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Modularity-based quality assessment of a disruptive reconfigurable
manufacturing system-A hybrid meta-heuristic approach

Abdul Salam Khan1,2
& Lazhar Homri1 & Jean Yves Dantan1

& Ali Siadat1

Abstract
This study considers quality aspects in the process planning of a reconfigurable manufacturing system. The goal is to analyze
how the variation in quality impacts the process planning, i.e., cost-based design and modular features. Besides this, the analysis
helps in identifying the number of conforming and failed products delivered by a process plan. First, a multi-objective mixed
integer non-linear programming model is proposed that contains the novel objectives of cost, quality decay, and modular efforts.
Secondly, the model is implemented on an industrial case study by using an exact solution approach and a novel hybrid version of
two popular meta-heuristics, namely non-sorting genetic algorithm and multi-objective particle swarm optimization. The hybrid
heuristic helps strengthening the application of approaches by creating a balance in searching the solution space. The perfor-
mance of different approaches is assessed by using two metrics and two termination criteria. The findings will help the decision-
makers in assessing how quality-related issues impact the choice of a process plan and in understanding the trade-off among cost,
quality, and modularity. Finally, conclusion and future research avenues are provided.

Keywords Reconfigurable manufacturing system . Reconfigurable process plan . Cost . Quality assessment . Variation .

Multi-objective optimization . Hybrid heuristics

1 Introduction

Reconfigurable manufacturing system (RMS) is an advanced
field of research which has been designed at its outset accord-
ing to product needs [1]. It offers the advantages of high
throughput and product variety. An important problem ad-
dressed in the field of RMS is process planning which assigns
reconfigurable machines to different operations. While doing
so, process plan assesses production capabilities and performs
the assignment by optimizing the objective functions. The
existing RMS literature uses cost, time, responsiveness, etc.,
as a criterion to analyze the performance of a process plan;
however, among other aspects, the analysis of variation in
quality is missing in the concerned literature. It is an important

aspect of a manufacturing system as variation increases cost
and downplays the quality [2, 3]. A system becomes complex
when there are a greater number of ways to connect machines
in its production system. RMS is a complex manufacturing
system as it uses gantries and conveyers to connect different
machines which enhance the number of possibilities to link
these machines. Thus, it becomes harder to analyze the quality
of production in such complex manufacturing system.

The ability of RMS to offer multiple possible connections
of machines (also called production routes) results in two
quality-related problems [4]. Firstly, the variation in product
dimensional quality increases as the product passes through
different configurations. Secondly, if there is a problematic
machine, it is hard to identify and trace it merely by inspecting
the quality of product. In other words, thanks to the enhanced
capabilities of RMS, a product may pass through one of the
several designated routes. For 20 RMS production stages,
each containing 6 machines, there are as much as 3.6 × 1015

ways to connect these machines [5]. It means that the product
may pass through any of the 3.6 × 1015 production routes.
This makes it complicated, even impossible, to analyze the
product quality in each route. In addition, every aspect of a
product cannot be analyzed by the manufacturing system.
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Thus, a system only considers certain aspects of a product
called key characteristics (KCs). KC accounts for most part
of the quality variation and disruption of a product. In other
words, the overall quality of a product can be improved by
enhancing the quality of its key characteristics [6]. The dimen-
sions, precision, and tolerances are some of the examples re-
lated to KC.

This study examines the impact of variation in quality on
the performance of RMS process planning. The variation in
quality of KC is studied by considering the assignable causes
of process elements (PE). The machining, tooling, etc. can be
regarded as the PE of a manufacturing system. An integrated
approach is adopted to analyze cost, quality, and modularity
effort. The analysis is performed by integrating the modularity
characteristic of RMS. We consider modularity as an integral
aspect of the RMS design. RMS uses a modular library which
contains basic and auxiliary modules. The auxiliary modules
are changeable, and thus they assist the RMS to change be-
tween configurations as per the requirement of different oper-
ations. Shaik et al. [7] suggested to include modularity during
the design phase as it influences the overall flexibility and
quality. The aim is to analyze not only the impact of quality
variation on the performance of RMS but also how does the
modularity of overall system get affected. An index is defined
for modularity which considers the wasted modular effort
during reconfiguration and in the presence of quality
variations.

The proposed index of quality quantifies the number of
conforming and failed units produced by a process plan. It
highlights the variation in quality by using two models.
Model 1 performs the analysis by using all three objective
functions, i.e., the total cost (TC), the quality decay index
(QDI), and the modularity effort (ME). Model 2 performs
the analysis without using the index of quality. For
implementing the model, we combine the non-sorting genetic
algorithm (NSGA-II) and multi-objective particle swarm op-
timization (MOPSO) to address the complex problem of dis-
ruptive RMS. The contributions offered by this study can be
summarized as follows:

& The analysis of quality variation is embedded in the RMS
process planning. Further, a novel index of modularity is
proposed which considers the lost efforts.

& A multi-objective mixed integer non-linear programming
(MINLP) model is presented to analyze cost, quality de-
cay, and modularity effort in RMS process plan. Due to
quality concerns, novel scrap and re-work costs are con-
sidered in the cost model.

