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Layers of Dense Gases

Luca Sciacovelli1 · Xavier Gloerfelt1 · Donatella Passiatore1 · Paola Cinnella1 · 
Francesco Grasso2

Abstract
High-speed turbulent boundary layers of a dense gas (PP11) and a perfect gas (air) over flat 
plates are investigated by means of direct numerical simulations and large eddy simula-
tions. The thermodynamic conditions of the incoming flow are chosen to highlight dense 
gas effects, and laminar-to-turbulent transition is triggered by suction and blowing. In the 
paper, the behavior of the fully developed turbulent flow region is investigated. Due to the 
low characteristic Eckert number of dense gas flows ( Ec = U2

∞
∕cp,∞T∞ ), the mean velocity 

profiles are largely insensitive to the Mach number and very close to the incompressible 
case even at high speeds. Second-order velocity statistics are also weakly affected by the 
flow Mach number and the velocity spectra are characterized by a secondary peak in the 
outer region of the boundary layer because of the higher local friction Reynolds number. 
Despite the incompressible-like velocity and Reynolds-stress profiles, the strongly non-
ideal thermodynamic and transport-property behavior of the dense gas results in uncon-
ventional distributions of the fluctuating thermo-physical quantities. Specifically, density 
and viscosity fluctuations reach a peak close to the wall, instead of vanishing as in perfect 
gas flows. Additionally, dense gas boundary layers exhibit higher values of the fluctuating 
Mach number and velocity divergence and a larger dilatational-to-solenoidal dissipation 
ratio in the near-wall region, which represents a major deviation from high-Mach-number 
perfect gas boundary layers. Other significant deviations are represented by the more sym-
metric probability distributions of fluctuating quantities such as the density and velocity 
divergence, due to the more balanced occurrence of strong expansion and compression 
events.
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1 Introduction

High-speed flows of gases with complex thermodynamic behavior (often referred to as 
“real gases”) are being paid growing interest from the scientific community due to the 
manifold applications in aerospace and power generation systems. In this work we focus 
more particularly on so-called dense gas flows found in several engineering applications, 
ranging from energy production to high-Reynolds wind tunnels. A typical application is 
represented by energy conversion cycles like Organic Rankine Cycles (ORC) [see Colonna 
et al. (2015) for a review] and heat pumps (Zamfirescu and Dincer 2009), but dense gases 
are also of interest for other applications, e.g., high-Reynolds wind tunnels (Bodenschatz 
et al. 2014; Berry and Berger 2015; Corliss and Cole 1998). Dense gases are single-phase 
fluids with complex molecules, operating at pressure and temperature conditions of the 
same order of their thermodynamic critical point. Examples of fluids with dense gas behav-
ior are heavy fluorocarbons and hydrocarbons, refrigerants and siloxanes (Cramer 1989; 
Colonna and Silva 2003). The dynamic behavior of such fluids is characterized by means 
of the fundamental derivative of gas dynamics (Thompson 1971), � = 1 +

�

c

�c

��

|||s (where c 
is the speed of sound, � the density and s the specific entropy), measuring variations of the 
sound speed under reversible density perturbations. In gases with sufficiently high molecu-
lar complexity (defined as cv,∞(Tcr)∕R , with R the gas constant and cv,∞(Tcr) the isochoric 
heat capacity in the dilute gas limit, measured at the fluid critical temperature Tcr ), �  is less 
than one over an extended range of thermodynamic conditions in the vapor phase. This 
leads to a reversed variation of the speed of sound in isentropic transformation with respect 
to perfect gases: c decreases when the gas is compressed and increases when the gas is 
expanded. Even more dramatic deviations from the perfect gas behavior are expected for 
gases of the so-called Bethe–Zel’dovich–Thompson (BZT) type, for which a region of neg-
ative values of the fundamental derivative �  (named the “inversion zone”) is predicted to 
appear in the vicinity of the liquid/vapor coexistence curve, on the vapor side. In such con-
ditions, nonclassical waves like expansion shocks become physically admissible [see, e.g., 
Cinnella and Congedo (2007) and the references therein].

Although a number of numerical studies have investigated in the past dense gas dynam-
ics, most of them are based on simplified models neglecting viscous effects (potential 
flow or Euler equations) or relying on the Reynolds–Averaged Navier–Stokes equations 
supplemented with a standard turbulence model (i.e., without any specific calibration or 
compressibility correction for dense gases). On the other hand, experimental investigations 
of dense gas flows are particularly difficult and costly, and only very recently some local 
experimental measurements of pressure and temperature at selected stations in a dense-gas 
nozzle have been made available (Spinelli et al. 2018), as well as Schlieren photographs 
(Zocca et  al. 2019). Unfortunately, to the authors’ best knowledge, no velocity or Reyn-
olds-stress measurements of turbulent dense gas flows have been obtained yet, and the fine 
details of transitional and turbulent dense gas flows remain largely unknown. In previous 
research, the present authors have investigated the influence of dense-gas effects in com-
pressible decaying isotropic turbulence (Sciacovelli et  al. 2016, 2017) and channel flow 
(Sciacovelli et al. 2017) configurations by using Direct Numerical Simulations (DNS). Pre-
vious studies (Kluwick 1994; Cinnella and Congedo 2007) show that, due to their high spe-
cific heat capacities, dense gases are characterized by a strong decoupling of dynamic and 
thermal fields for any flow configuration. In the turbulent channel flow, this results in tem-
perature fluctuations sensibly smaller than in air, and to a strong correlation between den-
sity and pressure fluctuations, in contrast with perfect gases. The complex thermodynamic 



behavior of dense gases at thermodynamic conditions corresponding to �≈0 also modifies 
compressibility effects and flow topology: for instance, in freely decaying dense gas turbu-
lence at sufficiently high turbulent Mach numbers, strong compressions are weakened and 
strong expansions enhanced. The latter may correspond to sheet-like (rather than tube-like) 
structures, suggesting the formation of expansion eddy shocklets. These phenomena are 
not observed in confined wall-bounded configurations like turbulent channel flows, because 
of the smaller turbulent Mach numbers. For dense-gas channel flows, the most significant 
differences are related to the peculiar evolution of the temperature- and density-dependent 
transport properties: the temperature variations being small, viscosity and thermal con-
ductivity essentially follow the density profiles, resulting in a liquid-like behavior. At such 
conditions, variable property scalings like the van Driest or the Trettel and Larsson scaling 
(Trettel and Larsson 2016) were found to collapse adequately the wall-normal profiles even 
at large bulk Mach numbers.

In this work we report the first-ever DNS/LES (Large-Eddy Simulation) results for 
dense-gas (DG) turbulent boundary layers at supersonic Mach numbers. The objective is 
to understand the role of dense-gas effects for wall-bounded, non-confined and spatially-
evolving configurations. For this purpose, a quasi-DNS (a fine wall-resolved implicit LES) 
is carried out at M = 6 . This value is much higher than those that are typically encoun-
tered in practical dense-gas applications [a remarkable exception being the high-Mach, 
high-Reynolds NASA Langley CF4 wind tunnel, dismantled in 2017, which used a light 
perfluorocarbon, CF4, as the working fluid up to M = 6 (Berry and Berger 2015)]; never-
theless, such severe operating conditions are of theoretical interest for highlighting dense 
gas effects. We also report wall-resolved LES results for a lower Mach number ( M = 2.25 ), 
more representative of values encountered in ORC applications, to investigate Mach num-
ber effects. In both cases, dense-gas results are compared with perfect-gas (PG) simulations 
at the same Mach number with the objective to show how the intricate DG behavior affects 
the turbulent flow statistics and flow topology, and to check the validity of compressibility 
scalings.

