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Prediction of frequency and spatially
dependent attenuation of guided waves
propagating in mounted and unmounted
A380 parts made up of anisotropic
viscoelastic composite laminates

Shuanglin Guo, Marc Rébillat and Nazih Mechbal

Abstract
Monitoring damage in composite structures using guided wave-based techniques is particularly effective due to their
excellent ability to propagate over relatively long distance and hence to cover a large area with few testing time and
equipment. The industrialization of this method is highly tributary of the number and placement of the active elements. Yet,
the optimal sensorization of a structure relies on the decrease in amplitude of guided waves over propagation distance. A
reliable prediction of attenuation of guided waves is still a challenge especially for anisotropic viscoelastic composite
materials which exhibit complex changes of attenuation with propagation direction and thus a spatial dependency of
attenuation. In this paper, the damped global matrix method (dGMM), having stable and efficient merits, is developed to
predict the frequency and spatially dependent attenuation of waves propagating in anisotropic composite materials. dGMM
integrates three damping models (Hysteretic, Kelvin-Voigt, and Biot models) into the conventional undamped GMM to
consider viscoelasticity of composite laminates. The proposed dGMM is first theoretically validated by numerical com-
parison with the semi-analytical finite element method. In addition, two industrial case studies, parts of an A380 nacelle at
scale one, are employed to experimentally validate the proposed attenuation prediction method. The first one is a fan cowl
structure and the second one is an inner fixed structure, both either unmounted or mounted on an actual instrumented
A380 plane. This makes the validation extremely valuable for both the scientific and industrial communities. The proposed
attenuation prediction method thus paves the way to optimally deploy sensor network for structural health monitoring of
anisotropic viscoelastic composite structures.

Keywords
Structural heath monitoring, attenuation of guided waves, anisotropic composite laminates, viscoelastic damping, damped
global matrix method, inverse problem

Introduction

For multi-layered composite structures used in aeronautic
applications, monitoring their health and integrity over time
and under operational conditions is mandatory in order to
guarantee safety. When the structure is endowed with
embedded sensors, the process is referred to as structural
health monitoring (SHM) and is expected to detect and
identify structural damage at an early stage to prevent
catastrophic failure occurrence.1,2 Among all kinds of ex-
isting SHM techniques, the ultrasonic guided waves strat-
egy is particularly effective for such composite structures
because guided waves can propagate over important dis-
tances and thus cover a large area with few sensors and few

testing times. This benefit results in reduced labor and
equipment needed to perform a test and makes long-range
inspection possible3 which makes it easier to overcome
certain industrial implementation constraints. When
adopting guided waves as an inspection tool for composite
structures, the attenuation property of these waves is an
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Corresponding author:
Nazih Mechbal, PIMM Laboratory, Arts et Métiers Sciences et
Technologies, 151 boulevard de l’Hôpital, Paris 75013, France.
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essential aspect that should be considered carefully in ad-
dition to dispersion property.4 This is especially true for
carbon fiber reinforced composites as such materials pos-
sess inherent viscoelasticity that causes attenuation and thus
impacts significantly the sensor network deployment in
terms of sensor geometry, installation, number, and
position.5,6 In comparison with the network used for lightly
damped structures, a larger sensor network (i.e., having a
larger number of sensors) is required to cover the highly
damped structures with enough wave amplitudes.7,8 Fur-
thermore, attenuation property plays an important role in
amplitude-based damage identification methods9 and ma-
chine learning tools for modeling guided waves.10

Over the past decades, studies related to attenuation are
mainly focused on numerical computations and experi-
mental measurements. In composite structures, material
viscoelastic damping, usually characterized by Hysteretic
(HR) or Kelvin–Voigt (KV) damping models, is the primary
factor that causes attenuation.11,12 The Rayleigh damping
model is also adopted to investigate the damping effect on
wave attenuation.13,14 Theoretically, attenuation coeffi-
cients of guided waves can be computed from the corre-
sponding dispersion equations (DEs). Thus, considerable
efforts have been made to derive accurate or approximated
DEs, being complex-valued in the viscoelastic media, and to
develop efficient numerical algorithms to solve them. The
simplest one is the classical Rayleigh–Lamb equation which
represents wave propagation in a homogeneous isotropic
viscoelastic plate.15,16 The partial wave superposition ap-
proach (PWSA) is generally employed to derive the DEs of
the single-layer anisotropic viscoelastic plate.17,18 For the
multi-layered system, PWSA is extended to a class of
matrix-based methods, for example, transfer matrix method
(TMM)19 and global matrix method (GMM),20 which are
based on the linear 3D elasticity theory and thus become the
standard manner to derive the analytical DEs of this system.
However, solving these equations is not an easy task and it
usually requires Lowe’s dual-variable root-finding
method21 or Zhu-Qian’s 2D Module Ratio Convergence
Method (2D MRCM).15 Some alternative approaches turn
to establish the approximated DEs but are solved by effi-
cient root-searching algorithms such as the Newton–
Raphson method and eigenvalue decomposition method.
The representatives are the approaches based on Legendre
polynomials22–24 and higher-order plate theory.25–27 Fur-
thermore, discrete numerical methods are widely applied as
well to solve the problem of complex waves in multi-
layered viscoelastic plates due to their easy im-
plementation. For instance, one can cite the wave finite
element method using the Floquet periodicity
condition,28,29 the spectral collocation method based on
Chebyshev polynomials,30,31 and the semi-analytical finite
element method (SAFE) suitable for arbitrary cross-section
waveguides.32–34 The common characteristic of these

methods lies in that discretization only takes place in the
thickness direction of the plate, thus increasing computa-
tional efficiency compared to the traditional 3D finite ele-
ment modeling. For efficiently simulating transient wave
propagation and interaction with structural damage in an-
isotropic viscoelastic composite structures, the local inter-
action simulation approach (LISA) has been developed and
improved in some references.35,36

In addition to the numerical approach, attenuation co-
efficients can be also measured experimentally, but the
related works are scarce compared to the abundant theo-
retical advancements. The simplest approach consists in
computing the attenuation rate of wave amplitudes between
two sensors in an A-scan experiment.7,13 A comprehensive
method is to use a curve fitting technique which estimates
attenuation by fitting the experimental data of wave am-
plitudes versus propagation distances, having the merit of
considering both geometric spreading and structural
damping.11,37 Besides, two advanced identification methods
are also used, including the matrix pencil method16 and the
estimation of signal parameters via rotational invariance
techniques.38 The common characteristic of both methods
lies in that they can identify not only the attenuation co-
efficient but also the propagating wavenumber.

In the aforementioned works, much effort was put to
obtain the 3D dispersion curves depending on frequency at a
fixed propagation direction.18,24,31 Scarce work was de-
voted to study the directional property of attenuation, es-
pecially for practical engineering structures, which has a
great significance for sensor network operational deploy-
ment in anisotropic composite plates. To this end, this paper
proposes a new method to predict the frequency and spa-
tially dependent attenuation of guided waves propagating in
anisotropic viscoelastic composite laminates. Here fre-
quency and spatially means that wave attenuation depends
not only on frequency but also on the propagation direction.
The proposed method extends the conventional damping-
free GMM to the damping case by incorporating visco-
elastic damping models. This method is termed “dGMM”

for the damped global matrix method. It is supported by a
two-step numerical root-solving algorithm, having stable
and efficient merits. The proposed dGMM is first verified
theoretically by numerical comparison with the SAFE
method, then validated through experimentation on two
aeronautic composite parts (at scale one) of an Airbus A380
nacelle as shown in Figure 1. For each structure, two cases
were considered, unmounted and mounted parts on the
plane. The two structures are rather different as one is made
up of a multi-layered carbon epoxy composite plate with
many stiffeners, fan cowl structure (FCS) as shown in
Figure 1(a), which is 2.20 m high and 5.80 m in half-
circumference; and the other one is a sandwich-type
structure, inner fixed structure (IFS) shown in
Figure 1(b), with an aluminum alloy honeycomb core and
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two multi-ply carbon epoxy outer skins, which has a di-
mension of 2.75 m in height and 3.80 m in half-circum-
ference.39 It should be emphasized here, that unlike the
experiments on small-scale plates,5–7,13,34 the results re-
ported in this paper are the unique work so far concerning
attenuation prediction for practical aeronautic structures,
and the most important contribution to the state-of-the-art is
that in-service data of the mounted cases of both structures
are used to validate the proposed method.

This paper is organized as follows: the framework of
dGMM is derived in the second section; the attenuation
identification process and viscoelastic material properties
estimation process are introduced in the third section; the
two case studies on FCS and IFS are presented in the fourth
and fifth section, respectively; discussion and future work
are given in the sixth section; finally, the last section draws
the conclusion.

Wave propagation theory in the
viscoelastic composite laminate

Aeronautic composite structures are generally designed as
multi-layered laminates as schematically shown in Figure 2.
The materials composing the laminate have intrinsic

viscoelastic damping properties that cause attenuation of
guided waves during propagation. To this end, the damping
models that will be considered are first introduced.