& A hybrid meta-heuristic combining the strengths of non-
sorting genetic algorithm (NSGA-II) and multi-objective
particle swarm optimization (MOPSO) is implemented.
The performance of different approaches is assessed by
using two metrics and two termination criteria.

& An industrial case study is used to validate the model.

The rest of the study is organized as follows: Section 2
provides the literature related to quality and cost. Section 3
describes the problem statement where a disruptive RMS is
analyzed by considering the assignable causes of variation.
Section 4 contains the mathematical model of cost, quality,
and modularity. Section 5 offers the exact and hybrid meta-
heuristic solution approaches. Section 6 presents the results
concerning various aspects of the problem. Finally, Sect. 7
draws the conclusion and offers suggestions for future
research.

2 Literature review

The literature on RMS can be analyzed from different view-
points. As the focus of current study is on quality and cost, in
the below section, literature is reviewed according to these
aspects.

2.1 Quality performance assessment

The measurement of quality in a manufacturing system de-
pends on many factors. These factors comprise the identifica-
tion of key characteristics (KCs) responsible for most varia-
tion, the importance of KCs in a manufacturing system, and
complexity of the system. The identification and selection of
KC are pertinent as it significantly and negatively affects the
performance of a product. The literature contains various qual-
itative and quantitative approaches to analyze the variation in
quality of manufacturing systems. These approaches are
discussed in the following sub-sections.

2.1.1 Qualitative approaches toward quality assessment

The aim of qualitative approaches is to accumulate the engi-
neering knowledge available in a manufacturing system. This
knowledge helps in brainstorming toward the causes of vari-
ation and implementing remedial actions. There are different
qualitative approaches in the form of failure mode and effect
analysis (FMEA) and root cause analysis (RCA) which logi-
cally link the variation and failures with their respective
causes/sources [8, 9]. As a result, a tree or cause and effect
diagram is used to highlight the KCs and their impact on
product usability. Compared to the qualitative approaches,
this study offers a quantitative measure for the assessment of
quality to help in the selection of a process plan. As a result of
the detailed process plan, points can be identified where more
effort is needed. In addition, the proposed quality index helps
in changing the architecture, manufacturing processes, and
resources to achieve better results.



2.1.2 Quantitative approaches toward quality assessment

The literature contains variation in quality indices which have
been quantitatively analyzed by using different approaches. For
example, quality loss function (QLF), quality function deploy-
ment (QFD), stream of variation analysis (SOVA), and statistical
process control (SPC) have been used [10, 11]. Variation in
quality can also be analyzed by using maximum deviation, root
mean square deviation, fraction of non-conforming items, and/or
based on a metric outlining customer expectation [11].

A noteworthy contribution toward the assessment of quality
variation is Taguchi’s quality loss function (QLF). It focuses on
achieving a specific target value. The costs in QLF, however,
may not be accurately estimated due to intangible cost factors
such as customer dissatisfaction [12]. Another approach to mea-
sure the variation in quality is the traditional process capability
index given by cp ¼ T=6σ. It measures the ratio of dispersion to
tolerance. Though it helps in comparing and selecting a process
plan, it lacks more in-depth knowledge (e.g., the impact of dif-
ferent defects, number of conforming and failed units).

In literature, focus has been given to the identification of
causes of variation as opposed to offering indices for measuring
its impact on the system’s performance. For example, Loose
et al. [13] presented a variation source identification methodolo-
gy to identify the causes of variation. In some cases, raw sensi-
tivity is used to analyze the cause of variation, i.e., by taking
partial derivative of effect variables w.r.t. variables that cause
variation. It helps in identifying the variables/characteristics
which are critical in the performance of a product. Design of
experiments (DOE), Monte Carlo simulation, variation resource
management (VRM), and Pareto analysis are some of the anal-
ysis tools used to identify the causes of variation [14]. There are
also certain contributions to analyze the effects of variation on the
performance of system, prioritizing KCs and analyzing the cost
of variation [15, 16]. An important approach is the stream of
variation analysis (SOVA) for predicting the performance of
multi-stage manufacturing systems. The SOVA uses a state-
space model for representing the KC [10].

Though different contributions have been offered to-
ward variation in quality analysis, focus has been given
to the identification of KC. On the other hand, this study
assesses the impact of “variation in KC” on the perfor-
mance of RMS. The sub-sections below present a more
focused review on the analysis of quality in flexible
manufacturing system (FMS) and RMS. The former has
been selected due to its resemblance with RMS, in terms
of flexibility and responsiveness.

2.2 The analysis of quality in FMS

The FMS literature contains qualitative and quantitative ap-
proaches for the assessment of quality. For instance, Hsu and

Tapiero [17] introduced process quality control for FMS and
considered various cost components. An important assump-
tion was that all the defective items were scrapped, and hence,
the re-work of such items was not considered. A fuzzy multi-
objective approach was presented in [18] to assist in the se-
lection of FMS. The objective of quality was defined in terms
of a qualitative measure, i.e., weak, fair, and good quality. In
another study, Li and Huang [19] analyzed the probability of
good parts in FMS.

