Xð Þ ¼ b0 þ ∑n

i¼1bixi þ ∑n
i¼1∑ j>1bi jxix j þ ∑n

i¼1biix
2
i ð4Þ

where: bYacc
stat is the estimated rRMSE between reference- and

MIMU-based accelerations (acc) and X is a vector containing
the n = 3N factors xi corresponding to the variations of posi-
tions of the N MIMUs used for the estimation along the three
directions (N = 1 for sCoM acceleration and N = 5 for bCoM
acceleration). The sensitivity of the rRMSE to any of the factor
xi can then be computed based on an analysis of the variance. In
order to have meaningful sensitivity indices and interpretable
results, the polynomial model must first be validated. To that
end, the residual error between the experimental-based simulat-
ed data (mechanical model) and the polynomial-based simulat-
ed data must first be investigated at a few points, the number of
which depends on the degree of the polynomial model.

Sensitivity of sCoM acceleration estimates For each MIMU,
three polynomial models were devised to emulate the sCoM
acceleration along each axis of the OMC inertial reference
frame, following eq. (4) with three input factors xi: pAP, pML,
pV, corresponding to the simulated localization of eachMIMU
along the three axes of ROMC. For i = AP, ML, V, pi = p0i +
Δi , with p0i the true localization of the ith MIMU and Δi the
simulated error made in the localization of the MIMU. Then,
after normalization of the factors’ values into [−1; 1], a three-
level full factorial design allowed to choose the experimental
points resulting in 33 combinations of the factors (i.e., 27



different position simulations since each of the three factors
has three levels, corresponding to the possible values taken by
the error term Δi) per MIMU (Table 1).

Choice of the polynomial model complexity The model com-
plexity depends on the inclusion of the interaction ( ∑n

i¼1∑ j>1

bij xi x j Þ and/or quadratic terms (∑n
i¼1biixi

2 ) in Equation (4)
and therefore on the degree of the polynomial model used to
represent the relationship between the rRMSE and the intro-
duced localization errors. The choice of the model complexity
is determined based upon the residual variance between the

polynomial model (bY sCoMi

stat Xð Þ ) and the mechanical model

(Y sCoMi Xð Þ ) and will be justified in Section 3.b.i.

Quantification of the sensitivities Based on the experimental
design methodology, the influence of each factor (i.e., the
coordinate of the simulated MIMU origin along each axis of
ROMC) on the accuracy of the sCoM acceleration estimate is
defined as the total percentage of variance of the output of the
polynomial model due to this factor [25]. First, the sensitivity

of the output bYacc
stat to each monomial (i.e., linear (bixi), inter-

action (bijxixj), or quadratic term (biixi²)) of the polynomial
model is computed. With the input factors considered inde-
pendent and uniformly distributed in [−1, 1], the following
equations can be written:

si ¼ var bixið Þ ¼
Ç
bivar xið Þ ¼

Ç
bi � 1

3

sii ¼ var bii
Ç
xi

� �
¼

Ç
biivar

Ç
xi

� �
¼

Ç
bii � 4

45

sij ¼ var bijxixij
� � ¼ Ç

bijvar xið Þvar x j
� � ¼ Ç

bij � 1

9
var bYacc

stat

� �
¼ ∑6

i¼1si þ ∑6
i¼1sii þ ∑6

i¼1∑ j>isij

8>>>>>>>>>><
>>>>>>>>>>:

The sensitivity to the ith factor xi can be obtained as
follows:

– Si ¼ si þ ∑
j
sij for the linear model with interactions

– Si ¼ si þ ∑
j
sij þ sii for the quadratic model with

interactions

The sensitivities Si were then expressed as a percentage of

the total variance (var bYacc
stat

� �
).

Sensitivity of bCoM acceleration estimations Three polynomi-
al models of the highest complexity defined for the sCoM
models were built for the bCoM acceleration sensitivity anal-
ysis following Equation (4) with n = 15 factors corresponding
to the three position error factors of each of the five MIMUs.
In order to limit the number of simulations (k15 with k the
number of levels per factor), a two-level factorial design (fac-
tors taking the levels ± 1) was considered sufficient if the
model was linear with interactions, whereas a three-level fac-
torial design (factors taking the levels ± 1 and 0) was imple-
mented if the model was quadratic with interaction [25]. As
for sCoM acceleration models, the suitability of the complex-
ity chosen will be verified using an analysis of the residual
variance of the polynomial models compared to that of the
mechanical models.