Viscoelastic damping models of composite materials

The HR and KV models are two common damping models
able to describe the viscoelasticity of composite mate-
rials40 as presented in equations (1) and (2), respectively.
For both models, the elastic modulus is considered as a
complex number E∗, in which the real part E is the storage
modulus and the imaginary part is associated with two
factors γHR and γKV that are defined as the respective loss
factors of the two models. Besides, a less common
damping model named Biot (BT) model is presented in
equation (3), which is mainly applied to highly damped
aerospace structures.41 Amongst the three models, the HR
model generates a complex modulus E∗ independent of
frequency ω, whereas KV and BT models produce a
frequency-dependent complex modulus. Thus, the de-
pendency property on ω is attached to E∗ for the two
models, that is, E∗ðωÞ

E* ¼ Eð1� iγHRÞ HR model (1)

E*ðωÞ ¼ E

�
1� iγKV

ω
ωc

�
KV model (2)

E*ðωÞ ¼ E

"
1þ 2

π
γBT ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

�ω
ϵ

�2
r

� i
2

π
γBT arctan

�ω
ϵ

�#
BT model

(3)

where “i” is the unit of the imaginary number and the
superscript “*” denotes that the associated term belongs to
the complex number family; ωc is the characteristic fre-
quency of the KVmodel characterizing that γKV is measured
at ωc; γBT and ϵ are the loss factor and scaling factor of the
BT model, respectively.

Figure 1. The studied aircraft nacelles of an A380 plane for (a) fan cowl structure and (b) inner fixed structure.

Figure 2. Schematical diagram of an n-layered aeronautic
composite laminate.

Guo et al. 3



For a general layer composing the laminate, for ex-
ample, layer l1 in Figure 2, the stress-strain relation of this
layer is characterized by nine independent elastic con-
stants, that is., three longitudinal moduli E1, E2, and E3,
and three shear moduli G23, G31, and G12, as well as three
Poisson’s ratios ν12, ν13, and ν23. Since the viscoelastic
property of composite materials is considered in this paper,
a given damping model selected among equations (1) and
(2) or (3) can be applied to the six elastic moduli, thus
producing frequency-dependent complex moduli28 E∗

1ðωÞ
E∗
2ðωÞ, E∗

3ðωÞ, G∗
23ðωÞ, G∗

31ðωÞ, G∗
12ðωÞ.1 In view of this,

the usual stiffness matrix C becomes correspondingly a
frequency-dependent complex matrix C*ðωÞ as presented
in equation (4), which shows the orthotropic anisotropy of
composite materials

C∗ðωÞ ¼

1

E*1 ðωÞ
�ν12

E*1 ðωÞ
�ν13

E*1 ðωÞ
0 0 0

�ν21

E*2 ðωÞ
1

E*2 ðωÞ
�ν23

E*2 ðωÞ
0 0 0

�ν31

E*3 ðωÞ
�ν32

E*3 ðωÞ
1

E*3 ðωÞ
0 0 0

0 0 0
1

G*23ðωÞ
0 0

0 0 0 0
1

G*31ðωÞ
0

0 0 0 0 0
1

G*12ðωÞ

266666666666666666666666666664

377777777777777777777777777775

�1

(4)

where the six Poisson’s ratios are real numbers and ν21, ν31,
and ν32 are not independent due to the symmetry of the
stiffness matrix.

The stiffness matrix C*ðωÞ corresponds to each layer’s
fiber direction, for instance, the x1 axis direction in the layer
l1 of Figure 2. It should be rotated to the wave propagation
direction that is along the xθ1 axis as shown in Figure 2, in
order to ease the following derivations. This can be done
through tensor operations. Firstly, each coefficients C∗

pqðωÞ
in equation (4) can be transformed into the coefficients of
the fourth rank tensor c∗ijklðωÞ via the Voigt notation with the
one-to-one correspondence ij or kl =11, 22, 33, 23(32),
13(31), 12(21) ↔ p or q =1, 2, 3, 4, 5, 6. Then, the stiffness
tensor c∗ijklðωÞ are rotated to the wave propagation direction
based on the tensor rotation rule as presented in equation
(5), in which the Einstein summation convention is implied
for repeated index40

c*mnopðω,θÞ ¼ RmiðθÞRnjðθÞRokðθÞRplðθÞc*ijklðωÞ (5)

Here, c*mnopðω,θÞ represents the rotated stiffness tensor
and RmiðθÞ the coefficients of the rotation tensor as pre-
sented in equation (6)

RðθÞ ¼

2664 cosðθÞ sinðθÞ 0
�sinðθÞ cosðθÞ 0

0 0 1

3775 (6)

with θ positive when the rotation is along the counter-
clockwise direction.

Finally, the tensor form stiffness c*mnopðω,θÞ is trans-
formed back to the matrix form C*pqðω,θÞ via Voigt notation,
as expanded in equation (7), which shows the monoclinic
anisotropy of composite materials

C*ðω,θÞ ¼

26666666666666664

C*11 C*12 C*13 0 0 C*16

C*22 C*23 0 0 C*26

C*33 0 0 C*36

C*44 C*45 0

sym C*55 0

0 C*66

37777777777777775
(7)

Damped global matrix method

When guided waves propagate in a general layer li, the
displacement and stress vectors can be expressed as a
compact form in equations (8) and (9) that represent the
superposition of six partial waves derived from 3D elasticity
theory42

uli ¼ ½u1,u2,u3�T ¼ YliΛliðx3Þηlieikðx1�vtÞ (8)

σli ¼ ½σ33,σ23,σ13�T ¼ ikβliΛliðx3Þηlieikðx1�vtÞ (9)

where the superscript “li” implies that the associated term
belongs to the layer li. Y

li and βli are the amplitude matrix
of displacement and stress, respectively. Λliðx3Þ is a di-
agonal matrix depending on the thickness direction co-
ordinate x3. ηli is the partial wave participation vector.
They are uniformly defined in equation (10). Besides, k
and v are the wavenumber and phase velocity,
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respectively, and they are related with frequency through
ω ¼ kv

Yli ¼

2664 1 1 1 1 1 1
V1 V2 V3 V4 V5 V6

W1 W2 W3 W4 W5 W6

3775
βli ¼

2664 β11 β12 β13 β14 β15 β16
β21 β22 β23 β24 β25 β26
β31 β32 β33 β34 β35 β36

3775
Λliðx3Þ ¼

2664 eikα1x3

1
eikα6x3

3775
ηli ¼ ½η1,η2,η3,η4,η5,η6�T

(10)

In equation (10), αj, Vj and Wj with ðj ¼ 1,…,6Þ are
computed from the Christoffel equation, equation (11), that
is, the non-trivial vector ½U ,V ,W �T requires the singularity
of the coefficient matrix in equation (11), which further

leads to a cubic equation in terms of α2 as presented in
equation (12)

A6α
6 þ A4α

4 þ A2α
2 þ A0 ¼ 0 (12)

where the four polynomial coefficients are presented in
Appendix 1 for convenience. For each solution of αj in
equation (12), there corresponds a pair of solutions of Vj,
Wj, β1j, β2j, β3j as presented in equations (13) and (14)

8>>>><>>>>:
β1j ¼ C*13 þ C*36Vj þ C*33αjWj

β2j ¼ C*45αj þ C*44αjVj þ C*45Wj

β3j ¼ C*55αj þ C*45αjVj þ C*55Wj

ðj ¼ 1,…,6Þ (14)

To this step, the displacement and stress vectors in
equations (8) and (9) can be combined to ease the appli-
cation of the continuity condition at the interface of inter-
lamination. We then have equation (15)

Sli ¼
"
uli

σli

#
¼

"
Yli

ikβli

#
Λliðx3Þηlieikðx1�vtÞ ¼ Zliðx3Þηlieikðx1�vtÞ

(15)

where Zliðx3Þ ¼
"

Yli

ikβli

#
Λliðx3Þ. At the interface between

layers li and liþ1, the continuity condition requires that the
displacement and stress fields should be continuous, as
stated in equation (16). Besides, the traction-free boundary

condition at the two outer surfaces should be satisfied due to
the free surface of the plate, as expressed in equation (17)

Sli
x3¼di ¼ Sliþ1

x3¼0 ði ¼ 1,/,n� 1Þj�� (16)

σl1
x3¼0 ¼ 0 and σln

x3¼dn ¼ 0j�� (17)

For the n-layered laminate system shown in Figure 2, the
continuity condition of each interface can be consistently

266664
�
C*11 � ρv2 þ C*55α

2
� �

C*16 þ C*45α
2
� �

C*13 þ C*55

�
α�

C*16 þ C*45α
2
� �

C*66 � ρv2 þ C*44α
2
� �

C*36 þ C*45

�
α�

C*13 þ C*55

�
α

�
C*36 þ C*45

�
α

�
C*55 � ρv2 þ C*33α

2
�
377775
2664 U
V
W

3775 ¼

2664 0
0
0

3775 (11)

8>>>>>><>>>>>>:

Vj ¼
�
C*11 � ρv2 þ C*55α

2
j

��
C*36 þ C*45

�
�
�
C*16 þ C*45α

2
j

��
C*13 þ C*55

�
�
C*13 þ C*55

��
C*66 � ρv2 þ C*44α

2
j

�
�
�
C*16 þ C*45α

2
j

��
C*36 þ C*45

�

Wj ¼
�
C*11 � ρv2 þ C*55α

2
j

��
C*36 þ C*45

�
αj �

�
C*16 þ C*45α

2
j

��
C*13 þ C*55

�
αj�

C*16 þ C*45α2j

��
C*55 � ρv2 þ C*33α

2
j

�
�
�
C*13 þ C*55

��
C*36 þ C*45

�
α2j

ðj ¼ 1,…,6Þ (13)
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assembled to form a global matrix system, as presented in
equation (18), in which the subscript “4:6” in Zl1ð0Þ and
ZlnðdnÞ means that only the fourth to sixth rows of the two
matrices are evaluated because these rows correspond to
stress terms σ33, σ23, and σ13 and thus represent the traction-
free boundary conditions in equation (17)

The huge global matrix in equation (18) can be con-
cisely rewritten as Gðω,k∗,θÞ 2C