Souier et al. [20] studied the real-time part routing problem
in FMS. They analyzed the objectives of workload balancing
and reliability. The study did not quantify the number of failed
units due to reliability issues or the costs related to sub-optimal
performance of the system. It can be argued that quality in
FMS has been defined either in terms of cost or in terms of a
qualitative measure (i.e., weak/fair/good quality or probability
of good parts). It is beneficial to know the quantitative impact
of variation in quality such as the number of conforming and
failed units, which is the proposition of current study.

2.3 The analysis of quality in RMS

A manufacturer selects certain resources and evaluates their
impact on the product key characteristics (KCs). These re-
sources are changed if improvement in quality is required
and the analysis is repeated. The process of selection of re-
sources is not difficult for a relatively less complex
manufacturing system. RMS involves the selection of ma-
chines, configurations, modular features, tools, and TADs,
along with the greater number of possible production routes.
Thus, it becomes more difficult to analyze the impact of each
resource on KC’s performance.

To some extent, a discussion has been made on quality in
RMS. A theoretical perspective on different performance
measures in RMS, namely cost, reliability, utilization, and
quality, was provided in [21]. The measure of quality was
defined as an average of utilization and reliability. It did not
provide a model or solution regarding quality assessment and
its associated variation. More recently, Koren et al. [5] com-
pared different manufacturing systems including serial-line-
in-parallel (SLP) and RMS. The comparison was carried out
based on cost, responsiveness, and quality. It called for a more
attentive focus toward the assessment of quality in RMS due
to its complex structure.

There are six (6) key requirements for a stable system such
as design, quality, delivery, and cost [22]. The quality require-
ment needs the production to be completed within defined
tolerances which can be achieved by eliminating the assign-
able causes of variation. Although RMS literature fullfils the
requirements of design, cost, etc., it still lacks in analyzing the
causes of variation to comply with the quality requirement.

This study translates quality variation in RMS process plan
into the efficiency of process elements (PE) by using failure



rates. PE is the characteristic of a manufacturing systemwhich
affects the KC of a product. It comprises of machining,
tooling, production schemes, cutting condition, etc. The PE
defines the “assignable” causes responsible for the variation in
quality of product KCs. The assignable causes selected in this
study are disruption of machines, tolerance-related issues, and
tooling errors. To this end, this study proposes a quantitative
index for the assessment of quality in RMS. This index will
help a decision-maker (DM) in selecting a process plan with
minimum variation, defects, and number of failed products.

2.4 The analysis of cost in RMS

The analysis of cost can be observed in many publications
related to RMS. At times, single cost function has been con-
sidered and/or the amalgamation of several cost factors to
assess the behavior of RMS. The most opted cost function
for designing the RMS is production cost [23–25]. Deif
et al. [26] defined the cost function for RMSwhich comprised
of two components. The first reflected the physical capacity
cost for scaling the system, while the second component was
associated with reconfiguration of the system. Dou et al. [27]
analyzed a multi-part flow line problem in RMS for part fam-
ily. An integer programming model was developed to opti-
mize the capital cost by using genetic algorithm (GA) as a
solution approach. Goyal et al. [23] solved the optimal con-
figuration selection problem in RMS. A multi-objective mod-
el was solved to acquire non-dominated solutions by using
non-sorting genetic algorithm (NSGA-II) which were subse-
quently ranked. The objective of cost was based on production
cost of reconfigurable machines.

Chaube et al. [28] used an adapted version of NSGA-II to
analyze the cost and time of RMS. The cost components used
were machine cost and configuration cost related to machine and
tools. Saxena and Jain [29] analyzed the costs of investment,
reconfiguration, operation, and salvage value for RMS configu-
ration design problem. The model was implemented on different
case studies by using a Loerch algorithm. Haddou Benderbal
et al. [30] studied modularity in RMS by using the archived
multi-objective simulated annealing (AMOSA) approach. The
objectives of cost, time, and system modularity were analyzed.
The objective of cost was based on configurations, modules, and
machine exploitation costs. In another study, a sustainable pro-
cess planning problemwas analyzed using the objectives of cost,
time, and greenhouse gas emissions [31]. The model was imple-
mented through exact and adaptive meta-heuristic approaches.
Dou et al. [32] developed a mixed integer linear programming
model to optimize the cost and tardiness of RMS. The objective
function of cost contained capital cost and reconfiguration cost of
a reconfigurable flow line. An exact solution approach was used
to validate themodel through benchmark instances.Moghaddam
et al. [24] studied the capital expansion cost for scalable config-
uration design in RMS. A mathematical model was presented to

analyze the cases of single production flow line and part family
design. More recently, Khezri et al. [33] proposed a multi-
objective model for addressing sustainability concerns in RMS.
The objective function of cost considered the costs related to
production and disposal of waste and greenhouse gases (GHG).