3 Results

The experimental protocol allowed to acquire the data from
seven complete prosthetic strides recorded by the OMCS, the
MIMUs, and the force plates simultaneously. Therefore, sev-
en strides were analyzed in this study.

3.1 Reference- and MIMU-based estimations of the
bCoM acceleration

Components in AP, ML, and V directions are reported in Fig.
2. The accuracy of the MIMU-based bCoM and sCoM accel-
erations in terms of rRMSE values and correlation coefficients
compared to the reference accelerations is presented in
Table 2. It should be stressed that the MIMU-based estima-
tions presented in Fig. 2 and Table 2 were obtained with the
correct identification of the sensor position, i.e., with p0AP,
p0ML, and p0V, as defined with the rigid marker clusters (Fig.
1). Results show relatively low errors (< 15.4 ± 2.5% in AP, <
11.8 ± 1.3% in ML, < 12.5 ± 2.0% in V) and mostly good
correlations between reference- and MIMU-based accelera-
tions (r > 0.77).

3.2 Sensitivity analysis

3.2.1 Sensitivity of sCoM acceleration estimations

Choice of the polynomial model complexity Residual vari-
ances achieved by the polynomial models developed for the
each component of the sCoM acceleration of each segment are
presented in Table 3. Both the quadratic and multilinear
models with interactions presented low residual variances
for all segments and axes (σ² ≤ 0.158, except for the prosthetic
shank in the vertical direction - σ² ≤ 0.663) with the lowest
values for the quadratic models (Table 3).

Table. 1 Levels of the factors used for each polynomial model
emulating a component of a SCoM acceleration

Factors Level of the factors

Low-level (−1) Mid-level (0) High-level (+1)

pAP (m) p0AP – 0.02 p0AP p0AP + 0.02
pML (m) p0ML – 0.02 p0ML p0ML + 0.02
pV (m) p0V – 0.02 p0V p0V + 0.02



Based on these results, the linear model with interactions
was considered an optimal compromise between accuracy and
simplicity. Indeed, the achieved maximal residual variance
with the multilinear models (0.663) represents a standard de-
viation of σ = 0.8%which, compared to rRMSE of the order of
6% (Table 2), was considered largely acceptable. The model
complexity corresponding to a first-order polynomial model
with interactions was selected for all MIMUs and all acceler-
ation components. Therefore, all results presented hereafter
were obtained using models with this complexity.

Quantification of the sensitivities The results of the sensitivity
analysis for each sCoM acceleration component (AP, ML, V)
are summed up in Fig. 3.

For the lower limbs, pAPwas found to be the major influencer
for the ML and V components of sCoM acceleration, whereas
pVwas the one for the AP component. Regarding the prosthet-
ic shank, however, the influence of pV dominated that of pAP in

all three directions. The trunk segment displayed a different
behavior with respect to the other segments and was the only
one where the MIMU mediolateral position pML displayed a
prominent role. Finally, the interactions between factors
showed minor influences on the accelerations’ estimation.
The most important influence of interaction factors was ob-
tained for the prosthetic shank where the interactions between
pML and pAP and between pV and pAP explained 15.1% of the
total variance (Fig. 3).

The range of variation of the estimation accuracy ΔrRMSEi

(%) caused by simulated errors in the identification of the
MIMU positions over all the simulations is presented in
Table 4 for each component of sCoM acceleration (AP, ML,
V). Errors in the identification of the MIMU positions resulted
in changes of the estimation accuracy of SCoM acceleration
between −1.6% < ΔrRMSEAP < +1.7% in AP, −1.5% < ΔrRMSEML

< +1.6% inML, and−5.6%< ΔrRMSEV < +6.9% inV compared
to the rRMSE obtained when these MIMU positions were
correctly identified (Table 2).

Fig. 2 Comparison of bCoM
accelerations obtained with
MIMU (straight lines) and force
plates (dotted lines) averaged over
the trials



3.2.2 Sensitivity of bCoM acceleration estimations

Choice of the polynomial model complexity The three
multilinear models including interactions developed for the
sensitivity analysis of each of the bCoM acceleration compo-
nent presented low residual variance values, comparable to
that of the quadratic model (σ² ≤ 10−3) (Table 5).