6n×6n given that this
matrix depends on frequency ω, wavenumber k, and
propagation angle θ on the one hand, and on the other
hand, k should be a complex number, that is, k∗,2 owing to
the effect of viscoelastic damping introduced from the
stiffness matrix in equation (4). The non-trivial solution
of ηli in equation (18) requires that the determinant of the
global matrix Gðω,k∗,θÞ should vanish, which finally
generates the DE of the n-layered laminate system, as
presented in equation (19)

D
�
ω,k*,θ

�
¼ det

n
G
�
ω,k*,θ

�o
¼ 0 (19)

where k∗ ¼ kr þ iki. Both kr and ki are real positive
numbers, and kr is the wave’s propagating wavenumber and
ki the attenuation coefficient given in Nepers per meter, Np/
m (1 Np/m=8.69 dB/m).40

Equation (19) is a nonlinear transcendental equation
with complex, multivariate, and multi-roots charac-
teristics. Solving this equation is mathematically in-
tractable. We will present and implement in detail an
original solving algorithm in the subsequent section.
Thus, once the solutions of equation (19) are obtained,
the corresponding solutions of ηli in equation (18) can
be extracted from the zero-eigenvalue correlated ei-
genvectors of the global matrix Gðω,k∗,θÞ. Finally, the
displacement and stress mode shapes of the laminate
can be portrayed along the plate thickness direction
through equations (8) and (9). For some composite
aeronautic laminates that have symmetry in terms of

stacking sequence, the solution points ðω,k∗,θÞ in
equation (19) can be further classified into symmetric
and anti-symmetric modes by checking the symmetry
condition42 of the computed displacement and stress
mode shapes at the midplane of the whole laminate, as
presented in equation (20)

(
½u3,σ23,σ13�midplane ¼ ½0; 0; 0� symmetric modes
½u1,u2,σ33�midplane ¼ ½0; 0; 0� anti� symmetric modes

(20)

With the solved dispersion relation between ω and k∗ at a
specified θ0, phase velocity cp is computed from equation
(21). If the damping effect is slight, that is, ki � kr,
meanwhile if the structure is quasi-isotropic, group velocity
cg can be computed through equation (22), which is an
isotropic model. If necessary, for pure anisotropic struc-
tures, the exact anisotropic model studied in Ref. 43 can be
used to compute group velocity. But for heavily damped
structures, the energy velocity ce defined in equation (23)
should be adopted because in this case, the imaginary part ki
is large enough such that the group velocity computed
through equation (22) is physically meaningless17,44

cp ¼ ω
kr

(21)

cg ¼ ∂ω
∂kr

(22)

ce ¼

Z H

0

hP1idx3Z H

0

�hEki þ hEpi
	
dx3

(23)

where H is the plate’s total thickness, hP1i is the time-
averaged Poynting vector along the wave propagation di-
rection, that is, xθ1 shown in Figure 2, and hEki and hEpi are

26666666666666664

�Zl1
4 : 6ð0Þ

Zl1ðd1Þ �Zl2ð0Þ
1 1

ZliðdiÞ �Zliþ1ð0Þ
1 1

Zln�1ðdn�1Þ �Zlnð0Þ
Zln

4 : 6ðdnÞ

37777777777777775

26666666666664

ηl1

«
ηli

ηliþ1

«
ηln

37777777777775
¼

26666666666664

0
«
0
0
«
0

37777777777775
(18)
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the time-averaged kinetic and potential energy density
stored in the waveguide. The three terms are defined in
equation (24), in which the Einstein summation convention
is implied for repeated index

hPii ¼ �1

2
Re σij _uj


 �ði ¼ 1; 2; 3Þ,

hEki ¼ 1

4
Re ρ _ui _ui


 �
,hEpi ¼ 1

4
Re

n
σijεij

o (24)

where Ref�g is the real part operator, _ui is the particle
velocity of the waveguide along direction xθi , and the
overbar “_” denotes the complex conjugate.

Numerical algorithm of solving the
complex dispersion equation

The task of solving the complex DE, equation (19) is
extremely complex from mathematical view. Indeed, it
is a multivariate transcendental equation given that, at a
specified propagation angle θ0, for a solution pair ðω,k∗Þ
there are actually three real variables ðω,kr,kiÞ to be
identified because of k∗ ¼ kr þ iki. Thus, a certain di-
mensionality reduction is necessary in order to solve
the ternary-variable equation. Note that the complex
stiffness matrix C*ðωÞ is frequency-dependent as im-
plied by equation (4), thus, ω should be considered as
another independent variable in addition to θ during the
solving process. Specifically, at a specified propagation
angle θ0, ω is independently fixed as a constant ω0,
by doing so, the original quaternary-variable equation
Dðω,kr,ki,θÞ ¼ 0 is now transited to a dual-variable equation
Dðkr,ki;ω0,θ0Þ ¼ 0. This equation can be solved by ap-
plying a dual-variable searching method.21 In this paper,
a recently developed method named 2D MRCM15 is
employed which mathematically transforms the dual-
variable root-finding process to search the global mini-
mal modulus of the characteristic function jDðkr,kiÞj by
checking the module ratio convergence. The interested
readers can refer to Zhu’s works15,18 for more informa-
tion. To get the full-frequency spectrum of kr and ki, the
above solving process is repeated by changing ω0, which
reveals the dispersion property of both quantities. Al-
ternatively, by changing θ0, the resulted diagrams are the
polar plot of kr and ki, which just shows the anisotropic
property of guided waves propagating in anisotropic
composite laminates, viz. the spatial effect.

It is well known that there are multiple solutions ðkr,kiÞ
at a stationary pair ðω0,θ0Þ, which represents multiple
guided wave modes propagations at the specified fre-
quency ω0. 2D MRCM can search all the solutions by
scanning the structured grids as long as the step length
of the scanning element is small enough. Scanning
the whole space of interest is required to generate the

multi-modal 3D dispersion curves ðkr,ki,ωÞ, known as the
forward procedure, but is time-consuming. If only a
single mode’s dispersion curve is desired, for example, S0
or A0 mode, a single curve tracing technique can ac-
celerate the searching efficiency since tracing the tra-
jectory of a single mode’s solution is just a fractional
workload of searching the full 3D spectral lines. In ad-
dition, in the following inverse procedure of the model
updating process, the traced single mode’s dispersion
curve can be immediately contrasted to the counterpart
that is experimentally measured, thereof avoiding the
branch identification and mode matching problem.45 To
this end, a quadratic extrapolation-based single-mode
curve tracing technique is developed, as schematically
illustrated in Figure 3. It is detailed in the following
paragraph.

Specifically, for the nth ðn ≥ 4Þ solution k∗n of a certain
mode to be solved at the specified ωn, once the previous
three solution points ðωn�1,k*n�1Þ, ðωn�2,k*n�2Þ and
ðωn�3,k*n�3Þ in the curve are known, the initial guess k’∗n is
calculated by extrapolating the three points to ωn. Then,
the accurate solution k∗n is searched via 2D MRCM in the
vicinity of the guess k’∗n . For the first three solution
points ðω1,k*1 Þ, ðω2,k*2 Þ and ðω3,k*3 Þ, they are searched
via 2D MRCM in the vicinity of the guesses k1 þ i0, k2 þ
i0 and k3 þ i0, where k1, k2, k3 are the solutions of the
real case DE, that is, undamped case, at frequencies ω1,
ω2, ω3, which is an easy task. This strategy is partic-
ularly effective for tracing fundamental modes’ curves,
that is, S0, A0, and SH0 modes, since the proximity of
the complex case curve to the real case one in ω� kr
plane guarantees the success of the tracing process, as
illustrated in Figure 3. It is worth noting that the ex-
trapolation equation k’r,n in Figure 3, which is the real
part of k’∗n , can be applied to non-constant frequency
increment given that the frequency increment obtained
from the real case solution may not be equal to the one of
the complex case.

The above elaboration is now implemented to be a two-
step dGMM algorithm of solving the complex DE as
presented in Figure 4. Step 1 is trivial because it works out
the real case DEs through the undamped GMM.42 Step 2 is
just the realization of the combined dGMM, curve tracing
technique, and 2D MRCM.

Data-driven structural parameter
estimation

The key to success of predicting attenuation using the de-
veloped algorithm in Figure 4 relies on the accuracy of the
viscoelastic loss factors that are involved in the damping
models in equations (1), (2), and (3). These parameters can be
obtained from the material manufacturer or from standard
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mechanical test data.46,47 However, in most cases, both
ways are not available, especially for in-situ structures
which are under service. On the other hand, the acquired
guided wave signals from the installed sensor network
contain fruitful information of the monitored structures,
including the materials’ properties of interest. In this
paper, an original model updating procedure is proposed
to estimate the material loss factors of damping models,
which is an inverse process in contrast with the forward
dispersion curves computations based on known material
parameters.18,22

Identification of attenuation coefficient

For circular-like crested guided waves propagating in
composite plates, geometric spreading and material
damping are two main factors of wave amplitude atten-
uation.11 The former is responsible for the near-field
propagation (usually less than three wavelengths) and
the latter mainly for far-field propagation.11,48 In equation
(8), the effect of geometric spreading is not accounted
since it is a solution of the plate’s free vibration,42 in other
words, far-field condition is fulfilled. As such, the dis-
placement field of equation (8) for a general layer li can be
extended to the whole laminate system, as expressed in
equation (25)

uiðx1,x3,tÞ ¼ buiðx3Þeiðk*x1�ωtÞ ði ¼ 1; 2; 3Þ (25)

where buiðx3Þ is the through thickness wave amplitude at the
excitation source. Substituting k∗ ¼ kr þ iki into equation
(25) leads to equation (26)

uiðx1,x3,tÞ ¼ buiðx3Þe�kix1eiðkrx1�ωtÞði ¼ 1; 2; 3Þ (26)

Comparing the two equations, the wave amplitude de-
cays exponentially over propagation distance x1 with de-
caying ratio ki, which allows to interpret the physical
essence of the imaginary part of the complex wavenumber,
that is, being the attenuation coefficient. Besides, equation
(26) also demonstrates that all layers share the same at-
tenuation coefficient3 since the decaying term e�kix1 is in-
dependent of the thickness direction coordinate x3, and it
can be measured by the piezoelectric transducers (PZTs)
surface mounted on the laminate. Explicitly, making x3 ¼ 0
and taking logarithm for both sides of equation (26) but
omitting the phase term eiðkrx1�ωtÞ, a linear formulation is
yielded in equation (27)

Log½uiðx1,0Þ� ¼ �kix1 þ Log
hbuið0Þi ði ¼ 1; 2; 3Þ (27)

where uiðx1,0Þ represents the wave packet amplitude
recorded by PZT that is surface mounted at distance x1 from
the excitation source located at 0. Based on equation (27),
the attenuation coefficient ki can be identified from recorded
wave signals by linearly regressing logarithmic amplitude
of wave packets versus propagation distance x1, from which
the negative of the slope of the regressed line is just the
attenuation coefficient.