To summarize, the costs related to capital, production, config-
urations, modules, transportation, installation, and energy con-
sumption have been analyzed. Till date, the concerned literature
lacks in analyzing the costs related to variation in quality. RMS is
prone to defects due to variation in quality, just like any other
manufacturing system. Thus, it is important to control the costs
related to variation against improved quality for a manufacturing
system to perform cost-effectively [34]. In other words, a balance
needs to be warranted between cost-quality trade-off by
performing a combined assessment of both. The analysis of var-
iation in quality can help a manufacturing system to identify the
sources of variability and ensure a smaller number of defects and
lower cost. The costs related to variation in quality can be
expressed in the form of repair, warranty claims, scrap, inspec-
tion, disruption, under-utilized manufacturing capabilities, etc.
[15]. Besides other cost factors, this study analyzes the costs
related to scrap, re-work, and disruptive performance of machine
in the selection of a process plan.

The summary of RMS literature is presented in Table 1
with respect to different criteria. The following research gaps
can be identified:

i) The performance of RMS has been analyzed against the
cost factors of production (P), machine exploitation (E),
and configuration (C) costs. However, the costs related to
quality issues such as scrap (S) and re-work (R) costs have
not been analyzed in the literature of RMS process
planning.

ii) None of the studies has analyzed the issues related to
quality and disruptive performance of machine. The
combined assessment of cost and quality can provide
insights on how cost decisions can be impacted by the
quality of production.

iii) In terms of single heuristic, non-sorting genetic algorithm
(NSGA-II) has been used more often. There is a dearth of
application of powerful hybrid meta-heuristics. This study
uses a hybrid version of NSGA-II and MOPSO. The
solution approaches are assessed by using two perfor-
mance metrics and two termination criteria.

3 Problem statement

This section discusses the statement of considered problem.
An RMSwith production stages designed in series is analyzed
where each production stage contains one machine



configuration which can perform one or more operations. A
normal RMSworks well and converts all input operation units
into usable output. This means that the number of input units
is equal to the number of output units. However, in the pres-
ence of variation and defects, the quality of operations is im-
pacted. Thus, part of the operation units is discarded as scrap
due to poor quality, while remaining units are re-worked to
make them conform. As shown in Fig. 1, initially rawmaterial
units (ηio) are processed on machine configuration i to per-
form operation o. Configuration i exhibits quality variation
which results in the failed units of operations. Inspection is
performed after each production stage, and after discarding the
failed units as scrap, remaining units are re-worked, and then
fed to subsequent machine configuration, and so on. The
failed operation units are generated in between every two suc-
cessive configurations, and these are removed, and the re-
maining are re-worked after each machine configuration. It
can be observed from the curve given in Fig. 1 that each
configuration keeps on reducing the quantity of conforming
products due to different defects. At the end of the process
plan, part of the products entering the RMS are conforming,
while remaining are discarded as scrap. The goal is to select a

process plan which warrants a higher number of conforming
products along with minimum cost and minimum modular
effort. The conforming products, cost, and modular effort
are conflicting objectives. For instance, to produce higher
number of conforming products, scrap and re-work costs
and lost modular efforts need to be minimized. On the other
hand, a system bearing higher defects will have more scrap
cost, re-work cost, increased level of lost modular efforts, and
a smaller number of conforming products. A trade-off be-
tween these objectives can be achieved by appropriately de-
signing a process plan. This can be done by assigning those
machine configurations to different operations which can en-
hance the level of conforming products by minimizing the
total cost and modular efforts.

As variations are inevitable, an RMS process plan
will be preferred with a fewer number of failed opera-
tion units and a higher number of conforming operation
units. In a contrary situation, the process plan will result
in a higher number of failed units and an increased
value of scrap cost. The variation in quality can be
attributed to the assignable causes of manufacturing sys-
tem which are discussed below.

Table 1 Summary of RMS literature according to selected criteria

Authors Process planning Objectives Machine disruption Solution approaches

Cost Time Quality Exact Heuristic Multi-
heuristic

Hybrid

P E C S R

Deif and ElMaraghy [26] ■ ■ GA
Dou et al. [27] ■ ■ GA

Chaube et al. [28] ■ ■ ■ ■ NSGA-II

Goyal et al. [23] ■ ■ NSGA-II

Bensmaine et al. [35] ■ ■ ■ ■ NSGA-II

Mohapatra et al. [36] ■ ■ ■ NSGA-II

Hasan et al. [37] ■
Dahane and Benyoucef [38] ■ ■ ■ NSGA-II
Haddou Benderbal et al [30] ■ ■ NSGA-II

Ashraf and Hasan [39] ■ ■ NSGA-II
Benderbal et al. [40] ■ ■ ■ ■ AMOSA

Liu et al. [41] ■ e-constraint

Touzout and Benyoucef [25] ■ ■ ■ ■ I-MOILP NSGA-II
AMOSA

Touzout and Benyoucef [25] ■ ■ ■ ■ NSGA-II RSUPP
ILSSUPP
ABILS

Pal Singh et al. [42] ■ ■ ■ AHP

Dou et al. [43] ■ ■ e-constraint NSGA-II

Dou et al. [32] ■ ■ e-constraint NSGA-II
MOPSO

Prasad and Jayswal [44] ■ AHP
Khezri et al. [33] ■ ■ ■ ■ AUGECON SPEA

NSGA-II
Moghadddam et al. [24] ■ GAMS

Cost components: P, production cost; E, exploitation cost of machine; C, configuration cost; S, scrap cost; R, re-work cost

GA genetic algorithm, NSGA-II non-sorting genetic algorithm, AMOSA archived multi-objective simulated annealing, AHP analytical hierarchical
process,MOPSOmulti-objective particle swarm optimization, SPEA strength Pareto evolutionary algorithm, RSUPP repetitive single unit process plan
meta-heuristics, ILSSUPP iterated local search on single-unit process plan meta-heuristic, ABILS archive-based iterated local search meta-heuristic,
AUGECON augmented e-constraint.