The paper is organized as follows. Details of the governing equations, numerical meth-
ods, and computational setup are provided in Sect. 2. The results are discussed in Sect. 3, 
including the description of first- and second-order statistics, the validity of classical corre-
lations and scalings, and the study of compressibility effects. Lastly, conclusions are drawn 
in Sect. 4, along with some perspectives for future research.

2  Simulation Details

2.1  Governing Equations

The numerical simulations are based on the single-phase compressible Navier–Stokes 
equations, solved in a conservative form on Cartesian grids and supplemented by suitable 
dense-gas constitutive relations. The dense fluid considered in the following simulations 
is the perfluoro-perhydrophenanthrene, (chemical formula C14F24 ), called hereafter with 
its commercial name PP11. Its main thermodynamic properties, extracted from Cramer 
(1989), are provided in Table 1. The model of Martin–Hou Martin and Hou (1955) is used 
for the thermal equation of state, which is reasonably accurate for the fluid of interest and 
requires a minimum amount of experimental information for setting the gas-dependent 
coefficients. The equation of state for the pressure p involves five virial terms and writes:



with b = vcr[1 − (20.533 − 31.883Zcr)∕15] and fi(T) = Ai + BiT + Ci exp (−kT∕Tcr) , 
where v = 1∕� denotes the specific volume, vcr , Tcr and Zcr are the critical specific vol-
ume, temperature and compressibility factor, and k = 5.475 . The coefficients Ai , Bi and 
Ci depend on the critical temperature and pressure, the critical compressibility factor, the 
Boyle temperature and one point on the vapor pressure curve. Variations of the low-density 
specific heat with temperature are modeled by means of a power law:

where n is a material-dependent parameter.
In addition to the equations of state, suitable models for the dynamic viscosity � and ther-

mal conductivity � of dense gases, which depend on both the gas temperature and pressure 
(or density), have to be specified. The present results are based on the model of Chung et al. 
(1988), which incorporates a high-pressure correction term to account for the modification of 
transport properties values at high pressure (or density) conditions. Such a model has been 
used in previous works on dense gases (e.g. Cramer and Tarkenton 1992; Cramer and Park 
1999) and is considered to be a reasonably accurate semi-theoretical model for calculating the 
viscosity based on the knowledge of a few thermophysical input parameters [see Poling et al. 
(2001) for more details], provided that the thermodynamic conditions are far enough from the 
transcritical region (Kawai et al. 2015), which is the case for the present study. A full descrip-
tion of the model equations can be found in “Appendix” of ref. Sciacovelli et al. (2017).

For the purpose of comparison, numerical results are also presented for air, modeled as a 
polytropic perfect gas:

where cv = R∕(� − 1) is the specific heat at constant volume and � the specific heats ratio. 
At the lowest Mach number considered in the study (M = 2.25), Sutherland’s law is used to 
model the viscosity �:

with �ref = 1.716 × 10−5  Pa s, Tref = 273.15  K and S0 = 110.4   K. At the highest Mach
number (M = 6), viscosity follows a power law, � = �∞

(
T∕T∞

)0.7 , in order to allow direct
validation with the DNS results of Franko and Lele (2013). In the present dimensional 

(1)p =
RT

(v − b)
+

5∑

i=2

fi(T)

(v − b)i
,

(2)cv∞(T) = cv∞(Tcr)

(
T

Tcr

)n

(3)p = �RT and e = cvT ,

(4)
�

�ref

=

(
T

Tref

)3∕2
Tref + S0

T + S0

Table 1  Thermodynamic properties of PP11 ( C
14
F
24

 ): molecular weight ( M ), critical temperature ( Tcr ), 
critical density ( �cr ), critical pressure ( pcr ), critical compressibility factor ( Zcr ), boiling temperature ( Tb ), 
ratio of ideal-gas specific heat at constant volume over the gas constant ( cv(Tcr)∕R ) at the critical point, and 
parameter for the low-density specific heat power law (n)

M Tcr �cr pcr Zcr Tb cv(Tcr)∕R n

g mol−1 K kg m−3 MPa – K – –
624.11 650.2 627.14 1.46 0.2688 488.15 97.3 0.5776



calculations, the reference values correspond to a stagnation temperature of 533 K and a 
stagnation pressure of 37.74 atm. We have noted (∙)∞ the incoming flow quantities. At both 
Mach numbers, a constant Prandtl number assumption is used to determine the thermal 
conductivity � = cp �∕Pr (with Pr = 0.71).

2.2  Numerical Method

The inviscid flux derivatives in the governing equations are approximated in space by 
means of centered tenth-order accurate differences. In order to introduce a minimal amount 
of numerical dissipation while ensuring computational robustness for compressible flow 
simulations, the centered scheme is supplemented by a high-order nonlinear artificial vis-
cosity term, similar to the approach of Jameson et al. (1981) and Kim and Lee (2001). In 
our case, we use a blend of second- and tenth-order derivatives approximated by stand-
ard central differences. For a 1D problem and a regular Cartesian grid with constant mesh 
spacing �x (so that xj = j �x ), the semi-discrete tenth-order scheme in space writes:

where w is the vector of conservative variables, � is the classical difference operator over 
one cell, �(∙)j ∶= (∙)

j+
1

2

− (∙)
j−

1

2

 , and F
j+

1

2

 is the numerical flux at cell interface j + 1

2
:

where f = f (w) is the physical flux, � is the cell average operator, �(∙)
j+

1

2

∶=
1

2

(
(∙)j+1 + (∙)j

)
 , 

and D is the numerical dissipation term:

with �(A) the spectral radius of the flux Jacobian matrix A = �f∕�w , and

with k2 and k10 adjustable dissipation coefficients. The activation of the low-order term 
rests on Jameson’s pressure-based shock sensor � (Jameson et  al. 1981) combined with 
Ducros’ sensor (Ducros et  al. 1999). The sensor is O(1) in high-divergence regions and 
tends to zero in vortex dominated regions, which allows the capture of flow discontinuities 
with minimal damping of the vortical structures inside the boundary layer. Note that, when 
k2 = 0 and k10 =

1

1260
 the preceding method becomes equivalent to a ninth-order accurate 

upwind scheme. For all computations, we set k2 = 2 and k10 =
1

1260
 , except for Mach 6 

dense-gas case where the value of k10 is multiplied by a factor of three (due to the near-
wall high density fluctuations that can undermine the robustness of the simulation). Far 
from flow discontinuities, the spatial scheme has very low phase and dissipation errors, 
as discussed in Sciacovelli et al. (2016). An assessment of the accuracy of the numerical 
scheme for freely decaying compressible homogeneous isotropic turbulence can be found 
in the same reference. The tenth-order dissipation is selective in the wavenumber space, 
and it affects only wavelengths discretized with less than 6 mesh points. As a consequence, 
it constitutes a suitable implicit subgrid regularization term for LES simulations (Gloerfelt 

(wt)j +
(�F)j

�x
= 0

F
j+

1

2

=
[(

I −
1

6
�2 +

1

30
�4 −

1

140
�6 +

1

630
�8
)
�f −D

]

j+
1

2

D
j+

1

2

= �(A)
j+

1

2

[
�2�w + �10�

9w
]
j+

1

2

�2j+ 1

2

= k2 max(�j�j, �j+1�j+1), �10j+ 1

2

= max(0, k10 − �2j+ 1

2

),



and Cinnella 2019), with the capability of seamlessly converging to DNS in smooth flow 
regions as the grid is refined.