Figure 3. The schematic diagram of the curve tracing technique.
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The linear regression (LR) method is also used to identify
energy velocity from the recorded wave signals since at a
specified frequency and along a fixed direction, a certain
mode’s wave packet propagates with a constant velocity

value. The detailed manipulation will be presented in the
case study sections.

Estimation of viscoelastic loss factors

The experimentally identified attenuation coefficients can
be used to estimate the viscoelastic loss factors which are
not available in most cases. To this end, the attenuation
coefficient ki is expressed as the function of frequency ω
with undetermined loss factors γ

ki ¼ Kðγ,ωÞ (28)

where γ ¼ ½γ1,γ2,γ3,γ23,γ31,γ12� in which the six elements are
the loss factors of E∗

1, E
∗
2, E

∗
3, G

∗
23, G

∗
31, and G

∗
12, respectively,

as defined in equation (4). When computing, γ is specialized to
a certain damping model, as defined in equations (1)–(3), γHR,
γKV , and γBT . The loss factors γ are then determined in the least
square sense by inverting the experimentally identified at-
tenuation coefficients, also known as the model updating
process (we use here the lsqcurvefit.m MATLAB function)

bγ ¼ arg min
γ

Xm

l¼1

"Kðγ,ωlÞ � ~ki,l
#2

(29)

where the series pair ðωl,~ki,lÞl¼1,/,m is the experimentally
identified attenuation coefficients at various frequencies,

Figure 5. Overview of the proposed method to predict guided
waves attenuation.

Figure 4. The flowchart of the two-step damped global matrix method algorithm for solving the complex dispersion equations.
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and bγ is the estimated loss factors for a certain damping
model.

It is worth noting that the function ki ¼ Kðγ,ωÞ in
equation (28) should represent the same branch of disper-
sion curves as the experimentally identified one, which is
achieved through the single-mode curve tracing technique
illustrated in Figure 3. In some cases, due to the inaccurate
elastic moduli or the existence of uncertainties, the com-
puted energy velocities do not match well with the identified
ones. To solve this issue, the same updating process is
applied to the experimentally identified energy velocities to
calibrate the inaccurate elastic moduli. For brevity, detailed
formulation is not presented here but an example is provided
in the IFS case study.

Overview of the attenuation prediction method

Once all the required material parameters are available, the
numerical dGMM algorithm in Figure 4 is driven to predict
various spectra of attenuation including dispersion curves
and spatial attenuation distribution. Figure 5 just outlines
the overview of the proposed attenuation prediction method
in which the three purple boxes summarize the theoretical
works established in the previous sections.

Case study on an unmounted and mounted
fan cowl structure of A380 plane

Experimental setup

In this section, two cases of FCS, either unmounted or
mounted on an instrumented A380 plane, are employed to
validate the proposed guided wave attenuation prediction
method. The actual FCS is shown in Figure 1(a). This

structure is made up of a four-layered carbon epoxy
composite plate with stacking sequence [0/�45/+45/0]. The
elastic material properties of each layer can be obtained
from Fendzi’s PhD thesis39 and listed in Table 1 for con-
venience, but the viscoelastic properties are not available.
Thus, the model updating process introduced previously
will be adopted to estimate them. Obtained results are listed
in Table 1 for HR and KV models beforehand.

The PZT deployments for both cases are shown in
Figure 6. The PZTwafer is made up of Noliac piezoceramic
material NCE51, whose material properties are provided in
Ref. 49. There are in total 13 and 43 sensors surface installed
on the unmounted and mounted FCS, respectively. Due to
the presence of stiffeners, the 43 sensors in the mounted
FCS are partitioned to six regions, marked from R1 to R6,
according to their geometrical characteristics, as shown in
Figure 6(b). By doing so, each region can be considered at
once and signals are processed with great convenience. The
13 sensors in the unmounted FCS constitute only one region
and are thus not marked for brevity. Furthermore, sensors of
each region in both cases are intentionally divided into three
groups during signal processing according to their align-
ment pattern, that is, according to their direction with re-
spect to the ply sequence. The group information of the
unmounted FCS is illustrated in Figure 6(a). For the
mounted FCS, in each region, Group 1 includes all sensors,
and Group 2 and 3 contain sensors roughly aligned along
the upper and lower horizontal line, respectively. For ex-
ample, in R1, Group 1 includes sensors from 1 to 9, and
Group 2 and 3 include sensors 1, 2, 4, 6, 8 and 3, 5, 7, 9,
respectively. The accurate fiber orientation of each layer in
the plate is not available but the horizontal direction of the
plate is assumed to be the fiber orientation of the 0° layer
because this direction leads to the best match between

Table 1. Elastic and viscoelastic material properties of composite lamina of the unmounted fan cowl structure.

(E1,E2,E3) (GPa) (G23,G31,G12) (GPa) (ν12,ν13,ν23) ρ (kg/m3) Ply thickness (mm) Stacking sequence

(60,40,8.1) (4.8,4.8,4.8) (0.03,0.3,0.3) 1554 0.28 [0/�45/+45/0]
Hysteretic model γ1 = 1.74%, γ2 = 0.01%, γ3 = 0.01%, γ23,γ31,γ12 = 0.01%
Kelvin–Voigt model γ1 = 3.47%, γ2 = 0.01%, γ3 = 0.012%, γ23,γ31,γ12 = 0.01%, fc = 250 kHz

Figure 6. The piezoelectric transducers deployments of fan cowl structure for (a) the unmounted case and (b) the mounted case on an
instrumented A380 plane.
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theoretical predictions and experimental measurements for
both energy velocity and attenuation coefficient as will be
shown later.

The experimental setup of the unmounted FCS is shown
in Figure 7. During testing, the signal generator produced a
five-cycle sinusoid tone burst signal modulated by the
Hanning window given that this kind of exciting signal
becomes a standard in SHM of composite structures.2 The
central frequency of the excitation signal was swept from
50 kHz to 150 kHz with 5 kHz increment for the unmounted
FCS experiment whereas for the mounted FCS experiment
only measurements performed at 100 kHz are available. The
sampling frequency was set as 1 MHz which meets the
requirement of the Nyquist sampling theorem. Among these
PZT sensors, each one was used as an actuator in a round-
robin fashion and the remaining others were receivers, that
is, a sequential pitch-catch testing scheme was conducted.
The acquired wave signals were processed with time av-
eraging and wavelet denoising to enhance signal-to-noise
ratio.50 Note that the frequency sweep testing is required for
understanding the mechanism of wave attenuation within an

interested frequency range and it is different from a single
sweet spot frequency testing which is desired for damage
detection.51

Figure 8(a) shows several typical guided wave signals in
Group 2 of the unmounted FCS in which PZT 1 serves as the
actuator and its signal is normalized to the same order of
magnitude with the receivers. Evidently, the signal amplitude
decreases with the increasing propagation distance. Besides,
only the S0mode wave packet is discernible. To examine why
the A0 mode is unobservable in the recorded signals, we
predict the tuning curves52 of both modes in Figure 8(b) by
using thematerial properties in Table 1 (only taking the elastic
terms), from which the A0 mode’s amplitude greatly smaller
than the one of the S0 mode is exposed to view. Thus, in the
subsequent signal processing, we only focus on the S0 mode.

Dispersion curve identification for energy velocity
and attenuation coefficient

Energy velocity and attenuation coefficient identification at
100 kHz. The LR method introduced previously is used to
identify energy velocity at a given frequency of 100 kHz in
the unmounted FCS experiments, as illustrated in
Figure 9(a). The regressed lines for the three groups are
plotted based on the scatter points representing the time of
arrival (ToA) of the S0 mode’s wave packet versus sensing
distance, from which energy velocity is identified from the
inverse of the slope of the regressed line. The regression
results are listed in Table 2, which shows the consistent
energy velocities identified amongst the three sensor
groups and meanwhile the higher correlation coefficients
R2 (0.99).

Attenuation coefficient can also be identified by using the
LR method based on equation (27), as illustrated in
Figure 9(b), in which some points of Group 1 are overlapped
by the points of Group 2 and 3 because the sensors in Groups
2 and 3 are contained in Group 1. The results extracted from
Figure 9(b) are listed in Table 3, from which the R2 in Group
1 (0.39) is greatly lower than the one of Group 2 (0.92) and

Figure 8. (a) Typical guided wave signals of the unmounted FCS at 100 kHz; (b) Predicted tuning curves of the unmounted FCS. FCS: fan
cowl structure.