3.1 The assignable causes of quality variation

The causes of variation of PE are explained with the help of a
manufacturing system design decomposition (MSDD) tree.
The MSDD decomposes the overall objectives of a
manufacturing system (MS) intomeasurable sub-components.
The effective control of these sub-components demonstrates
how well the MS has achieved its designed objectives. The
decomposition of objectives of MS is performed by using the
functional requirements (FR) and design parameters (DP). MS
defines certain FRs to help answer “what to achieve.” Once
the “what” question is answered, DPs are used to address
“how to achieve the FRs.” In other words, DP constitutes
the physical implementation of FR. The application of
MSDD to RMS can be interesting as they both work on the
principle of decomposing a system into sub-systems/modules.

A modified version of figure from the study of Cochran
et al. [45] is used to explain the selection of causes of variation
(Fig. 2). For an easy understanding, the FRs and DPs in the
given MSDD are divided into different levels. At level 1, the
objective is to maximize revenue/minimize cost (FR) which is
achieved through customer satisfaction (DP). At the 2nd level,
FRs are “manufacture products to target design specification”
and “deliver products on time.” Since the current analysis is
based on quality and not time, we focus on the left side of the
MSDD tree. The production can be performed within design
specifications by warranting minimal variation in the process-
es (DP). At level 3, the FR is to achieve process stabilization
which can be achieved by eliminating the assignable causes of
variation (DP). Lastly, at the 4th level, the goal is to eliminate
the assignable causes related to machines, operators, methods/

processes, and materials. The former three are related to pro-
duction processes, while the latter is concerned with pre-
production (acquiring raw material). Thus, we focus on elim-
inating the assignable causes of the first three factors.We posit
that by controlling these causes, the ultimate objective of a
MS, i.e., to minimize cost (or to enhance quality), can be
achieved. The variation in quality due to these causes results
in defects. The causes of such defects are explained below.

3.1.1 Controlling the disruptions due to maintenance

The cause of machine-based defect is poor maintenance
which results in the disruptive performance of machine.
Each machine works perfectly well in the start of pro-
duction (control state) and produces optimal quality
goods by performing a set of operations. However,
due to maintenance issues, a disruption is observed in
its performance. Due to it, the machine goes into an
out-of-control state, resulting in variation in quality.
Thus, it performs a mix of good quality operations
and failed operations.

3.1.2 Training of workers

An inadequate level of training offered to workers can
lead to tooling error which results in poor finish, wear
and tear, etc. Each operation is specified by a quality
characteristic k. The variation in quality occurs when k
acquires defect at the level of tool due to an error at-
tributed to worker training.

Fig. 1 Process flow of considered RMS



3.1.3 Reducing variation in methods/processes

A manufacturing system matches the process capabilities of
machine with the product requirements. Due to mismatch, the
process-based defects will occur which can harm the health of
products. The cause of process-based defects is due to the
mismatch of tolerances between an operation and a machine.
Each operation is specified by the required level of tolerance
which needs to be less than or equal to the tolerances offered
by a machine. In a contrary situation, a tolerance-related var-
iation occurs which also results in a failed operation.

The aim is to design a reconfigurable manufacturing sys-
tem with minimum waste, minimum failed operations, mini-
mum cost, andminimum loss inmodular effort. The following
section offers the mathematical model.

4 Mathematical model

A multi-objective mixed integer non-linear programming
(MINLP) model is presented in this section to optimize the
objectives of total cost (TC), quality decay index (QDI), and
modularity efforts (ME). The MINLP is subsequently con-
verted into a linear model by using the linear approximation
technique. The analysis is performed by using two models to
highlight the effect of defects and quality decay on the

selection of a process plan. In model 1, the decay in quality
is acknowledged, and three objective functions, i.e., TC, QDI,
and ME, are used as evaluation criteria. Model 2 does not
consider any decay in quality, and a perfectly working RMS
is examined by using the objective functions of TC and ME.