The viscous flux derivatives are approximated by fourth-order accurate central for-
mulae. Time advancement is carried out by means of an explicit four-stage low-storage 
Runge–Kutta scheme. The non-uniformity of the wall-normal mesh spacing is taken into 
account by a suitable 1-D coordinate transformation. Near the non-periodic boundaries, 
the finite-difference stencil for the convective terms is progressively reduced down to 
the second order, whereas the viscous stress terms are evaluated from the interior points 
by using fourth-order backward differences.

2.3  Computational Setup

The spatial development of zero-pressure-gradient turbulent boundary layers on a flat 
plate is simulated for both PP11 and air flows. Two configurations have been selected: 
a hypersonic TBL at M = 6 (HTBL) and a supersonic TBL at M = 2.25 (STBL). The 
higher value of the Mach number does not correspond to a configuration of practical 
use, but is of theoretical interest for highlighting dense-gas effects in wall turbulence. 
The lower Mach number is more representative of flow conditions achievable in dense-
gas turbines. The free-stream conditions are chosen such that the fundamental derivative 
of gas dynamics �  is negative outside of the boundary layer and remains lower than 
unity close to the wall. This allows to investigate strongly non-ideal thermodynamic 
effects, although such operating conditions are difficult to reproduce in an experimental 
facility.

In order to avoid uncertainties associated with turbulent inflow conditions like syn-
thetic turbulence (Wu 2017) or rescaling/recycling (Lund et al. 1998), which have not 
been tuned for flows governed by dense gas equations of state, laminar inflow condi-
tions are set at the entrance of the computational domain and transition to turbulence is 
triggered by means of suction/blowing at the wall.

The inlet of the domain corresponds to the leading edge of the flat plate for HTBL 
simulations, hence unperturbed free-stream conditions are imposed at the upstream 
boundary. On the contrary, STBL simulations start with a finite laminar boundary layer 
thickness to save computational time; in this case, the compressible laminar similarity 
solution is imposed at the inflow. The inlet Reynolds number is Re�∗

in
= 1700 for air and 

Re�∗
in
= 3000 for PP11, with �∗

in
 the inlet displacement thickness.

At the wall, no-slip and isothermal conditions are imposed. The wall temperature 
value is set equal to the laminar adiabatic wall temperature, calculated by means of a 
generalized compressible Blasius solver (Gloerfelt et  al. 2020). This corresponds to 
a pseudo-adiabatic condition, a common practice in high-speed perfect-gas boundary 
layer calculations [see, e.g., Table 1 of Ref. Wenzel et al. (2018)]. We verified that, for 
the dense gas cases, the wall heat flux (made non-dimensional with the outer density, 
velocity and enthalpy) is of the order of 10−6 or less at the plate wall. As a consequence, 
the flow is much closer to adiabatic conditions than in perfect gas cases and wall cool-
ing/heating effects are not expected to play any significant role. To achieve a turbulent 
state, the laminar-to-turbulent transition is triggered using a blowing and suction device 
acting on a small strip of the wall plate, which consists in a time-and-space-dependent 
wall-normal velocity disturbance of the form:



where A, � and � are the amplitude, the pulsation and the spanwise wavenumber of the 
fundamental mode. The coefficients a2D , a3D and aH are used to specify the amplitude of 
the 2D fundamental mode, 3D fundamental mode and higher-order modes, respectively. 
Following Franko and Lele (2013), the distributions of the forcing in the streamwise (f) and 
spanwise (g) directions are defined as:

The Gaussian strip is centered at x0 with a half-width � (such that �2 = 0.87
2�U∞

��∗
forc

 , with �∗
forc

 
the displacement thickness at the forcing location x0 ). A small dissymmetry is introduced 
in the spanwise direction, centered at zc with width zw (in all cases zw∕�∗forc = 6 ). The forc-
ing frequency and spanwise wavenumber, as well as the forcing Reynolds number are 
determined based on a preparatory linear stability analysis (Gloerfelt et al. 2020) and are 
different for each of the cases. The forcing parameters used in each simulation are reported 
in Table 2. A validation of the forcing procedure against numerical data from the literature 
for a turbulent boundary layer at M = 6 (Franko and Lele 2013) is reported in “Appendix”.

At the upper boundary, one-dimensional nonreflecting characteristic boundary condi-
tions (Thompson 1987) are applied, whereas a simple extrapolation of variables is used 
at the supersonic/hypersonic outlet. No sponge zones are introduced at the inlet, outlet, 
and upper boundaries. Lastly, periodic boundary conditions are set in the spanwise direc-
tion. Figure 1 illustrates the computational domain and the boundary conditions. For all 
cases, the Cartesian grid is evenly spaced in the streamwise (x) and spanwise (z) directions, 
whereas a geometric stretching is applied in the wall-normal direction (y) with a rate of 
1.5%.

A summary of the numerical parameters and of the reference conditions is provided in 
Table 3. The reported boundary layer properties are evaluated at the end of the computa-
tional domain and are used to get insight into the resolution of the various simulations. The 
values of grid sizes in wall units indicate that the perfect-gas simulation at M = 6 can be 
classified as DNS following the standard terminology (see, e.g., Poggie et al. 2015; Wenzel 
et al. 2018; Zhang et al. 2018) with the caution, commonly accepted in compressible tur-
bulence studies, that eddy shocklets are captured and not resolved. In the dense gas simula-
tions, the characteristic Reynolds numbers are larger than in perfect gas, due to the high 
density (two orders of magnitude higher than air). As a consequence, strict DNS resolu-
tion requirements are more difficult to achieve. For the DG HTBL, the spatial resolution in 
wall units is somewhat coarser than in the PG case, and corresponds to a quasi-DNS or a 

(5)vw = Af (x)g(z)

{
a2D cos(�t) + a3D cos(�t ± �z) +

5∑

m=1

aH cos(�t ± 2m�z)

}

f (x) = e
−

x−x0

2�2 and g(z) = 1 + 0.1

[
e
−
(

z−zw

zw

)2

− e
−
(

z+zw

zw

)2]

Table 2  Numerical parameters 
of the forcing function in 
equation (5) for the different 
cases

Case A∕U∞ a2D a3D aH ��∗
forc

��∗
forc

∕U∞ Re�∗
forc

Air M = 2.25 0.01 0 1 0 0.2 0.12 2000
Air M = 6 0.002 0 1 0 0.3 0.15 3000
PP11 M = 2.25 0.035 0 1.05 0.05 0.3 0.6 3100
PP11 M = 6 0.02 1 0.05 0.05 0.3 0.6 1200



fine wall-resolved ILES (implicit LES). The spatial resolution has been also evaluated with 
respect to the wall-normal distribution of the Kolmogorov length-scale � = [�

3
∕(�

3
�)]

1

4 , 
where � is the turbulent kinetic energy dissipation. The values at the wall and at the 

Characteristic b.c.