Figure 7. The experimental setup of the unmounted fan cowl
structure.
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Group 3 (0.79). This result is consistent with the dispersed
scatter points of Group 1 in Figure 9(b). More fundamentally,
the lower R2 in Group 1 is caused by the anisotropic effect of
composite materials since the sensors in Group 1 yield
multiple directions of propagation paths, whereas Groups 2
and 3 only orient at the horizontal direction; thus, a larger R2

value is guaranteed respectively for the two groups.
To further illustrate the anisotropic effect of energy

velocity and attenuation coefficient, their polar plots of the
S0 mode are generated in Figures 10(a) and (b) based on the
viscoelastic material properties of HR and KVmodels listed
in Table 1. In both figures, the experimentally identified
values of the three groups are depicted as well for com-
parison, but the data point of Group 1 along 0° direction only
plays the reference role given that the propagation paths in
Group 1 are actually multi-directional. Observing
Figure 10(a), at 0° direction, the model predicted energy
velocity is comparable to the experimentally identified ones.
In Figure 10(b), the HR model predicts a more accurate
value of attenuation coefficient than the KV model. One
interesting point from both figures is that unlike the quasi-
isotropic property of energy velocity, wave attenuation is
heavily influenced by the anisotropic effect of composite
materials, which shows that the 0° and 90° directions present
the largest and smallest value of attenuation coefficient,
respectively. The anisotropic phenomenon of wave atten-
uation physically explains the dispersed experimental data
points in Group 1 of Figure 9(b). In view of the inapplicable
LR method to Group 1, only Groups 2 and 3 of the un-
mounted FCS are employed to identify the attenuation

coefficient dispersion curves in the next subsection (see
Figure 12(b)).

For the mounted FCS, there is only one frequency testing
data, 100 kHz, available. The identified values of the six
regions are displayed in Figure 11 in the form of a bar chart,
in which the horizontal lines represent the reference values
that are obtained from the unmounted FCS counterpart, that
is, for energy velocity 5340 m/s and for attenuation coef-
ficient 0.92 Np/m as listed in Group 2 of Table 2 and
Table 3, respectively. The red triangular arrows in Figure 11
denote that the marked bars correspond to a R2 larger than
0.7 which suggests a strong linear correlation. From
Figure 11, these findings can be obtained: (1) all the R2

values of energy velocity in the six regions are larger than
0.7 whereas only nine out of 15 for attenuation coefficient;
(2) energy velocities tend to be consistent but the distri-
bution of attenuation coefficients are more variable; and (3)
the identified energy velocities in different groups of the six
regions agree well with the reference value. However, there
exists more discrepancy between the identified attenuation
coefficients and the reference one but the same order of
magnitude remained. The quality of energy velocity iden-
tification is much better than the quality of the attenuation
coefficient which may be interpreted as the attenuation
coefficient being much smaller than the propagating
wavenumber ðjkij � jkrjÞ and thus much more sensitive to
experimental noise. Note that in Figure 11 several bars are
not shown because of their unphysical meanings such as too
large or too small energy velocity or negative attenuation
coefficient, which may be attributed to the superposed S0

Figure 9. Example of identifying (a) energy velocity and (b) attenuation coefficient via linear regression method at 100 kHz for the
unmounted fan cowl structure. Both figures share the same legend and α is used to give the confidence level with 100ð1� αÞ%.

Table 2. Identified energy velocities from Figure 9(a). R2 is the correlation coefficient.

Group 1 Group 2 Group 3

ce (m/s) ce bound (m/s) R2 ce (m/s) ce bound (m/s) R2 ce (m/s) ce bound (m/s) R2

5308 (5258,5359) 0.99 5340 (5279,5402) 0.99 5291 (5257,5325) 0.99
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mode’s wave packet by other modes, for example, A0 or the
reflected modes.

Identified dispersion curves of energy velocity and attenuation
coefficient. By applying the LR method to each frequency
for the unmounted FCS, the dispersion curves of energy
velocity and attenuation coefficient are formed in Figures
12(a) and (b), respectively. Note that in Figure 12(a) only
the identified curve of Group 1 is presented due to the
closing curves amongst the three groups, whereas in
Figure 12(b) only the identified curves of Groups 2 and 3 are
shown thanks to the anisotropic effect in Group 1 which has

been declared in the previous subsection. Additionally, the
curves of correlation coefficients R2 corresponding to
Figures 12(a) and (b) are presented in Figure 12(c) to assess
the quality of the identified dispersion curves. Obviously,
the identified S0 mode’s energy velocity curve is accurate
because of its greater correlation coefficients (all larger than
0.95). Although the identified attenuation curves
(Figure 12(b)) are not as good as the energy velocity curve
(Figure 12(a)), we can still get some meaningful findings:
(1) in the frequency range 75–150 kHz, the identified at-
tenuation coefficients are reliable enough given that the
corresponding R2 values are larger than 0.7 except the initial

Table 3. Identified attenuation coefficient from Figure 9(b). R2 is the correlation coefficient.

Group 1 Group 2 Group 3

ki (Np/m) ki bound (Np/m) R2 ki (Np/m) ki bound (Np/m) R2 ki (Np/m) ki bound (Np/m) R2

0.85 (0.66,1.04) 0.39 0.92 (0.81,1.03) 0.92 0.97 (0.80,1.13) 0.79

Figure 10. Polar plot of S0 mode of (a) energy velocity [m/s] and (b) attenuation coefficient [Np/m] at 100 kHz for the unmounted fan
cowl structure. Both sub-figures share the same legend.

Figure 11. Bar chart to display regression results of (a) energy velocity and (b) attenuation coefficient via linear regression method for
the mounted FCS at 100 kHz. The horizontal line represents the reference value of the unmounted FCS, and the red triangular arrows
denote that the marked bars correspond to a R2 larger than 0.7. FCS: fan cowl structure.

Guo et al. 13



points (50–70 kHz); (2) both curves present the same trend,
that is, attenuation increases with frequency firstly and then
decreases; and (3) the identified attenuation coefficients for
both groups are equal at approximately 95 kHz, and the
lower and upper bounds of the two groups are intersected in
the vicinity of 95 kHz.

Estimation of viscoelastic material properties of the
unmounted fan cowl structure

The experimentally identified S0 mode attenuation coeffi-
cients in Figure 12(b) are further employed to estimate
viscoelastic material properties via the least square method

formulized in equation (29). When specifying damping
models, only HR and KV models are used considering that
the BT model is mainly used for highly damped structures
whereas FCS is slightly damped because attenuation co-
efficient is no more than 2 Np/m in the interested frequency
range according to Figure 12(b). The estimated viscoelastic
properties of the two models are listed in Table 1. From this
table, for both models, γ1 is greatly larger than the remaining
five parameters, meaning that the damping effect is pre-
dominated in the principal fiber direction of composite
lamina. Besides, the loss factors of the KV model are the
relative values to the ones at the characterization frequency
fc =250 kHz. If fc changes to a different value, the loss
factors of the KV model will change correspondingly (but
the ratio γKV=fc keeps unchanged).

40

Once all the required material parameters in Table 1 have
been obtained, they are used as inputs to the developed
algorithm exhibited in Figure 4. After computing, the
dispersion curves of energy velocity and attenuation co-
efficient for the two damping models are depicted in Figures
13(a) and (b), respectively, in which the experimentally
identified data points in Figures 12(a) and (b) are also
presented for comparison. Figure 13(a) shows that the
computed S0 mode energy velocity curve agrees well with
the experimental points, among which the diamond point is
the mean value of the bars in Figure 11(a), representing the
mounted FCS. Besides, the two damping models produce
the mutually overlapped energy velocity curves for the three
basic modes in the shown frequency range, denoting that the
viscoelastic damping effect does not change the property of
energy velocity for the slightly damped FCS.

Figure 13(b) shows that the curve of the HR model
presents the linear trend whereas the curve of the KV model
expresses the parabola trend, which results in overestimated
attenuation prediction in higher frequency range. Further-
more, the upward concavity of the curve of the KV model is
contrary to the upward convexity of the experimental data
points; thus, the HR model fits better with the experimental
data than the KV model, and thanks to this reason, the HR
model will be adopted to predict attenuation coefficient in
the next subsection. Note that the diamond point in
Figure 13(b) is the mean value of the marked bars in
Figure 11(b), representing the mounted FCS, and its lower
and upper bounds are the minimum and maximum values of
the marked bars in Figure 11(b).

Attenuation coefficient prediction for the unmounted
fan cowl structure

By using the elastic and viscoelastic parameters of the HR
model in Table 1, the attenuation coefficient can be pre-
dicted in two ways. One is the traditional dispersion curve
in a wide frequency range at a fixed propagation direction
θ ¼ 180° as depicted in Figure 14(b), and another one is

Figure 12. The identified dispersion curves of (a) energy velocity,
(b) attenuation coefficient, and (c) correlation coefficient. These
sub-figures relate to the S0 mode propagating at 0° direction of
the unmounted fan cowl structure.
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the polar plot representing the distribution of attenuation
coefficient for all propagation directions at a fixed fre-
quency f =500 kHz as illustrated in Figure 14(d). Besides,
the two displaying ways are also applied to phase velocity
in Figures 14(a) and (c), in which the color code on the
curves is the attenuation coefficient superimposed from
Figures 14(b) and (d). With the colored diagrams, the
dispersion property of phase velocity and attenuation can
be explored in the same Figure 14(a), and the anisotropic
degree of both quantities can be simultaneously compared
in Figure 14(c).