The parameters, decision variables, and objective functions
related to the process planning problem are given below:

Indexes

i, i´ Index for machine configuration; i, i´= {1,2 …I}
f Index for product features; f= {1,2 …F}
o, o´ Index for operations; o, o´= {1,2 …O}
t Index for tools; t= {1,2 …T}
m, m´ Index for modules; m, m´= {1, 2...M}
k Index for quality characteristic; k= {1, 2...K}

Parameters

I Total number of machine configurations
F Total number of product features

Fig. 2 Manufacturing system design decomposition (MSDD) for assignable causes of quality variation [45]



O Total number of operations
T Total number of available tools
M Total number of available modules
K Number of quality characteristics associated with

different operations
frkt Failure rate of quality characteristic k due to

tooling error
toi Failure rate of operation o on machine i due to

tolerance error
xkko 1, if quality characteristic k belongs to operation

o; otherwise, 0
η0 Quantity of operations o entering the RMS
caio Production rate of machine i for operation o
eci Exploitation cost of machine i
λi Failure rate of operation due to machine

disruption
f1 Conforming fraction of operations passed

through inspection
1- f1 Non-conforming fraction of operations passed

through inspection
Ψ Probability of type I error due to inspection
dxoo´ 1, if operation o and o´ are dependent; otherwise,

0
pco Processing cost of operation o
rcpii´ Reconfiguration cost between machines i and i´
sco Scrap cost of defective operation o
rwco Re-work cost of conforming operation
rnco Re-work cost of non-conforming operation
tof Processing time of operation o of feature f
ftt Total processing time of feature f
atm;io Module addition time of module m on machine i

for operation o
stm;m

0
;i

o;o0
Time needed to change from module m to m′ on
machine i between ops

rtm;i
o;o0

Time needed to adjust module m on machine i
from op o to o′

TAD[i] Matrix of tool approach directions offered by
machines

TAD[o] Matrix of tool approach directions needed by
operations

do Required level of operation o (d1= d2= do=d)

Decision variables

XMio 1, if operation o is assigned tomachine i; otherwise,
0

ηio Number of operation units entering machine i
ωio Number of failed operation units of o on machine i
ω Total number of failed operation units at the end of

the process plan
PNio Number of conforming units of operation o on

machine i
PN Total number of conforming operations at the end

of the process plan

NM Number of machine configurations (copies) re-
quired for production

xoi
oo0 1, if operations o and o´ are performed on same

machine i; otherwise, 0
ym;i
o;o0

1, if machine i requires module m for operation o
(o′), otherwise 0

cym;m
0
;i

o;o0
1, if between op o and o′, there is a change of
module from m to m′, otherwise, 0

4.1 Model 1

4.1.1 Quality decay index

A unique index called quality decay index (QDI) is introduced
in (1). It is the ratio of failed operation units to conforming
operation units.

QDI ¼ ω

PN
ð1Þ

A higher QDI value means that, out of the total processed
units, the proportion of failed units is high, as compared to the
proportion of conforming units. On the other hand, a lower
QDI value will imply that the proportion of failed units is less
than the proportion of conforming units. It is to be noted that
the sum of the number of failed units and conforming units
equals the total number of processed units. A process plan
with a minimum QDI value is preferred as it warrants mini-
mum number of failed operation units.

The total number of failed operation units produced by a
process plan is calculated using (2). The total number of
conforming operations is given in (3). The expressions for
number of failed and conforming units of operations o are
given in (4) and (8), respectively.

ω ¼ ∑
O

o¼1
∑
I

i¼1
ωio ð2Þ

PN ¼ ∑
O

o¼1
∑
I

i¼1
PNio ð3Þ

ωio ¼ FOi þ FOp þ FOt; ∀i ¼ 1; 2;…If g;∀o
¼ 1; 2; ::Of g; λi ¼ λ ð4Þ

The relationship in (4) sums the failed operations respec-
tively due to machine (FOi), tolerance (FOp), and tooling-
based defects (FOt). Since the sources of defects are different,
one of the assumptions of our model is that these defects are
independent of each other. In line with this assumption, the
failed operation units due to these defects are independently
calculated (5, 6, 7).

FOm ¼ XMio:λi:ηio:t
o
f ; ∀i ¼ 1; 2;…If g;

∀o ¼ 1; 2; ::Of g; λi ¼ λ
ð5Þ



FOp ¼ XMio:toi:ηio:t
o
f ; ∀i ¼ 1; 2;…If g; ∀o ¼ 1; 2; ::Of g; ð6Þ

FOt ¼ XMio:frkt:xkko:ηio:t
o
f ; ∀i ¼ 1; 2;…If g; ∀o ¼ 1; 2; ::Of g; ð7Þ

PNio ¼ XMio: ηio−ωioð Þ; ∀i ¼ 1; 2;…If g; ∀o ¼ 1; 2; ::Of g ð8Þ

4.1.2 Total cost (TC)

The relationship of TC contains the production cost (PC), total
machine exploitation cost (TMC), scrap cost (SC), re-work
cost (TR), and reconfiguration cost (RC) (9).

TC ¼ PC þ TMC þ SC þ TRþ RC ð9Þ

The respective relationships for these costs are provided by
Eqs. 10, 11, 12, 13, and 14.