Extrapolation

Isothermal wall

˜
˜

Inlet
Profiles

Fig. 1  View of the computational domain for the M = 6 air (top) and PP11 (bottom) cases. Instantaneous 
snapshot of the Q-criterion colored by the distance from the wall, and isocontours of log |∇�| on the back-
ground planes. The white symbol “ ∼ ” denotes the location of the suction and blowing forcing

Table 3  Simulation parameters 
and boundary layer properties at 
the end of the domain

Fluid Air PP11

M 2.25 6 2.25 6

U∞ [m/s] 363.6 969.7 78.99 198.8
�∞ [kg/m3] 0.13 0.13 348.4 348.4
T∞ [K] 65 65 650.8 646.83
Tw [K] 120.18 422.5 653.4 663.2
Ec∞ 2.03 14.4 5.42 × 10−3 3.31 × 10−3

Nx 4000 7700 10000 14336
Ny 210 300 270 320
Nz 140 400 176 280
Re�∗

in
1700 0 3000 0

Re�∗
forc

2000 3000 3100 1200
Re� 4600 5720 9200 4402
�99 [mm] 5.43 5.98 0.132 0.032
� [mm] 0.46 0.23 0.015 0.0031
H 3.66 13.81 1.51 2.12
�x+ 11.57 3.76 19.57 8.12
�y+

w
0.82 0.26 0.98 0.65

�y+
e

10 5.1 24 18
�z+ 5.63 2.09 12.07 9.77
Lx∕�99 62.5 75.2 75.1 90.1
Ly∕�99 1.75 2.13 1.48 1.75
Lz∕�99 1.06 2.17 0.85 1.56



boundary layer edges, shown for HTBL simulations in Table 4, confirm the previous state-
ment: despite similar mesh topologies and sizes, resolutions achieved in the DG simula-
tions differ significantly from the PG case, being more unfavorable at the wall and more 
favorable at the boundary layer edge. The present results may serve as guideline for mesh 
resolution requirements in future studies of dense gas boundary layers. Dense gas behavior 
and its influence on mesh resolution requirements are further discussed in the next Sec-
tion. A recent study of resolution requirements in compressible DNS of spatially-evolv-
ing TBL by Poggie et al. (2015) showed that wall-resolved ILES seamlessly converges to 
DNS as the grid is refined, which gives us confidence in the interpretation of the present 
results, at least in terms of first and second-order statistics. The PG and DG simulations at 
M = 2.25 , on the other hand, are coarser and correspond to the criteria of a wall-resolved 
ILES. Of note, the perfect gas simulations were found to be in good agreement with refer-
ence numerical results of Pirozzoli and Bernardini (2011) (see “Appendix”). 

To provide a glimpse of the computational cost, we mention that the M = 6 simulation 
for air (924 million points) was run on 7 392 cores and represents approximately 2 millions 
CPU hours on Intel Xeon 8168 processors. The corresponding simulation for PP11 (1.13 
billion points) was split on 16 384 cores and corresponds to approximately 6 millions CPU 
hours on similar processors.

3  Numerical Results

In the following, numerical results for dense-gas boundary layers are compared with 
perfect-gas simulations at the same Mach and Reynolds numbers. In the discussion, the 
main focus is set on the highest Mach number configuration, which exhibits the largest 
deviations from the PG behavior and for which DNS resolution has been achieved. Wall-
resolved LES results at M = 2.25 are also presented with the aim of discussing Mach num-
ber effects.

3.1  Global Flow Properties and First‑Order Statistics

Figure 2 provides an overview of the boundary layer evolution for DG and PG cases. The 
figure reports the skin friction coefficient distributions along the plate, transformed to 
equivalent “incompressible” values by means of the Van Driest II transformation (Van Dri-
est 1956):

where

(6)Cf ,inc = FcCf

Table 4  Grid resolutions for M = 6 simulations, evaluated at the wall and at the boundary layer edge, nor-
malized with respect to the local averaged Kolmogorov scale

Case (�x)w (�y)w (�z)w (�x)e (�y)e (�z)e

Air M = 6 2.7�w 0.2�w 1.5�w 4.3�e 3.5�e 2.4�e

PP11 M = 6 6.3�w 0.5�w 7.5�w 1.6�e 2.8�e 2.1�e



as a function of Re�,inc =
�∞

�w

Re� , being Re� =
�∞U∞�

�∞

 and � the momentum thickness. The 
Blasius laminar solution Cf ,inc = 0.664Re−1∕2

x
 and a classical empirical turbulent correla-

tion Cf ,inc = 0.024Re
−1∕4

�,inc
 (Smits et al. 1983) are also reported for reference. In all cases, 

the distribution of Cf  initially matches the laminar correlation; then it rapidly departs from 
it and a significant overshoot is visible for PG flow at M = 6 . The transition path and inten-
sity of the overshoot obtained for the PG flow at M = 6 are in very good agreement with 
(Franko and Lele 2013), as shown in “Appendix”. At higher Re, the results are close to the 
empirical correlation. Similar considerations hold for PG at M = 2.25 . The DG skin fric-
tion distribution follows reasonably well the trend of the turbulent correlation but values 
are lower, because the van Driest II compressibility correction for the skin friction, derived 
by integrating the boundary layer equations under PG assumptions, is not suitable for the 
DG. In practice, the van Driest II law has almost no effect on DG results, since Tw∕T∞ 
remains close to the unity, as shown later, leading to Fc ≈ 1 . An extension of the transfor-
mation to dense gases is not straightforward, due to the complex relations between flow 
properties in the dense gas. Interestingly, the skin friction distributions at M = 2.25 and 6 
for the dense gas are very close to each other, with no overshoot at the laminar-to-turbulent 
transition and almost no influence of the Mach number.

In Fig.  2b, we also report the variation of the incompressible versus compressible 
momentum-thickness-based Reynolds numbers along the plate for DG and PG boundary 
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layers. While the range of Re� is reasonably similar for DG and PG flows, its incompress-
ible counterpart ( Re�,inc ) differs substantially. For DG at M = 2.25 the compressible and 
incompressible Reynolds numbers are very close to each other, due to the negligible fric-
tion heating and small viscosity variations in the DG. For the M = 6 case, Re�,inc becomes 
somewhat larger than Re� , unlike PG, for which Re�,inc becomes smaller and smaller as M 
is increased. Due to the opposite behavior of Re�,inc in dense and perfect gas flows and to 
the fact that PG flows remain transitional over a large portion of the flat plate, the region 
of overlapping Re�,inc values in the fully turbulent region for DG and PG is almost void. A 
similar effect is observed for the friction Reynolds number Re� , reported in Fig. 2c along 
with the incompressible correlation of Schlatter and Örlü (2010), Re� = 1.13Re0.843

�,inc
 . The 

latter matches very well the DG results, especially at the lowest Mach number, for which 
the boundary layer evolution is closer to the incompressible behavior. For PG cases, Re� is 
much lower due to the significant friction heating, so that they do not share any common 
value with DG cases in the fully developed turbulent flow region. For this reason, in the 
following we choose to compare the wall normal profiles of first- and second-order statis-
tics at iso-Re�.

Figure  3 shows selected profiles of first-order statistics in the turbulent region at 
Re� = 4000 . We adopt the semi-locally-scaled wall normal coordinate y∗ = �yu∗

�
∕� , based 

on the semi-local friction velocity u∗
�
=
√
�w∕� (Huang et  al. 1995), and focus on ther-

modynamic and transport properties first. Both for PG and DG, the mean density (panel 
a) increases from the wall towards the boundary layer edge and, as expected, this effect is
more pronounced at the highest Mach number. However, the variations are much smaller 
in DG, where the ratio of the external to the wall density is about 1.3 at M = 6 , against a 
factor of more than 6 for PG at the same conditions. We also notice that the DG density 
profile exhibits a trend similar to the velocity profile (shown in Fig. 5), with an approxi-
mately linear variation in the viscous sublayer and a nearly logarithmic variation in the 
outer region. This is consistent with previous observations (Sciacovelli et  al. 2017) that 
density is strongly correlated with pressure and, consequently, with velocity in DG flows, 
whereas it is more correlated with temperature in PG ones. The temperature profiles for 
PG and DG ( panel b) highlight the strong friction heating of the near-wall region for PG 
flows, where the wall-to-external temperature ratios are approximately 1.8 and 6.5 for the 
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M = 2.25 and M = 6 cases, respectively. These values are in excellent agreement with the 
predictions of the Walz law (Walz 1969) (reported in “Appendix”). For DG, the tempera-
ture also increases toward the wall, but its variations are one to two orders of magnitude 
smaller, and do not exceed 3% at the highest Mach number. The average viscosity profiles 
(panel c) follow the trend of the temperature profiles in PG, with the well-known friction-
heating increase of viscosity in the wall region. For DG, the viscosity is essentially corre-
lated with density and decreases toward the wall. This opposite behavior has been already 
observed for compressible turbulent channel flows (Sciacovelli et  al. 2017) although, in 
that case, temperature and density increase from the wall toward the channel centerline. As 
a consequence, the average viscosities exhibit opposite variations with the wall distance 
with respect to the present boundary layer flows.