Comparing Figure 14(a) and (b), phase velocity presents
slight dispersion property in most of the frequency range,
whereas attenuation coefficient increases in the same fre-
quency range except for the S0 mode after 820 kHz, which
shows a sudden drop (see Figure 14(a) and (b)). Besides, A0
mode attenuation is larger than the one of the S0 mode in the
tested frequency range of 50–150 kHz. This again explains
why only the S0 mode wave packet is discernible in the
recorded wave signals (see Figure 8(a)) since the A0 mode
wave packet has been rapidly attenuated. Comparing
Figure 14(c) and (d), phase velocities of the three basic

Figure 14. For the unmounted fan cowl structure, Hysteretic model’s prediction of (a) dispersion curve of phase velocity at θ ¼ 180°,
(b) dispersion curve of attenuation coefficient at θ ¼ 180°, (c) polar plot of phase velocity [m/s] at f =500 kHz, and (d) polar plot of
attenuation coefficient [Np/m] at f = 500 kHz. The open circles in the four sub-figures are the solutions computed by the semi-analytical
finite element method.

Figure 13. Comparison between the computed and experimentally identified dispersion curves of (a) energy velocity and (b)
attenuation coefficient for the unmounted fan cowl structure at θ ¼ 0°.
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modes present a consistent quasi-isotropic behavior,
whereas attenuation coefficients are anisotropic for the three
considered modes. Figure 14(d) clearly shows that S0 and
A0 modes possess larger and smaller attenuation in the
principal (0° and 180°) and minor (90° and 270°) directions,
respectively. Attenuation of the SH0 mode is less variable,
the smallest value appearing at 30° in the first quadrant. Note
that the open circles in Figure 14 are the solutions of SAFE
method32,34 that is used here for comparison and verification
with the proposed dGMM approach. For SAFE computa-
tion in this instance, five 1D quadratic elements per layer are
used to mesh the through thickness section of the four-

layered [0/�45/+45/0] composite laminate, which guar-
antees its convergence as proved in Figure 14.

The 3D surface diagrams for the three basic modes are
shown in Figure 15 to unveil the relation between fre-
quency, propagation angle, and phase velocity or atten-
uation coefficient. In another sense, the frequency-spatial
spectrum of the two quantities is plotted here. The surface
plots can be generated in two ways that are derived from
Figure 14. Consider the example in Figure 15(a): one way
is to “spin” the phase velocity curve of the S0 mode in
Figure 14(a) with propagation angle, and another one is to
“extrude” the phase velocity contour of the S0 mode in

Figure 15. For the unmounted fan cowl structure, surface plot of phase velocity (left) and attenuation coefficient (right): (a) and (b) S0
mode, (c) and (d) A0 mode, (e) and (f) SH0 mode. The inner and outer surfaces in sub-figures (b), (d), and (f) correspond to Hysteretic
and Kelvin–Voigt models, respectively.
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Figure 14(c) along the frequency axis. Due to the quasi-
isotropic property of phase velocity, its surface plot presents
a cylindrical shape for each considered mode, whereas the
shape of the attenuation coefficient is multifarious for different
modes. This phenomenon reveals again that in the frequency-
spatial spectrum, attenuation coefficient behaves in an an-
isotropic manner even if the current composite laminate of
FCS is quasi-isotropic from the phase velocity point of view.
As a consequence, obtaining a precise characterization of
attenuation is in practicemore complex than for phase velocity.
Note that in Figures 15(a), (c) and (e), only HR model’s
predictions are presented since the KV model produces very
similar diagrams. In Figures 15(b), (d), and (f), both HR and
KV models’ diagrams are depicted with the inner and outer
surfaces belonging to HR and KV models, respectively.

Case study on an unmounted and mounted
inner fixed structure of A380 plane

Experimental setup

To further demonstrate the effectiveness of the proposed
wave attenuation prediction method, two cases of IFS either

unmounted or mounted on an instrumented A380 plane are
investigated in this section. The sketch picture of this
structure is shown in Figure 1(b), along with its geometrical
dimensions given in the introduction section, and its actual
profile is presented in Figure 16(a). The IFS is a sandwich-
type structure consisting of an aluminum alloy honeycomb
core and two four-plies carbon epoxy outer skins with
stacking sequence [0/�45/+45/0/Al/0/+45/�45/0]. The
total thickness of the sandwich plate is 3.44 mm. The elastic
material properties of the composing laminae can be ob-
tained from Fendzi’s PhD thesis39 and are listed in Tables 4
and 5 for convenience. Table 6 lists the viscoelastic
properties of the two materials corresponding to the specific
damping models, which are obtained through the model
updating process (see the subsection Estimation of Visco-
elastic Material Properties of the Unmounted IFS) since the
viscoelastic information is not available from this reference.

There are in total 10 PZTs surfaces installed on the un-
mounted and mounted IFS, which are arranged into three
groups for each case as illustrated in Figure 16. The orien-
tation of the 0° layer of carbon epoxy lamina in the plate is
unknown but assumed to be along the alignment direction of
the sensors in Group 2 or 3 of Figure 16(a) considering that
this direction can result in the best match between the the-
oretical predictions and experimental measurements for both
energy velocity and attenuation coefficient. The signal ac-
quisition process was similar to the experiments on FCS and
thus the detailed experimental setup is not shown for brevity.
The frequency series in the unmounted IFS experiment were
swept from 50 kHz to 150 kHz at 5 kHz increment but there

Figure 16. The transducers layout of the inner fixed structure for (a) the unmounted case and (b) the mounted case on an instrumented
A380 plane.

Table 4. Elastic material properties of the carbon epoxy ply in the unmounted inner fixed structure.

(E1,E2,E3) (GPa) (G23,G31,G12) (GPa) (ν12,ν13,ν23) ρ (kg/m3) Ply thickness (mm)

(51.0,65.7,8.1)a

(40.0,55.0,8.1)b
(5.2,5.2,5.2) (0.02,0.3,0.3) 1554 0.28

a The original values from Ref. 39 that lead to a great agreement to the experimental data of the unmounted IFS.
b The updated values that result in the best match with the experimental data of the mounted IFS.

Table 5. Elastic material properties of the aluminum core layer in
the unmounted inner fixed structure.

E (MPa) G (MPa) ν ρ (kg/m3) Layer thickness (mm)

866 354 0.2232 67 1.2
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was only 100 kHz available for the mounted IFS experi-
ment. Time averaging and wavelet denoising strategies were
also adopted for signal processing.

Dispersion curve identification for energy velocity
and attenuation coefficient

Comparison of energy velocity and attenuation coefficient at
100 kHz between the mounted and unmounted inner fixed
structure. Figure 17(a) presents the comparison of the
identified energy velocity via the LR method between the
mounted and unmounted IFS at 100 kHz as this frequency
is unique for the mounted case. This sub-figure shows that
both cases produce close energy velocities and simulta-
neously the higher R2 values larger than 0.8 are obtained
except the Group 1 of the unmounted IFS. Thus, Groups 2
and 3 of the unmounted IFS will be adopted to identify the
dispersion curves of energy velocity in the next
subsection.

A similar comparison of the identified attenuation co-
efficient is illustrated in Figure 17(b). It shows that overall,
the mounted IFS returns about half the attenuation of its
unmounted counterpart. This could be attributed to different
environmental conditions in both cases, and especially to
the fact that when IFS is mounted on an A380 plane, the
structure is stressed which can influence guided waves
propagation properties.53 Moreover, the attenuation coef-
ficient of Group 2 is not equal to the one of Group 3 for both
cases and the discrepancy in the mounted IFS is more sa-
lient, even though Group 2 and 3 have the same propagation
direction. This phenomenon can be explained by the fact
that the imaginary part of the wavenumber, that is, the
attenuation coefficient, is much smaller than the real part

Figure 17. Comparison between the mounted and unmounted inner fixed structure for (a) energy velocity and (b) attenuation
coefficient at 100 kHz. In the two sub-figures, the bars relate to the left y-axis and the lines correlate to the right y-axis.

Figure 18. Polar plot of S0 mode energy velocity [km/s] in the
mounted inner fixed structure at 100 kHz. The contour of
dGMM prediction 1 and dGMM prediction 2 are computed by
using the (E1,E2,E3) values a and b in Table 4, respectively. dGMM:
damped global matrix method.

Table 6. Viscoelastic material properties of the carbon epoxy ply and aluminum core in the unmounted inner fixed structure.

Combination of damping models

Carbon epoxy ply (HR or KV) Aluminum core (BT)

γ1 γ2 γ3 γ23 γ31 γ12 fc (kHz) γE γG ϵ

HR + BT modela 13.9% 0.04% 0.02% 5.60% 5.60% 5.60% — 19.9% 19.9% 10
KV + BT modelb 27.4% 0.01% 0.01% 0.01% 0.01% 0.01% 250 30.0% 30.0% 10

a The HR model is used for carbon epoxy plies and the BT model is applied for aluminum core.
b The KV model is used for carbon epoxy plies and the BT model is applied for aluminum core.

18 Structural Health Monitoring 0(0)



and thus much more prone to noise error. Since the cor-
relation coefficients of Groups 2 and 3 of the unmounted
IFS are larger than 0.8, the two groups will be selected to
identify dispersion curves of attenuation coefficient in the
next subsection.