Consequently, a two-level factorial design was considered
to be sufficient to emulate the mechanical models correspond-
ing to the bCoM acceleration. The sensitivity analysis was
subsequently performed with the 15 factors of the models
resulting in 215 simulations.

Quantification of the sensitivities Fig. 4 highlights the factors
that have the most influence on the accuracy of the estimation
of each component (AP, ML, V) of the bCoM acceleration.
For better readability and clarity, only the factors accounting
for more than 1% of the total variance are shown in the figure.
The bCoM acceleration appears to be mostly sensitive to
trunk, sound shank, and sound thigh factors, particularly to
the localization errors along AP and V directions. Indeed, all
together, pAPTrunk ; pVTrunk

; pAPThighS ; pVThighS
; pAPShankS and

pVShankS
explain 92%, 77%, and 79% of the sensitivity of the

estimation of the AP, ML, and V bCoM acceleration compo-
nents, respectively. It should be noted that the anteroposterior
localization of the trunk MIMU only has a significant impact

on the ML component of the bCoM acceleration (accounting
for 10.5% of the total variance).

Similarly to the sCoM analysis, the rRMSE ranges of the
variation ΔrRMSEi (%) obtained when simulating an error in
the identification of MIMUs positions were computed and
results are reported in Table 6. The different combinations of
errors in the identification of the MIMU positions resulted in
changes of the estimation accuracy of the bCoM acceleration
between −3.4% and +2.8% compared to the rRMSE obtained
when these MIMUs positions were correctly identified
(Table 6).

4 Discussion

The present work investigated the impact of the erroneous
identification of the position of five segment-mounted
MIMUs on the estimation of the corresponding sCoM and
bCoM accelerations.

4.1 Reference- and MIMU-based accelerations

The implemented MIMU-based framework for the estima-
tions of sCoM and bCoM accelerations provided relatively
accurate results (high agreement: r > 0.77, and relatively low
errors: < 15.4% in AP, < 11.8% in ML, < 12.5% in V)

Table. 2 Comparison of the
computed SCoM and BCoM
accelerations to reference values,
quantified using the average and
standard deviation of the NRMSE
(%) and Pearson’s r correlations
over the 7 trials

AP ML V

SCoM Trunk NRMSE (%) 14.1 (1.9) 9.8 (1.2) 5.2 (2.3)

Pearson’s r 0.77 (0.03) 0.94 (0.02) 0.98 (0.03)

ThighS NRMSE (%) 9.9 (2.2) 10.2 (1.3) 7.5 (2.0)

Pearson’s r 0.85 (0.10) 0.83 (0.08) 0.93 (0.06)

ThighP NRMSE (%) 12.5 (1.5) 5.7 (1.9) 5.5 (1.2)

Pearson’s r 0.89 (0.03) 0.96 (0.03) 0.97 (0.01)

ShankS NRMSE (%) 8 (1.8) 10.1 (1.5) 12.0 (1.5)

Pearson’s r 0.94 (0.04) 0.81 (0.13) 0.84 (0.05)

ShankP NRMSE (%) 4.8 (1.2) 5.8 (0.7) 12.5 (2.0)

Pearson’s r 0.98 (0.01) 0.97 (0.01) 0.87 (0.04)

BCoM Whole-body NRMSE (%) 15.4 (2.5) 11.8 (1.3) 8.7 (0.5)

Pearson’s r 0.93 (0.01) 0.94 (0.02) 0.95 (0.01)

Table. 3 Residual variances σ² of the linear model with interactions and quadratic model for each segment in the anteroposterior (AP), mediolateral
(ML) and vertical (V) directions

Model σ² (Trunk) σ² (ThighS) σ² (ThighP) σ² (ShankS) σ² (ShankP)

Axis AP ML V AP ML V AP ML V AP ML V AP ML V

Linear + interactions < 10−3 0.095 0.004 0.010 0.147 0.152 0.046 0.044 0.158 0.032 0.143 0.134 0.082 0.065 0.663

Quadratic < 10−3 < 10−3 < 10−3 < 10−3 0.001 < 10−3 < 10−3 0.001 < 10−3 < 10−3 0.002 0.002 < 10−3 < 10−3 0.097



compared to reference-based acceleration, and showed im-
proved results compared to those obtained in Shahabpoor
et al.’s work [16] in healthy participants with a similar meth-
odology. Of course, these values should be considered at the
light of the accuracy requirements (and variations) of the spe-
cific case under analysis. Overall, sCoM acceleration estima-
tions showed higher agreements at the prosthetic limbs than at
the sound limbs. This can be due, in part, to the fact that
MIMUs positioned on the prosthetic limb are not affected by
soft-tissue artifacts contrary to those positioned on the sound
limbs, for which the rigid body assumption is surely weaker.