Figure 4 reports the profiles of the mean molecular Prandtl number and of the funda-
mental derivative of gas dynamics for DG boundary layers at Re� = 4000 . The former var-
ies across the boundary layers and decreases monotonically from values higher than 2 in 
the outer region to 1.95 and 1.53 at the wall for M = 2.25 and M = 6 , respectively. As a 
consequence, the thermal boundary layer is somewhat thinner than the dynamic one in DG 
cases. The fundamental derivative also varies across the boundary layer and reaches posi-
tive values at the wall, mostly due to density variations. Nevertheless, a region of negative 
values of �  persists in the outer region of the boundary layer, characterized by supersonic 
flow conditions (vertical lines on the same picture indicate the location of the sonic points 
in the boundary layer profiles). Such a region is more extended for the lowest Mach num-
ber case, for which density variations (hence, �  variations), are smaller.

The velocity profiles for all cases are plotted in Fig. 5 using the classical incompressible 
and van Driest scalings:

For PG, the velocity profiles depend on the Mach number and deviate from the classical 
incompressible law of the wall (panel a). The discrepancy of u∗

VD
 with respect to the incom-

pressible logarithmic law (panel b) comes from the use of the semi-local wall coordinate 
y∗ . A better behavior is recovered when plotting against y+ (see “Appendix”, Fig. 16c), but 
the results at different Mach numbers do not fully collapse anymore. For DG, the velocity 
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profiles at various Mach numbers are very close to each other using the incompressible 
scaling, and weakly sensitive to the van Driest scaling, due to the weak variations of � 
across the boundary layer. As noticed in previous studies (Cinnella and Congedo 2007; 
Sciacovelli et al. 2017), this effect results from the very low Eckert number of DG flows 
(Ec∞ = U2

∞
∕(cp,∞T∞) , see Table 3), leading to substantial decoupling of the dynamic and 

thermal boundary layers and to significantly smaller friction heating of the boundary layer 
compared to PG. The slope of the logarithmic region matches well the standard value of 
the von Kármán constant � = 0.41 but the intercept constant is higher than the incompress-
ible value ( C = 5.2 ). A possible explanation for this discrepancy may reside in the defini-
tion of the scaling variables: for PG, turbulent fluctuations of fluid properties tend to vanish 
at the wall, so that averages of products/ratios of flow properties do not differ much from 
products/ratios of the average values. This is not true for DG flows, as discussed in the 
following.

3.2  Second‑Order Statistics

The wall-normal profiles of the streamwise turbulent intensity urms (i.e., the root mean 
square—rms—streamwise velocity fluctuations) are reported in Fig.  6 using both the 
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incompressible and semi-local scaling. As expected, the latter succeeds in collapsing 
results at different Mach numbers for PG and has little effect on DG profiles, which are 
very close to each other in both scalings and for all Mach numbers. The peak location cor-
responds to y∗≈11 ÷ 12 in all cases. However, DG results are characterized by a higher 
peak in the inner region and by a plateau in the outer one, and exhibit a general trend remi-
niscent of high Reynolds incompressible boundary layers. Similar considerations hold for 
the other Reynolds stresses (not shown).

Second-order statistics for the fluctuating thermodynamic properties are reported in 
Fig. 7. The temperature fluctuations (panel a) exhibit similar trends for PG and DG, with 
a peak located at y∗≈12 , i.e. close to the turbulent intensity peak. As expected, the values 
observed in DG are much lower (two orders of magnitude) than in PG, so that the flow can 
be considered as isothermal to a first approximation and the variations of all thermody-
namic quantities can be explained in terms of density fluctuations only. The latter exhibit 
striking differences with respect to PG flows (panel b): while �rms∕�w reaches a maximum 
in the outer region (the peak value being close to 1 at M = 6 ), it decreases smoothly and 
almost monotonically when departing from the wall for DG. A similar effect has been also 
observed in compressible turbulent channel flows of dense gases and can be explained by 
the wall-normal variation of the mean density and by the slope of the constant-temperature 
and constant-entropy curves in a Clapeyron ( p−v ) diagram. For gases governed by real-
gas equations of state like the Martin–Hou equation used in this study it can be shown 
that �rms∕� ≈ (prms∕�)∕(�p∕��)T [see Sciacovelli et  al. (2017) for more details]. Due to 
the different trend of the mean density, however, the rms density profile is flatter in bound-
ary layer flows, whereas it exhibits a well-pronounced peak at the wall in channel flows. 
Overall, despite the DG flow occurring at thermodynamic conditions of the same order of 
magnitude of the critical point, the density fluctuations remain small compared to the aver-
age density and Morkovin’s condition 𝜌rms∕𝜌 ≪ 1 is well respected. Viscosity fluctuations 
(panel c) are clearly correlated with temperature fluctuations for the PG and with density 
fluctuations for the DG. It is worth noting that, at the wall, they are strictly zero for the PG 
(for which �w = �(Tw) = const. ), whereas they are maximum for the DG. The strong den-
sity and viscosity fluctuations at the wall have an impact on the wall friction �w and friction 
velocity u� , leading to different possible definitions.
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The unconventional variation of the fluid properties has an impact on the character-
istic flow scales and, consequently, on the spatial resolution obtained in the simulations. 
The smallest motions scale with the Kolmogorov length scale � , reported in Fig. 8 in both 
incompressible and compressible scalings. For both gases, �+ is close to the incompressible 
value 1.5 at the wall. However, �+ reaches a minimum close to the boundary layer edge for 
PG, due to the decreasing mean viscosity, whereas it monotonically increases in DG, due 
to the liquid-like viscosity profile. Application of the semi-local scaling allows to recover 
a trend similar to the incompressible limit for PG, while it does not alter much the DG 
results, as already observed for other flow properties. As expected (Smits et al. 2011), �+ 
remains almost constant in the near-wall region (say, y∗ < 30 ), then increases with the wall 
distance becoming quite large in the non-turbulent region.

For a better understanding of the near-wall turbulent structures, we report in Fig.  9 
the fluctuating streamwise velocity and density premultiplied spanwise spectra across the 
boundary layer for M = 6 as a function of the spanwise wavelength �∗

z
 . Using the semi-local 

scaling, the small-scale peak corresponding to the characteristic streaks spacing is centred 
around �∗

z
≈ 120 and y∗ ≈ 12 in the velocity spectra for both PG and DG. A larger-scale, 

outer peak is visible for the DG at �∗
z
≈ 103 and y∗ ≈ 200 (corresponding to y∕�99 ≈ 0.2 ), 

in accordance with reference data for incompressible boundary layers at similar Reynolds 
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numbers [see, e.g., results in Eitel-Amor et al. (2014) for Re� = 4400 ]. On the other hand, 
a different spectral behavior is obtained for the density fluctuations. Specifically, the peak 
of kzE�′�′ is located at the boundary layer edge for PG, whereas it is at the wall for DG; this 
is consistent with the different distributions of the wall-normal �rms profiles, as shown in 
Fig. 7b.