To further explore directional dependence of the S0
mode energy velocity, the guided wave signals in Group 1
of the mounted IFS were processed to generate a polar plot
of energy velocity, as depicted in Figure 18, since this
group possesses multiple wave propagation directions.
Besides, the theoretical curves predicted via the developed
dGMM method are also presented in Figure 18 for
comparison purpose. The curves of dGMM prediction 1
and dGMM prediction 2 are created by using the
(E1,E2,E3) values a and b listed in Table 4, respectively.
The other material properties listed in Table 4 and Table 5
are the same. Figure 18 shows that the original (E1,E2,E3)
values a yield to an overestimated prediction (the curve of
dGMM prediction 1). When these values are updated to
values b, the predicted curve of dGMM prediction 2
matches well with the experimental data points of the
mounted IFS, which is the same structure as the un-
mounted counterpart but undergoing different environ-
mental conditions, that is, existing stress in the mounted

case thus modifying wave propagation properties.53

Figure 18 shows that the IFS structure holds quasi-
isotropic property in terms of S0 mode energy velocity
that is consistent with the symmetric stacking sequence of
laminae [0/�45/+45/0/Al/0/+45/�45/0].

Identified dispersion curves of energy velocity and attenuation
coefficient. The identified dispersion curves of energy ve-
locity and attenuation coefficient of the unmounted IFS are
generated in Figure 19(a) and (b), respectively. Note that the
corresponding correlation coefficient curves are not pre-
sented here because all values are larger than 0.8 which
demonstrates reliable results of dispersion curves identifi-
cation. Observing Figure 19(a), the energy velocity curves
of both groups basically overlap to each other, whereas in
Figure 19(b), Group 3 brings a lower attenuation than Group
2, but both curves keep the same tendency as the unmounted
FCS, as seen in Figure 12(b). Figure 19(b) reveals that for
practical aeronautic composite structures, the attenuation
mechanism induced by material damping is more complex
than for a unidirectional CFRP composite plate.34 The lower
and upper bounds in Figure 19(b) represent the confidence
intervals which are extracted from the LR method under
95% confidence level.

Figure 19. The identified S0 mode dispersion curves of (a) energy velocity and (b) attenuation coefficient for the unmounted inner fixed
structure.

Figure 20. Comparison between the computed and experimentally identified dispersion curves of (a) energy velocity and (b)
attenuation coefficient for the unmounted inner fixed structure at θ ¼ 0°.
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Estimation of viscoelastic material properties of the
unmounted inner fixed structure

With the experimentally identified attenuation coeffi-
cients in Figure 19(b), the viscoelastic material properties
of the unmounted IFS can be estimated according to the
model updating process formalized in equation (29).
Before performing this process, one has to note that the
attenuation of the unmounted IFS is larger than the one of
FCS according to Figure 19(b), thus the BT model should
be applied to IFS in a certain form considering that the BT
model is mainly used for highly damped structures,41 and
the unmounted IFS exactly belongs to this case. Fur-
thermore, the IFS is a sandwich-type structure composed
of two inhomogeneous materials with the aluminum alloy
honeycomb core and the carbon epoxy skin layers.
Therefore, the core layer and the skin layers can be
modeled by different damping models. By following the
convention in FCS, the carbon epoxy layers in IFS are
modeled by HR or KV models, thus the BT model is
naturally applied to the aluminum alloy core layer, which
finally results in two combinations of damping models,
HR+BT and KV+BT models.

By taking the identified attenuation coefficients in
Figure 19(b) as the training data to the model updating
process, the estimated viscoelastic material properties of the
two combinations of damping models are obtained in
Table 6. It shows that the parameters of the BT model in the
aluminum alloy core layer are larger than the parameters of
the HR or KV model in the carbon epoxy layers, thus
manifesting that the large attenuation of IFS is controlled by
the highly damped aluminum alloy honeycomb core layer.

With the obtained viscoelastic material properties of the
two combinations of damping models in Table 6, the
energy velocity and attenuation curves are theoretically

computed via the developed dGMM as depicted in
Figures 20(a) and (b), respectively, in which the experi-
mentally identified data points in Figures 19(a) and (b) are
also presented for comparison, along with the diamond
points in Figures 20(a) and (b) being the mean values of the
mounted IFS in Figure 17(a) and (b), respectively.

We firstly analyze Figure 20(b). It shows that the linear
trend curve of the HR+BT model in the frequency range of
0–150 kHz fits better with the experimental data than the
parabola trend curve of the KV+BT model in 0–200 kHz.
Since the concavity of the KV+BT model’s curve is re-
versed to the trend of the experimental data points, the
KV+BT model predicts underestimated and overestimated
attenuation in the lower and higher frequency range, re-
spectively. For the HR+BT model, its linearized prediction
represents the average effect on the experimental data in the
least square sense.

Then, we analyze Figure 20(a). It shows that, for the two
combinations of damping models, the computed S0 mode
energy velocity curves do not agree well with the experi-
mental data, and the KV+BT model produces more devi-
ations than the HR+BT model in the frequency range of
100–150 kHz. However, when we compute the group ve-
locity via equation (22) by using the pure elastic material
properties listed in Table 4 and Table 5, that is, performing
the undamped GMM,42 one interesting phenomenon oc-
curs. The computed S0 mode group velocity curve matches
very well with the experimental data as observed in
Figure 21. This phenomenon reveals the fact that, for the
sandwich-type structure made of inhomogeneous materials,
the damping mechanism adopted has a great influence on
wave propagation speed. And the model parameters (both
the elastic constants and the loss factors) should be updated
in order to get a better fit to both experimental energy
velocity and attenuation data which could be one of the
future works.

Back to Figure 20(a), from the point of computation,
HR+BT and KV+BT models produce a mutually over-
lapped energy velocity curves for SH0 and A0 modes in the
shown frequency range, which is different from the dis-
crepant S0 curves computed with the two models.

Prediction of dispersion curves in various forms for
the unmounted inner fixed structure

The two combinations of damping models are further
employed to predict the dispersion curves in the 3D space
ðf ,kr,kiÞ at the fixed propagation angle θ ¼ 90° as depicted
in Figures 22(a) and (b) for HR+BT and KV+BT models,
respectively. These modal curves are classified into
symmetric and anti-symmetric modes by checking the
symmetry conditions of the displacement mode shapes
based on equation (20), which are not presented in this

Figure 21. The computed group velocity via the pure elastic
global matrix method for the unmounted inner fixed structure
at θ ¼ 0°.
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paper for the sake of brevity. For a certain combination of
damping model, the 3D curves in Figures 22(a) and (b)
are projected onto the ðf ,krÞ plane and the ðf ,kiÞ plane to
make a comparison of the two combinations of damping
models. According to Figures 22(c) and (d), HR+BT
and KV+BT models predict identical propagating
wavenumbers for the six modes in the shown frequency
range, whereas the two combinations of damping models
predict different attenuation coefficients, especially for
SH0 and A0 modes, according to Figure 22(e) and (f).
Thus, choosing the proper damping model (or their
combinations) is the key to accurately predict wave at-
tenuation here. Figure 22(c) and (d) also indicate that
there is no cutoff frequency for S1, A1, and SH1 modes,
which is accompanied by a large attenuation in the lower
frequency range as shown in Figure 22(e) and (f).

This behavior is a unique property of the damped
waveguide.17

To study the influence of attenuation on phase velocity,
the attenuation curves of S0, A0, and SH0 modes in
Figure 22(e) are separately drawn in Figure 23(b), then
superimposed on the phase velocity curves in color code as
illustrated in Figure 23(a). This sub-figure shows that there
is a step in the S0 mode phase velocity curve around
200 kHz, which is caused by the fluctuation of the S0 mode
attenuation curve around 200 kHz in Figure 23(b). Besides,
the S0 mode holds a slight attenuation in comparison with
SH0 and A0 modes. This could be the reason that only S0
mode information has been identified experimentally (see
Figure 19) as SH0 and A0 modes have been rapidly at-
tenuated. In short, Figures 23(a) and (b) manifest that the
phase velocity of guided waves in a damped sandwich

Figure 22. For the unmounted IFS, the predicted dispersion curves at θ ¼ 90° for the HR + BT model (left) and the KV + BT model
(right): (a) and (b) 3D space of ðf ,kr ,kiÞ, (c) and (d) projection onto ðf ,krÞ plane, (e) and (f) projection onto ðf ,kiÞ plane.
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structure is characterized simultaneously by frequency (dis-
persion property) and attenuation (viscoelastic damping).

To study the anisotropic effect of phase velocity and
attenuation, the polar plots of both quantities are depicted
in Figures 23(c) and (d) at the same frequency f =200 kHz.
Figure 23(c) displays the quasi-isotropic property of phase
velocity of the three basic modes. Nevertheless, pure
anisotropic behavior of attenuation is observed in
Figure 23(d) for S0 and A0 modes, both of which hold the
largest and smallest attenuation in the principal (0° and
180°) and minor (90° and 270°) directions, respectively. As
for SH0 mode’s attenuation, its anisotropic degree is slight
along with the omnidirectional propagation angles. In
other words, Figures 23(c) and (d) give the evidence that
despite the quasi-isotropic property, attenuation of guided
waves in damped sandwich structure still possesses an
anisotropic effect.

Finally, the 3D surface diagrams of the three basic
modes are predicted in Figure 24 to represent the
frequency-spatial spectra of phase velocity and attenu-
ation. In Figures 24(a), (c), and (e), the cylindrical sur-
faces of S0 and SH0 modes and the paraboloid of
revolution of A0 mode signify the quasi-isotropic
property of phase velocity. However, the manifold
shapes of attenuation in Figures 24(b), (d) and (f) again

indicate the anisotropic property of attenuation in the
frequency-spatial spectrum. Note that in Figures 24(a),
(c), and (e), theKV+BTmodel’s predictions are not presented
since it yields almost the same diagrams as the HR + BTmodel.
According to Figures 24(b) and (f), the HR+BT model predicts
the same shape of attenuation for the S0 and SH0 modes as one
of the KV+BT models but with different scale. However, in
Figure 24(d), there is much deviation in the shape of the at-
tenuation for the A0 mode between both models at high fre-
quency. This is because A0 mode attenuation is predicted by
using the viscoelastic material properties in Table 6 which is
based on the rare information of S0 mode attenuation and only
along a single direction (θ ¼ 0°). Furthermore, IFS is a hon-
eycomb core sandwich structure being inhomogeneous in nature
that leads to much uncertainty in modeling.