PC ¼ ∑
I

i¼1
∑
O

o¼1
XMio:ηio:pco ð10Þ

TMC ¼ ∑
I

i¼1
∑
O

o¼1
XMio:eci:NM ð11Þ

SC ¼ ∑
I

i¼1
∑
O

o¼1
sco:ωio ð12Þ

TR ¼ ∑
I

i¼1
∑
O

o¼1
XMio: f 1: 1−Ψð Þ:rwco: ηio−ωioð Þ

þ ∑
I

i¼1
∑
O

o¼1
XMio: 1− f 1ð Þ: 1þ Ψð Þ:rnco: ηio−ωioð Þ ð13Þ

RC ¼ ∑
O

o;o0¼1

∑
I

i;i0¼1

rcpii0 : 1−xo
i
oo0

� �
; o < o

0
< O; i < i

0
< I ð14Þ

PC calculates the total production cost of a process plan by
considering the number of units of operation o entering ma-
chine configuration i. TMC calculates the cost related to the
number of machines in use. After each production stage, the
processed operation units can be divided into scrap units,
conforming units, and non-conforming units. Scrap units refer
to those operations which are in worst quality, and the
manufacturing system cannot improve their quality, and hence
such units are discarded. Conforming units are those units
which can be brought to an optimal quality level by re-work-
ing. On the other hand, non-conforming operation units have
quality in between conforming and scrap units. The quality of
non-conforming units can be improved by extensively re-
working them.

SC calculates the total scrap cost of a process plan. All the
non-scrapped operation units are inspected and re-worked to
bring them to an optimal quality level. As explained, some
operation units need little re-work (conforming to higher ex-
tent), while others are in bad quality and need an extensive
amount of re-work (non-conforming units). Due to it, the re-
work cost (TR) expression considers the costs of re-work of
conforming and non-conforming operation units.

Furthermore, portion of such operation units are relatively of
improved quality, yet they are extensively re-worked, due to
type I inspection error. It means that some of the conforming
units are allocated to non-conforming units due to misjudg-
ment. Lastly, RC considers the involved cost if reconfigura-
tion is required between respective triplets.

4.1.3 Modularity effort (ME)

Unlike the traditional manufacturing systems, RMS can per-
form a variety of operations by using the same machine. It
achieves so by reconfiguring its existingmodules according to
the requirements of an operation. The process of reconfigura-
tion from existing machine configuration to a new configura-
tion requires modular effort (time of changing modules, etc.).
We argue that this time is a non-productive part of the overall
processing time, and thus it should be minimized. Also, since
part of the operations are discarded due to quality variations,
the effort of using modules in processing such operations is
also wasted. To encapsulate such behavior, we propose an
index called modularity effort (ME) in (15). It combines the
non-productive effort (proportion of time) to change (add,
subtract, and re-adjust) the auxiliary modules and the propor-
tion of effort wasted due to failed operations. The non-
productive time of modular change is considered with respect
to the operation time of a particular operation. Similarly, the
non-productive time of modular efforts on failed operations is
considered with respect to the operation time of the entire
feature.

ME ¼ ∑
F

f¼1
∑
M

m¼1
∑
O

o:o0¼1

ym;i
o;o0

:
atm;io

tof

þ ∑
F

f¼1
∑
M

m;m0¼1

∑
O

o:o0¼1

cym;m
0
;i

o;o0
:
stm;m

0
;i

o;o0

tof

þ ∑
F

f¼1
∑
M

m¼1
∑
O

o:o0 ¼1

ym;i
o;o0

:
rtm;i
o;o0

tof

þ ∑
F

f¼1
∑
I

i¼1
∑
O

o¼1
XMio:ωio:

tof
ftt

ð15Þ

4.2 Model 2

Model 2 examines the process planning problem without any
decay in quality. Thus, it does not consider the objective of
QDI and only considers the objective functions of TC and
ME. In the absence of quality-related issues, the TC relation-
ship considers only PC, TMC, and RC (16).

TC ¼ PC þ TMC þ RC ð16Þ



The TMC and RC relationship remains the same, as given
in (11) and (14), respectively. For the calculation of PC, an
equal number of operation units are processed by each ma-
chine configuration as there are no defects in this case. Also,
same expression for ME (15) is used by this model; however,
the last term of ME is discarded in model 2 as it refers to the
failed operation units. The modified ME expression for model
2 is given in (17). It considers the efforts lost in adding, re-
moving, and re-adjusting the modules.