3.3  Compressibility Effects

The preceding discussion of first and second-order statistics shows that, in high-speed DG 
boundary layers, most flow quantities are largely insensitive to the freestream Mach num-
ber and exhibit a behavior similar to incompressible boundary layers. Nevertheless, the 
flow is characterized by strong fluctuations of the fluid properties in the near-wall region. 
In order to investigate the role and nature of compressibility effects in DG TBL, we report 
in Fig.  10 the wall-normal profiles of the turbulent and rms Mach number, defined as 
Mt = urms∕c and Mrms = (u∕c)rms . The turbulent Mach number (panel a) is considerably 
higher in DG flows with respect to PG at the same M∞ , due to the thinner boundary layer. 
In particular, the values reached in the neighborhood of the turbulent intensity peak at 
M = 6 are sufficiently high ( Mt,max > 0.5 ) to enable the formation of eddy shocklets. Even 
when Mt is lower than this threshold, the existence of eddy shocklets is not excluded (Duan 
et al. 2011), since the instantaneous Mach number can be much higher. The profiles of the 
rms Mach number (panel b) are considerably different for PG and DG at M = 6 . In PG, 
the peak in the outer region is greater than the one located in the production region, due to 
significant fluctuations of the temperature and speed of sound (not shown). The opposite 
is observed in DG since fluctuations of the thermodynamic properties are globally smaller 
and Mrms is mostly driven by urms . The outer peak is strongly attenuated for both DG and 
PG at M = 2.25.

In the following we focus on the hypersonic cases. Figure 11 shows the probability den-
sity functions (pdf) of selected quantities at a wall-normal location corresponding approxi-
mately to the peak of urms and another one in the outer logarithmic layer. More precisely, 
the pdf are extracted along spanwise meshlines and for several time instants at y∗ = 11 and 
y∗ = 138 for DG, and at y∗ = 10 , y∗ = 157 for air. Kernel density estimates of the pdf are 
obtained by using a total of about 4 million samples. The pdfs of the Mach number (panel 
a) are significantly skewed toward supersonic values, especially for DG, the right tail being
very close to the free-stream Mach value. As a consequence, the probability of supersonic 
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local events is rather high even in the inner region of the TBL. In panel b we report the pdf 
of the fluid density (normalized with the local average) at the same locations. Contrary to 
the Mach number, the pdf are much more symmetric for DG, whereas states characterized 
by density values above the average have a much higher probability in PG. Additionally, 
the width of the pdf is approximately constant for DG, whereas it tends to become wider 
when y∗ increases for PG. If a normalization with respect to the wall density is adopted 
instead of the local average, then a wider spread of density values is observed for the loca-
tion nearest to the wall in DG, whereas the opposite is true for PG. This is consistent with 
the trends observed for the wall-normal profiles of �rms∕�w (Fig. 7b). The pdf of the funda-
mental derivative �  for PP11, displayed in Fig. 11c, shows that, even if �  becomes positive 
near the wall, instantaneous negative values are still present at y∗ = 10 , i.e. close to the 
region where Mt peaks. More generally, most thermodynamic states in the flow correspond 
to �≈0 . In such conditions, expansion and compression events tend to become equally 
probable even in the absence of nonclassical BZT effets, as discussed in Sciacovelli et al. 
(2016, 2017). In Fig. 11d, we report the pdf of the velocity divergence ( � = ∇ ⋅ � ), often 
used in the literature to discriminate the preferential occurrence of compression/expansion 
events. The values are normalized with the rms divergence and the local mean and rms 
Mach number to ease comparisons between different fluids and locations. Given the low 
Mt reached in PG, the pdf is obviously symmetric at both the wall distances. For DG, the 
local Mach numbers are higher, and they would correspond to a pdf skewed toward nega-
tive values in PG homogeneous isotropic turbulence. In the DG, however, the pdf remains 
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well symmetric, consistently with preceding observations of DG homogeneous isotropic 
turbulence at a similar Mt (Sciacovelli et al. 2017).

Figure 12 reports the wall-normal distributions of the normalized rms dilatation � , as 
well as the dilatational-to-solenoidal turbulent dissipation ratio ��∕�� , where �� =

4

3
��2 

and �� = 2��2 (Huang et al. 1995) ( � = |∇ × �| ). Of note, this ratio tends rapidly to infin-
ity outside the boundary layer, the vorticity of the freestream being zero. In DG, near-wall 
values of the dilatation fluctuations are almost twice those of the PG, which is consistent 
with the high density fluctuations in the vicinity of the wall. Overall, the contribution of 
the dilatational dissipation is more significant in a DG boundary layer, and the differences 
are particularly marked in the inner region and in the wake region. This seems consistent 
with the highest instantaneous values of the Mach number observed in DG, which increase 
the probability of eddy shocklets with respect to PG.

In order to provide a global view of the flow topology, we show instantaneous snapshots 
of the magnitude of the density gradients and of the velocity divergence in Figs. 13 and 14, 
respectively. The density gradients are normalized by �∕�99,end to obtain comparable ranges 
for the two flows. The numerical Schlieren for the PG flow exhibits elongated, sheet-like 
structures corresponding to high-density-gradients ejection events moving towards the 
boundary layer edge. On the contrary, the high-|∇�| spots for the DG flow are located near 
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the wall (in a region where the rms density is also at its maximum), whereas sheet-like 
structures in the outer region (where 𝛤 < 0 ) are more sporadic and intermittent. Such spots 
do not seem to be preferentially associated to expansion or compression events, which are 
shown to be almost equally likely for both flows. With the aim of relating the occurrence 
of strong density gradients with expansion/compression events, joint pdfs of the velocity 
divergence and magnitude of the density gradients are reported in Fig. 15. A weak cor-
relation is noted, as indicated by the low values of the Pearson coefficients rp (reported in 
the figure), which give a measure of the linear relationship between the two datasets. The 
symmetry of the joint pdf for the DG shows that density gradients are not preferentially 
correlated to compression nor expansion events, whereas a slight correlation with expan-
sion events is noted for the PG, more marked near the wall. Therefore, we conclude that the 
Schlieren-like illustrations are not representative of the presence of shocklets; for the PG, 
they rather show the sharp edges of the bulge structures in the outer flow. This picture is 
strongly altered for the DG, where the density variations are more uniform across the layer 
and intense events are located close to the wall.

4  Conclusions

In this paper, we reported for the first time high-fidelity numerical simulations of super-
sonic and hypersonic boundary layers of dense gas (DG) at M = 2.25 and M = 6 . The 
working fluid selected for the study is the heavy fluorocarbon PP11, already considered 
in previous studies of decaying homogeneous isotropic turbulence and turbulent chan-
nel flows. The calculations were conducted by using a high-order numerical solver and 
advanced thermodynamic and transport-property models. The dense-gas results are com-
pared with perfect gas (PG) results generated at the same Mach and Reynolds numbers.