The traditional curve in Figure 23 can be reconstructed
from Figure 24. For instance, the S0 curve in Figure 23(b) is
just the intersecting line of the plane θ ¼ 90° (in the cy-
lindrical coordinate system) to the surface of the HR+BT
model in Figure 24(b), and the SH0 contour in Figure 23(d)
is the intersecting line of the plane f =200 kHz to the surface
of HR+BT model in Figure 24(f). For brevity, these in-
tersecting lines are not depicted in Figure 24. Thus, the
frequency-spatial spectra of guided waves will convey more
information than the traditional dispersion curves, and it

Figure 23. For the unmounted inner fixed structure, HR + BT model’s prediction of (a) dispersion curve of phase velocity at θ ¼ 90°,
(b) dispersion curve of attenuation coefficient at θ ¼ 90°, (c) polar plot of phase velocity [m/s] at f =200 kHz, and (d) polar plot of
attenuation coefficient [Np/m] at f =200 kHz.
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will play a more important role in guided wave-based SHM,
especially for anisotropic viscoelastic materials.

Discussion and future work

Discussion

Although this paper only presents the comparison results of
the S0 mode between the experimental and predicted data,
the developed dGMM method can be generalized to other
guided wave modes such as A0 and SH0 modes if these
modes’ information is experimentally identifiable such that

the identified data can be integrated to update the visco-
elastic material properties. However, simultaneously iden-
tifying S0 and A0 modes usually requires special setup of
transducers from the hardware viewpoint that have flexible
polarity directions, dual PZT for example,37 to sufficiently
excite both fundamental modes. Besides, from the software
viewpoint, any efficient decomposition algorithms are re-
quired that can separate coupled S0 and A0 wave packets in
the signal processing level.16 To acquire the SH0 wave
signal, special SH wave transducers need to be utilized.54

This paper takes the damping effect of the elastic
moduli into consideration. In some references,34,55 the

Figure 24. For the unmounted inner fixed structure, surface plot of phase velocity (left) and attenuation coefficient (right): (a) and (b) S0
mode, (c) and (d) A0 mode, (e) and (f) SH0 mode.
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complex stiffness tensor is employed, that is,
C∗
ijðωÞ ¼ C’

ijðωÞ � iC’’
ij ðωÞ, to represent the viscoelasticity

of composite materials by specifying a certain damping
model for the imaginary part C’’

ij ðωÞ. However, this utili-
zation increases the number of variables for the model
updating process, thus demanding advanced optimization
algorithms.56

In literature, the KV model is increasingly adopted to
compute the 3D dispersion curves in ðf ,kr,kiÞ domain no
matter which numerical method is used.23,34 In contrast with
this tendency, the two case studies in this paper demonstrate
that the HR involved models predict more accurate atten-
uation than the KV involved models in comparison with the
experimental data. This fact reveals that choosing a
damping model to represent the viscoelasticity of composite
materials is application dependent.

Future works

Due to the existence of uncertainties, the predicted energy
velocity and attenuation coefficient do not always match
well simultaneously with the respective experimental data
(see Figure 20). In this situation, the model updating process
should yet involve in the identified energy velocity and the
elastic constants. That finally leads to the multiple objective
optimization problem as presented in equation (30), which
is the first work to be studied in the future

bγ ¼ arg min
γ,Ei ,Gij,νij

8>>>>><>>>>>:
Xm
l¼1

"
Kðγ,ωlÞ � ~ki,l

#2

Xm
l¼1

�
Ceðγ,ωlÞ � ~ce,l


2
9>>>>>=>>>>>;

(30)

The second one is to integrate the predicted attenuation
into the optimal sensor network deployment procedures.
Indeed, when designing a sensor network, one faces two
practical issues: the first one is to get sure that all the
structures under study will be covered by guided waves and
thus that any potential damage position can be inspected; the
second one is to get sure that guided waves with enough
amplitude will be reflected from the damage toward pie-
zoelectric elements. To solve these issues, precise prediction
of the spatial distribution of attenuation is of great concern.

The third work is to improve the traditional damage lo-
calization methods such as delay-and-sum,57 RAPID9, and
Excitelet58 by taking the viscoelasticity into consideration.
Among these methods, temporal or frequency information is
usually employed, for example, ToA for delay-and-sum, and
wavenumber analysis for Excitelet. In the anisotropic vis-
coelastic plates, attenuation can change some properties of
the temporal and frequency information. Thus, improvement
can be made by bridging the gap between attenuation and the
temporal- or frequency-based damage localization methods.

Last but not least, exactly predicting the guided wave
attenuation for complex structures is always of prime im-
portance, and thus, more profound damping models should
be adopted, for example, the rational model59 described in
equation (31). But there are two main fatal issues before
implementing this model. (1) There is not a unique principle
to determine the number of parameters n appearing in the
numerator and denominator of equation (31). (2) Even if n is
known, it is still difficult to estimate the coefficients αi and
βi from experimental attenuation data through the model
updating process given that there are six complex moduli
E∗
1ðωÞ, E∗

2ðωÞ, E∗
3ðωÞ, G∗

23ðωÞ, G∗
31ðωÞ, G∗

12ðωÞ in equation
(4) and for each modulus, there are 2n parameters in
equation (31), thus the total number of variables to be
determined is large to 12n for a single viscoelastic material,
which poses a formidable challenge to the model updating
process. To implement this damping model for attenuation
prediction, more information should be provided firstly

E*ðωÞ ¼ E0

26641þPn
i¼1 βiðiωÞi

1þPn
i¼1 αiðiωÞi

3775 (31)

Conclusion

This paper puts forward a dGMM method to predict the
frequency-spatial attenuation of guided waves in anisotropic
viscoelastic composite laminates by integrating the damping
models (HR, KV, and BT) into the conventional pure elastic
GMM. To efficiently solve the nonlinear transcendental DE, a
two-step numerical algorithm is developed that combines the
dGMMmethod, 2D MRCM, and the curve tracing technique.
The proposed attenuation prediction approach is theoretically
validated by comparing it with the SAFE method.

The energy velocities and attenuation coefficients at various
frequencies are identified from recorded wave signals via the
LR method which can not only process multiple sensing pairs
necessarily for monitoring a practical aeronautic structure but
also output statistical information such as the confidence in-
terval and correlation coefficient R2 to assess the quality of the
identified parameters. With the experimental attenuation data,
the unknown viscoelastic material properties are nondestruc-
tively estimated in the least square sense to achieve the best
agreement of prediction to experimental data.

Experiments on two physically different structures, the
homogeneous FCS and the inhomogeneous IFS with each
one unmounted or mounted on an instrumented A380 plane,
were carried out to experimentally validate the proposed
dGMM approach. FCS is a slightly damped structure and
IFS is highly damped. The existence of stress in the
mounted case can greatly change the property of attenuation
as compared to the unmounted case. To consider the
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inhomogeneous characteristic of IFS, its core layer and skin
layers are modeled by different damping models, thus two
combinations of damping models (HR+BT and KV+BT)
come into being. Both case studies demonstrate that the HR
involved models predict more accurate attenuation than
the KV involved models, and the spatial distribution of
attenuation holds anisotropic property despite the quasi-
isotropic stacking layups. In both structures, the A0 mode
undergoes much attenuation than the S0 mode, thus se-
lecting the S0 mode for SHM of similar aeronautic
structures is desired if the dispersion aspect is not the
determining factor.

In summary, using the actual and in-service data of the
practical aeronautic structures to validate the proposed
attenuation prediction method is not an easy task but
makes it extremely valuable for the scientific and in-
dustrial communities. In this sense, this paper escorts the
initiative of closing the gap between research and in-
dustrial deployment for SHM.1
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Notes

1. For notation homogeneity and for readability purposes, the
frequency dependency is also shown for the HRmodel even if it
is by definition frequency-independent.

2. It is possible to consider the complex frequency with real
wavenumber. But this case does not relate to the wave prop-
agation problem at hand.21

3. This property conforms with Snell’s law2 which requires that all
the partial waves keep the same (complex) wavenumber in the
interface between adjacent laminae along the wave propagation
direction.
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Appendix 1

Polynomial coefficients in equation (12)
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Appendix 2

Abbreviations

2D MRCM 2D Module Ratio Convergence Method
BT Biot damping model

CFRP Carbon fiber reinforced polymer
DAS Digital acquisition system
DE(s) Dispersion equation(s)

ESPRIT Estimation of signal parameters via
rotational invariance techniques

FCS Fan cowl structure
(d)GMM (damped) Global matrix method

HR Hysteretic damping model
IFS Inner fixed structure
KV Kelvin–Voigt damping model

LISA Local interaction simulation approach
LR Linear regression method

PWSA Partial wave superposition approach
PZT(s) Piezoelectric transducer(s)
RAPID Reconstruction algorithm for probabilistic

inspection of defects
SAFE Semi-analytical finite element method
SCM Spectral collocation method
SHM Structural health monitoring
TMM Transfer matrix method
ToA Time of arrival

WFEM Wave finite element method
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