4.2 Sensitivity analysis

Using an experimental design methodology, the sensitivity of
each component of the sCoM and bCoM accelerations to

errors in the identification of each MIMU position was esti-
mated using optimal polynomial models.

4.2.1 Sensitivity of sCoM acceleration estimations

Quantification of the sensitivities The sensitivity analysis
allowed to identify the factors having the greatest influence
on the accuracy of the acceleration estimates of each sCoM.
For the lower limbs, erroneous localization of MIMUs along
the AP axis mainly influences the vertical component of the
acceleration, whereas incorrect localization along the V axis
impacts mainly the ML and AP acceleration components. It is
worth noting that, for the prosthetic shank, the vertical local-
ization of theMIMUdisplays a dominant role over the AP one
even for the V component of the acceleration. The localization
of MIMUs along the ML direction was shown not to have a

Fig. 3 Sensitivities of the sCoM
accelerations to each factor = xi
and interactions between factors
(xi × xj) with xi = {pAP, pML,
pV} expressed in percent of the
total variance. For each MIMU
location, the sensitivities of each
component of the sCoM
acceleration (AP, ML, V) to the
factors are displayed

Table. 4 Range of variation of
the SCoM estimation accuracy
ΔrRMSEi (%) caused by errors in
the identification of the
corresponding MIMU positions
over all the simulations. Results
are presented for each component
of SCoM acceleration (AP, ML,
V)

Trunk AP ML V

Lower range of ΔrRMSEi (%) - 0.2 - 0.7 - 0.4

Upper range of ΔrRMSEi (%) + 0.2 + 1.1 + 0.6

Sound Thigh AP ML V

Lower range of ΔrRMSEi (%) - 0.5 - 0.6 - 1.1

Upper range of ΔrRMSEi (%) + 0.3 + 0.7 + 1.1

Prosthetic Thigh AP ML V

Lower range of ΔrRMSEi (%) - 1.6 - 1.4 - 1.1

Upper range of ΔrRMSEi (%) + 1.4 + 1.5 + 1.2

Sound Shank AP ML V

Lower range of ΔrRMSEi (%) - 1.6 - 1.5 - 4.2

Upper range of ΔrRMSEi (%) + 1.7 + 1.6 + 3.7

Prosthetic Shank AP ML V

Lower range of ΔrRMSEi (%) - 1.1 - 0.5 - 5.6

Upper range of ΔrRMSEi (%) + 1.1 + 0.8 + 6.9



major impact on the estimation of their corresponding sCoM
acceleration, except for the trunk, and to a lesser extent, for the
sound thigh. This may be explained by the fact that, during
gait, the angular velocity of the lower limbs is mainly directed
around the ML axis and has a very low magnitude around the
V axis. Consequently, modifications of the lower-limbMIMU
positions along the ML axis are not expected to have a major
impact on sCoM accelerations (see Equation (1) and the prop-
erties of the cross-product). This observation shows that the
influence of position identification errors depends on the
considered movement/segment. This has to be taken into
consideration particularly in altered gait patterns such as
those of people with amputation or if movements other
than walking in a straight line were studied.

Importantly, erroneous identification of MIMU positions
of ± 0.02 m triggered errors between −5.6% < ΔrRMSE <
+6.9% for all sCoMs and all acceleration components consid-
ered, but only between −1.6% < ΔrRMSE < +1.7% when the
shanks are not considered. Considering rRMSE of the order of
10% between MIMU-based measurement and reference
values, these variations cannot be considered negligible, espe-
cially for the shanks. The higher impact of erroneous position
identification of shank-mounted MIMUs could be explained
by the high angular velocity of the shanks compared to the
other segments considered. Taken together, these observa-
tions suggest that specific attention must be given to the cor-
rect identification of the sensor positions, especially for the AP
and V directions and for the shank-mounted MIMUs, in order
to limit the resulting errors.