For the dense gas, the complex thermodynamics and transport-property variations play 
a crucial role. Most of the observed effects are due to the much higher molecular complex-
ity of the dense gas, leading to an increase of more than one order of magnitude of the heat 
capacity compared to light gases like air and, consequently, to much smaller Eckert num-
bers. In such conditions, temperature variations are nearly negligible throughout the flow 
field and friction heating is very small even at hypersonic conditions. Due to the substantial 

Fig. 14  Instantaneous snapshots of normalized velocity divergence �∕�rmsM∕Mrms for Air (top) and PP11 
(bottom) at M = 6



decoupling of the thermal and dynamic boundary layer, the thickening rate of the boundary 
layer in the dense gas is close to that of an incompressible flow and dynamic quantities are 
weakly sensitive to the Mach number. On the contrary, wall-normal profiles of mean ther-
modynamic and transport properties depend on the Mach number, although the amplitude 
of variation across the boundary layer is much smaller than in perfect gas boundary layers. 
Specifically, the wall temperature is less than 3% greater than the free-stream temperature 
for the DG boundary layer at M = 6 , against a factor close to 7 observed for air at similar 
conditions. Similarly, the wall density is reduced by less than 25% in the dense gas, against 
a factor of more than 6 in the PG, and variations of the fluid viscosity across the boundary 
layer are also greatly reduced and amount to less than 30% for the highest Mach number. 
Additionally, since the viscosity mostly depends on density in DG conditions (instead of 
temperature, like in PG), it exhibits an opposite trend across the boundary layer; namely, 
it decreases when approaching the solid wall. Both of the above-mentioned effects lead to 
higher local Reynolds numbers, as shown by the velocity spectra, where an outer peak is 
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present for the DG. The velocity profiles and turbulent intensities are almost unaffected by 
the Mach number, although further work is probably required to adapt compressible wall 
scalings, originally derived for perfect gases, in order to improve the matching of dense gas 
results with incompressible references. Indeed, significant differences are observed for the 
density and viscosity fluctuations, which reach a maximum near the wall in DG instead of 
vanishing as in PG. The reduced thickening of the DG boundary layer also leads to a more 
extended supersonic region than perfect gases and to higher turbulent and fluctuating Mach 
numbers. Probability density functions of the Mach number clearly show that more fre-
quent supersonic events occur within the DG boundary layers. The analysis of the dilata-
tional events provides a first view of the peculiar behavior in the dense-gas regime. In par-
ticular, inspection of the instantaneous divergence fields and their pdf distributions shows 
that expansion and compression events are rather balanced, differently from the perfect gas. 
Schlieren-like representations, often used to exhibit the compressive character of the flow, 
are weakly correlated to compression and expansion events. They, however, depict very 
different compressibility effects on the boundary layer structure. Sharp bulges dominate 
the outer flow in PG, whereas density variations are severely attenuated in the outer region 
of the DG boundary layer, where values of the fundamental derivative of the gas dynam-
ics are close to zero. On the contrary, a strong dilatational activity is located in the near-
wall region. Further work is required to better understand how the peculiar compressibility 
effects may affect the turbulent structures or the Mach wave radiation. The definition of 
appropriate scalings to ease comparisons with perfect gases and with the incompressible 
limit may help in this endeavour.
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Appendix: Validations

In this appendix, we present validations of our numerical solver against well-established 
literature results for perfect-gas (air) high-speed boundary layers at M = 2.25 and 6. The 
simulation at M = 2.25 is compared to the DNS data of Pirozzoli and Bernardini (2011). 
This study focused on the fully turbulent flow behavior and adopted a rescaling/recycling 
strategy to shorten the computational domain required to achieve fully-developed turbu-
lence. Sutherland’s law was used to model the viscosity, along with a constant Prandtl 
number hypothesis. Figure 16 shows wall-normal profiles of selected flow statistics for the 
present PG ILES and the DNS of Pirozzoli and Bernardini (2011). An excellent agreement 
is observed.

The calculation at M = 6 has been performed in the same conditions and with the 
same thermodynamic and transport-property models as the DNS study of Franko and 
Lele (2013), except that our computational domain is much longer to achieve a fully 
turbulent state. These authors focused their analysis on the transition mechanisms, so 
that a comparison is possible only in the transitional regime. Another difference in our 



numerical setup is that the inlet of the domain corresponds to the leading edge of the 
flat plate, whereas Franko and Lele (2013) started with a finite laminar boundary layer 
thickness, such that the Reynolds number based on the inflow displacement thickness, 
�∗
in
, F&L , is 3000. For the comparisons in Fig. 17, we use this displacement thickness 

as reference ( �∗
in
, F&L = �∗

ref
 ). Panel a shows that the distribution of the skin friction 

coefficient for the present and the reference calculation are in excellent agreement. The 
present simulation finally reaches a fully developed turbulent state where Cf  follows 
the trend of classical skin friction correlations (see Sect. 3). Selected velocity profiles 
at various stations in the laminar, transitional, and nearly turbulent flow regimes are 
reported on panel b of the same figure. Once again, the present results match remark-
ably well the reference data, thus confirming the quality of the present simulations.

Finally, in Fig. 18, we compare temperature profiles from the present PG simulations 
at M = 2.25 and M = 6 at Re� = 4000 with the classical temperature law of Walz (1969). 
The numerical results are found to match very well the analytical model.

100 101 102 103
-1

0

1

2

3

y+

u+
i,rms

(a)

100 101 102 103
0

1

2

3

y+

prms

τw

(b)

100 101 102 103

5

10

15

20

25

u+
VD

y+

y+

1
0.
41
log

(y
+ ) +

5.2

(c)

Fig. 16  Wall-normal profiles of Reynolds stresses (a), normalized wall pressure (b) and Van Driest-scaled 
streamwise velocity profile (c), for current ILES of Air at M = 2.25 (lines) and Pirozzoli and Bernardini 
(2011) (symbols), extracted at Re� = 580

0 1000 2000 3000

0.0005

0.001

0.0015

0.002

0.0025

x/δ∗ref

C
f

(a)

100 101 102 103
0

10

20

30

y+

u
/
u
τ

(b)

Fig. 17  Skin friction coefficient a blue line present DNS; circle DNS of Franko and Lele; dotted line 
White’s turbulent correlation. Mean streamwise velocity profiles b present DNS (solid lines) and Franko 
and Lele (2013) (symbols) at locations x∕�∗

ref
 = 400 (orange line, orange triangle), 650 (green line, green 

diamond), 800 (blue line, blue inverted triangle), and 950 (red line, red circle)



Flow, Turbulence and Combustion 

References

Berry, S., Berger, K.: Nasa langley experimental aerothermodynamic contributions to slender and winged 
hypersonic vehicles. In: 53rd AIAA Aerospace Sciences Meeting, p. 0213 (2015)

Bodenschatz, E., Bewley, G.P., Nobach, H., Sinhuber, M., Xu, H.: Variable density turbulence tunnel facil-
ity. Rev. Sci. Instrum. 85(9), 093908 (2014)

Chung, T., Ajlan, M., Lee, L., Starling, K.: Generalized multiparameter correlation for nonpolar and polar 
fluid transport properties. Ind. Eng. Chem. Res. 27(4), 671–679 (1988)

Cinnella, P., Congedo, P.: Inviscid and viscous aerodynamics of dense gases. J. Fluid Mech. 580, 179–217 
(2007)

Colonna, P., Silva, P.: Dense gas thermodynamic properties of single and multicomponent fluids for fluid 
dynamics simulations. J. Fluids Eng. 125(3), 414–427 (2003)

Colonna, P., Casati, E., Trapp, C., Mathijssen, T., Larjola, J., Turunen-Saaresti, T., Uusitalo, A.: Organic 
Rankine cycle power systems: from the concept to current technology, applications, and an outlook to 
the future. J. Eng. Gas Turbines Power 137(10), 100801 (2015)

Corliss, J., Cole, S.: Heavy gas conversion of the nasa langley transonic dynamics tunnel. In: 20th AIAA 
Advanced Measurement and Ground Testing Technology Conference, p. 2710 (1998)

Cramer, M.: Negative nonlinearity in selected fluorocarbons. Phys. Fluids A 1(11), 1894–1897 (1989)
Cramer, M., Park, S.: On the suppression of shock-induced separation in Bethe–Zel’dovich–Thompson flu-

ids. J. Fluid Mech. 393, 1–21 (1999)
Cramer, M., Tarkenton, G.: Transonic flows of Bethe–Zel’dovich–Thompson fluids. J. Fluid Mech. 240, 

197–228 (1992)
Duan, L., Beekman, I., Martin, M.: Direct numerical simulation of hypersonic turbulent boundary layers. 

Part 3. Effect of Mach number. J. Fluid Mech. 672, 245–267 (2011)
Ducros, F., Ferrand, V., Nicoud, F., Weber, C., Darracq, D., Gacherieu, C., Poinsot, T.: Large-eddy simula-

tion of the shock/turbulence interaction. J. Comput. Phys. 152(2), 517–549 (1999)
Eitel-Amor, G., Örlü, R., Schlatter, P.: Simulation and validation of a spatially evolving turbulent boundary 

layer up to Re�=8300. Int. J. Heat Fluid Flow. 47, 57–69 (2014)
Franko, K.J., Lele, S.K.: Breakdown mechanisms and heat transfer overshoot in hypersonic zero pressure 

gradient boundary layers. J. Fluid Mech. 730, 491–532 (2013)
Gloerfelt, X., Robinet, J.C., Sciacovelli, L., Cinnella, P., Grasso, F.: Dense-gas effects on compressible 

boundary-layer stability. J. Fluid Mech. 893, A19 (2020). https ://doi.org/10.1017/jfm.2020.234
Gloerfelt, X., Cinnella, P.: Large eddy simulation requirements for the flow over periodic hills. Flow Turbul. 

Combust. 103(1), 55–91 (2019)
Huang, P., Coleman, G., Bradshaw, P.: Compressible turbulent channel flows: DNS results and modelling. J. 

Fluid Mech. 305, 185–218 (1995)
Jameson, A., Schmidt, W., Turkel, E.: Numerical solution of the euler equations by finite volume methods 

using Runge–Kutta time stepping schemes. In: 14th Fluid and Plasma Dynamics Conference, p. 1259 
(1981)

Kawai, H., Terashima, H., Negishi, H.: A robust and accurate numerical method for transcritical turbu-
lent flows at supercritical pressure with an arbitrary equation of state. J. Comput. Phys. 300, 133–160 
(2015)

Fig. 18  Normalized tempera-
ture profiles for PG runs (lines) 
and prediction from Walz’s 
law (Walz 1969) (symbols) at 
Re� = 4000 . Red dashed line Air 
M = 2.25 , blue line Air M = 6

100 101 102 103
1

2

3

4

5

6

7

y∗
T
/
T
∞

https://doi.org/10.1017/jfm.2020.234


Kim, J.W., Lee, D.J.: Adaptive nonlinear artificial dissipation model for computational aeroacoustics. AIAA 
J. 39(5), 810–818 (2001)

Kluwick, A.: Interacting laminar boundary layers of dense gases. Fluid Gasdyn. Acta Mech. 4, 335–349 
(1994)

Lund, T., Wu, X., Squires, K.: Generation of turbulent inflow data for spatially-developing boundary layer 
simulations. J. Comput. Phys. 140, 233–258 (1998)

Martin, J., Hou, Y.: Development of an equation of state for gases. AIChE J. 1(2), 142–151 (1955)
Pirozzoli, S., Bernardini, M.: Turbulence in supersonic boundary layers at moderate Reynolds number. J. 

Fluid Mech. 688, 120–168 (2011)
Poggie, J., Bisek, N.J., Gosse, R.: Resolution effects in compressible, turbulent boundary layer simulations. 

Comput. Fluids 120, 57–69 (2015)
Poling, B., Prausnitz, J., O’Connell, J., Reid, R.: The Properties of Gases and Liquids, vol. 5. McGraw-Hill, 

New York (2001)
Schlatter, P., Örlü, R.: Assessment of direct numerical simulation data of turbulent boundary layers. J. Fluid 

Mech. 659, 116–126 (2010)
Sciacovelli, L., Cinnella, P., Content, C., Grasso, F.: Dense gas effects in inviscid homogeneous isotropic 

turbulence. J. Fluid Mech. 800, 140–179 (2016)
Sciacovelli, L., Cinnella, P., Gloerfelt, X.: Direct numerical simulations of supersonic turbulent channel 

flows of dense gases. J. Fluid Mech. 821, 153–199 (2017)
Sciacovelli, L., Cinnella, P., Grasso, F.: Small-scale dynamics of dense gas compressible homogeneous iso-

tropic turbulence. J. Fluid Mech. 825, 515–549 (2017)
Smits, A.J., Matheson, N., Joubert, P.N.: Low-Reynolds-number turbulent boundary layers in zero and 

favorable pressure gradients. J. Ship Res. 27(3), 147–157 (1983)
Smits, A., Monty, J., Hultmark, M., Bailey, S., Hutchins, N., Marusic, I.: Spatial resolution correction for 

wall-bounded turbulence measurements. J. Fluid Mech. 676, 41–53 (2011)
Spinelli, A., Cammi, G., Gallarini, S., Zocca, M., Cozzi, F., Gaetani, P., Dossena, V., Guardone, A.: Experi-

mental evidence of non-ideal compressible effects in expanding flow of a high molecular complexity 
vapor. Exp. Fluids 59(8), 126 (2018)

Thompson, P.: A fundamental derivative in gasdynamics. Phys. Fluids 14(9), 1843–1849 (1971)
Thompson, K.: Time dependent boundary conditions for hyperbolic systems. J. Comput. Phys. 68(1), 1–24 

(1987)
Trettel, A., Larsson, J.: Mean velocity scaling for compressible wall turbulence with heat transfer. Phys. 

Fluids 28(2), 026102 (2016)
Van Driest, E.R.: The problem of aerodynamic heating. Aeronaut. Eng. Rev. 15, 26–41 (1956)
Walz, A.: Boundary Layers of Flow and Temperature. MIT Press, Cambridge (1969)
Wenzel, C., Selent, B., Kloker, M., Rist, U.: DNS of compressible turbulent boundary layers and assessment 

of data scaling-law quality. J. Fluid Mech. 2018, 428–468 (2018)
Wu, X.: Inflow turbulence generation methods. Annu. Rev. Fluid Mech. 49, 23–49 (2017)
Zamfirescu, C., Dincer, I.: Performance investigation of high-temperature heat pumps with various BZT 

working fluids. Thermochim. Acta 488, 66–77 (2009)
Zhang, X., Watanabe, T., Nugata, K.: Turbulent/nonturbulent interfaces in high-resolution direct numerical 

simulation of temporally evolving compressible turbulent boundary layers. Phys. Rev. Fluids 3, 094605 
(2018)

Zocca, M., Guardone, A., Cammi, G., Cozzi, F., Spinelli, A.: Experimental observation of oblique shock 
waves in steady non-ideal flows. Exp. Fluids 60(6), 101 (2019)

Affiliations

Luca Sciacovelli1 · Xavier Gloerfelt1 · Donatella Passiatore1 · Paola Cinnella1 · 
Francesco Grasso2

Xavier Gloerfelt 
 xavier.gloerfelt@ensam.eu

Donatella Passiatore 
 donatella.passiatore@ensam.eu

Paola Cinnella 
 paola.cinnella@ensam.eu



Francesco Grasso 
 francesco.grasso@lecnam.net

1 DynFluid Laboratory, Arts et Métiers ParisTech, Paris, France
2 DynFluid Laboratory, Conservatoire National des Arts et Métiers, Paris, France


	Numerical Investigation of High-Speed Turbulent Boundary Layers of Dense Gases
	Abstract
	1 Introduction
	2 Simulation Details
	2.1 Governing Equations
	2.2 Numerical Method
	2.3 Computational Setup

	3 Numerical Results
	3.1 Global Flow Properties and First-Order Statistics
	3.2 Second-Order Statistics
	3.3 Compressibility Effects

	4 Conclusions
	Acknowledgements 
	References