4.2.2 Sensitivity of bCoM acceleration estimations

Quantification of the sensitivities The results observed for the
sensitivity of sCoM acceleration estimations clearly impacted
those related to the bCoM acceleration. For a given segment,
the component that was shown to be the most influent for the
sCoM acceleration estimation accuracy also played a role in
that of the bCoM. For instance, erroneous identification of the
positions of the sound shank-mounted MIMU along the V
direction was found to greatly influence the bCoM accelera-
tion estimates in the AP direction as was observed for the
sCoM (Figs. 3 and 4).

Variations in rRMSE of up to 2.8%, 2.3%, and 1.4% were
observed in AP, ML, and V directions respectively. The

higher rRMSE variation for the AP andML componentsmight
be explained by the lower amplitude of bCoM acceleration
along these directions compared to that along the V direction
(Fig. 2). The amplitude of these variations should be
interpreted at the light of the accuracy obtained between
MIMU- and reference-based acceleration estimation, which

Table. 5 Residual variances σ² of the linear model with interactions and
of the quadratic model for each BCoM component

Model σ² (AP) σ²(ML) σ² (V)

Linear + interactions < 0 .001 0.001 < 0 .001

Quadratic < 0 .001 0.001 < 0 .001

Fig. 4 Barplot of the results of the sensitivity analysis expressed in
percent of total variance for each component of the bCoM acceleration
(AP, ML, V). Sensitivities are presented here for the factors xi and
interactions between factors (xi × xj) that account for more than 1% of
the total variance



were of the order of 15% in ML and AP, and 5% in V
(Table 2). It is interesting to note that variations in rRMSE
for the bCoM increased with respect to those of the sCoM
only for the AP and ML directions, but not for the V one.
This may be due to the fact that for the sCoM accelerations,
the maximal variations of rRMSE along the vertical direction
were obtained for the shank segments, which have a lower
mass compared to that of the thighs and trunk, especially for
the prosthetic side. Therefore, when computing the bCoM
acceleration from a weighted sum of the sCoM acceleration,
the variability in the shanks sCoM acceleration accuracy has a
reduced impact on that of the bCoM.

Comparison of the present results with the existing litera-
ture must be performed with caution due to the different meth-
odologies and target parameters. Specifically, Tan and co-
workers [19] used a one-at-a-time sensitivity analysis to assess
the impact of MIMU placement errors on the estimation of
ground reaction force (GRF). In this case, interactions of sev-
eralMIMUplacement errors were not considered. The authors
reported that, when a single sensor was misplaced, the accu-
racy of GRF estimation decreased by up to 0.9%, 2.2%, and
1.1% in the AP, ML, and V directions, respectively. It is
interesting to stress that in Tan et al.’s work [19], no segment
was revealed as having a significantly dominant impact on the
accuracy of the GRF estimation. This may be due to the fact
that the authors implemented a machine learning framework
for the estimation of GRF from simulated raw data of
segment-mounted MIMUs, without attributing a priori differ-
ent weights to specific sensors. This machine learning frame-
work may also explain the fact that the magnitude of position-
ing errors (0.1 m vs 0.02 m in the present study) had a negli-
gible influence on the accuracy of the GRF estimation.

The results of the sensitivity analysis performed on bCoM
accelerations in the present study advocate the need for an
accurate detection of MIMU positions, especially for the
trunk, the sound thigh, and the sound shank along both the
V and the AP directions. The important influence of the cor-
rect localization of the trunk and sound thigh–mounted
MIMUs might be explained by the fact that they are the heavi-
est segments of the body and that the bCoM acceleration is
estimated using a weighted average of sCoM acceleration
based on their mass. The sound shank influence may result
from the higher angular velocity of shank segments (almost
twice as that of the other included segments) while walking

and the relatively high mass of the sound shank compared to
its prosthetic counterpart. Limiting the errors in the estimation
of sCoM accelerations, especially at the shank, is expected to
have a positive impact on the accuracy of the bCoM acceler-
ation estimates. Indeed, if particular attention is given to the
identification of the positions of these three MIMUs in the AP
andV directions, the variations in rRMSE previously observed
may be reduced from 2.8%, 2.3%, and 1.4% to 0.9%, 0.7%,
0.6% in AP, ML, and V directions, respectively.

4.3 Limitations and perspectives

The generalizability of the discussed results must be
interpreted at the light of the following considerations: first,
a larger cohort of participants is needed to confirm present
findings. Second, simulated errors in the identification of
MIMU positions were introduced along the axes of the refer-
ence frame ROMC. Future studies might replicate the described
approach by simulating erroneous MIMU position identifica-
tion along the axes of the considered body segment anatomi-
cal frames. It is worth to underline, however, that the errors
introduced covered a cubic zone centered on the correct loca-
tion of the MIMU’s origin during the static posture.
Furthermore, the static calibration phase was performed with
the patient standing in an upright posture facing the direction
of progression, so that segment anatomical axes can be as-
sumed to be aligned with those of the global frame ROMC at
the beginning of the walking trial (one axis aligned with the
gravity and one axis with the direction of progression). It can
be thus assumed that in case the anatomical frame should be
considered instead of ROMC, the position identification errors
would cover a similar cubic volume, leading to negligible
variations in the obtained sensitivities. Moreover, the 0.02-m
range of errors used to simulate erroneous MIMU position
identifications is a conservative value, being the maximum
error observed (see Supplementary information), and thus
representing a worst-case scenario presumably overcoming
the range of errors that would be observed in practice.

It is interesting to note that the variations in rRMSE may
also be negative (Table 6), indicating that the erroneous iden-
tification of MIMU positions may lead to an improvement of
the estimated acceleration of the bCoM when compared to
force platforms. This may be induced either by compensations
of inaccuracies due to the bCoM approximation from five

Table. 6 Maximum range of variation of the estimation accuracyΔrRMSEi (%) caused by errors in the identification of theMIMU positions over all the
simulations. Results are presented for each component of BCoM acceleration (AP, ML, V)

AP ML V

Lower limit forΔrRMSEi (%) −3.4 −2.2 −1.0
Upper limit forΔrRMSEi (%) + 2.8 + 2.3 +1.4



sCoMs with localization errors, or by inaccuracies of the in-
ertial model, resulting in poor positions of the sCoM in their
respective segment anatomical frames. In this respect, it is
worth noting that there is a lack of validated inertial models
for people with lower-limb amputation in the literature and
further studies should focus on this aspect.

Finally, in the present study, the impact of MIMU orienta-
tion errors was not investigated despite the latter was found to
critically impact the accuracy of GRF estimation in [19]. It
should be considered, however, that in Tan et al.’s work [19],
simulated raw MIMU signals were used as inputs of a ma-
chine learning model and were not expressed in a global or
anatomical reference frame. Therefore, modifying the sensor-
to-segment orientations had a definitive impact on the output
of the sensors in their local frames, and in turn, on the inputs of
the machine learning algorithm. Conversely, in the MIMU-
based framework proposed in the present study, the MIMU
data are first expressed in a global reference frame prior to
being used for the estimation of sCoM and bCoM accelera-
tions. Modifying the sensor-to-segment orientation should
therefore not impact the accuracy of the estimated bCoM ac-
celerations. However, errors typical of sensor-fusion filters
used to obtain MIMU 3D orientation remain to be considered.
It should be noted that these errors are generally in the order of
magnitude of the degrees and are therefore expected to have a
minor impact with respect to what is reported in Tan et al.’s
work [19]. Further studies should verify this hypothesis and
quantify the impact of orientation errors on both sCoM and
bCoM accelerations.

5 Conclusion

The present paper investigated the impact of an erroneous
identification of the positions of a set of body-mounted
MIMUs on the estimation accuracy of sCoM and bCoM ac-
celerations during walking in a person with transfemoral am-
putation. An optical motion capture system and force plates
were used as reference for sCoM and bCoM accelerations
estimates, respectively. The performed sensitivity analyses
allowed to identify the MIMU locations and axes which were
the most critical for an accurate estimation of both sCoM and
bCoM accelerations. Specifically, an accurate identification of
MIMUs positioned on the trunk and sound lower limbs along
the anteroposterior and vertical axes was proved to reduce the
variability of the accuracy of the estimated bCoM acceleration
to values lower than 1%. These preliminary results indicate
that although the influence of MIMU position identification
errors depends on the considered movement/segment, when
gait is considered, special attention should be paid when iden-
tifying the position of wearable sensors on the different body
segments, especially for the AP and V directions and for
shank-mounted MIMUs. In conclusion, the present study

provides an interesting piece of information for those who
are interested in the use of wearable inertial sensors for mon-
itoring human locomotion, with particular reference to the
estimation of sCoM- and bCoM-related quantities and open
a new perspective in the use of wearable technologies for
ecological assessment of patients’ locomotion.
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