ME ¼ ∑
F

f¼1
∑
M

m¼1
∑
O

o:o0¼1

ym;i
o;o0

:
atm;io

tof

þ ∑
F

f¼1
∑
M

m;m0¼1

∑
O

o:o0¼1

cym;m
0
;i

o;o0
:
stm;m

0
;i

o;o0

tof

þ ∑
F

f¼1
∑
M

m¼1
∑
O

o:o0 ¼1

ym;i
o;o0

:
rtm;i
o;o0

tof
ð17Þ

s:t

ηi1 ¼ η0 ð18Þ
η iþ1ð Þo0 ¼ ηio−ωio; o < o

0
< O;∀i ¼ I ð19Þ

ηio ¼ η0 ∀o ¼ O;∀i ¼ I ð20Þ

NM ≥
do

XMio: caio−ωioð Þ; ∀i ¼ I ;∀o ¼ O; do ¼ d ð21Þ

NM ≥
do

XMio:caio
; ∀i ¼ I ;∀o ¼ O; do ¼ d ð22Þ

∑
O

o¼1
xkko ¼ 1; k ¼ 1; 2;…Kf g ð23Þ

∑
I

i¼1
XMio ¼ 1; o ¼ 1; 2;…Of g ð24Þ

dxooËC:Prec Oo½ � Oo0
� � ¼ 1; o < o

0
< O ð25Þ

TAD i½ �:TAD o½ � ¼ 1; ∀i ¼ I ;∀o ¼ O ð26Þ
NM∈ℤþ ð27Þ
TC;PC; SC;RC;TR;TMC;QDI ;ηio;ωio;ω;PNio;PN ≥0 ð28Þ
XMio; xoioo0∈ 0; 1f g∀o; o0 ¼ O;∀i ¼ I ð29Þ

The set of constraints is provided by Eqs. 18, 19, 20, 21, 22,
23, 24, 25, 26, 27, 28, and 29. Some of these constraints are
specific to either model 1 or model 2, while remaining are
equally applicable to both models. Eqs. 18 and 19 are, respec-
tively, for the number of units entering into first and succes-
sive triplets in model 1. Since there are no defects in the case
of model 2, hence, same numbers of units are fed to each
triplet. This is equal to the number of units entering the
RMS (20). Eqs. 21 and 22 calculate the number of machines
(NM) to produce the required level of demand for model 1 and

model 2, respectively. Its value is obtained as the ratio of
demand to production rate. Equation 23 designates a particular
quality characteristic to one operation (model 1 specific).

The remaining constraints (24–29) are applicable to both
models. Equation 24 ensures that a particular operation is to be
performed by one triplet. Equation 25 is to respect the prece-
dence order. Equation 26 requires the tool approach direction
(TAD) compatibility between a triplet and an operation. The
number of machines can only take integer values (Eq. 27).
Lastly, the domain constraints of non-negativity and binary
variables are provided, respectively, by Eq. 28 and Eq. 29.

The presented model is non-linear as it contains the product
of integer and continuous variables (e.g., Eqs. 1, 8, 15, 21, and
22). It is converted into a linear model by using the linear
approximation technique. The general form of linearization
is provided in Table 2. It contains a non-linear product of
variables B and C which is linearized by using an auxiliary
variable A and a big number Z. As an illustration, the linear-
ization of non-linear product XMio. ηio (Eq. 10) is also
provided.

5 Solution approaches

5.1 Complexity of model

The RMS process planning is a complex problem, and it be-
longs to the non-polynomial hard (NP-hard) set of problems.
The complexity of RMS is due to the combination of ma-
chines, configurations, tools, modules, and tool approach di-
rections (TADs) to perform an operation of a feature. The
resulting graph is an acyclic graph which can be seen in the
case study diagram. Further, the problem can be converted
into a traveling salesman problem (TSP) if the complexity of
machines, configurations, and tools to perform an operation is
removed. Thus, exact solution approaches are not ideal tech-
niques to solve such problems, especially when the problem is
of large size. To understand the behavior of different solution
approaches, this study considers the application of ε-con-
straint as an exact technique, non-sorting genetic algorithm
(NSGA-II), multi-objective particle swarm optimization
(MOPSO), and hybrid NSGA-II-MOPSO as evolutionary
techniques. Furthermore, the performance of different

Table 2 Linearization of
non-linear products General form Eq. 10

A=B. C XNT=XMio. ηio
A≤B XNT≤XMio

A≤Z. C XNT≤Z. ηio
A≥B−Z(1−C) XNT≥XMio−Z(1−ηio)



approaches is tested by using two metrics and two termination
criteria.

5.2 Exact solution approach

This approach converts a multi-objective model into a single/
mono-objective model by converting all objectives (except
one) into constraints. This approach was applied to model 1.
The objective of TC is given an utmost priority, as it consti-
tutes an integral part of the process planning decision. The
remaining objectives of QDI and ME are converted into ε-
constraints. The additional set of equations and constraints
are given as:

minTC ð30Þ
QDI ≤ε1 ð31Þ
QDIð Þmin≤ε1≤ QDIð Þmax ð32Þ
ME≤ε2 ð33Þ
MEð Þmin≤ε2≤ MEð Þmax ð34Þ

The pseudocode of adapted ε-constraint is given in Algo. 1.
ΔQDI is the difference of quality decay index values between
the current and the previous steps. Similarly, ΔME is based on
the difference of modularity effort values between the current
and the previous steps of an ε-constraint method. A distinct
number of solutions are generated until the threshold defined
by ε-constraints is reached.

5.3 Evolutionary solution approaches

This section introduces the hybrid meta-heuristic which com-
bines the strengths of two powerful meta-heuristics, i.e.,
multi-objective particle swarm optimization (MOPSO) and
non-sorting genetic algorithm (NSGA-II). These approaches
have been separately applied to different RMS problems. For
example, the application of MOPSO can be found in [43, 46],

while NSGA-II has been used in [28, 38]. Since each algo-
rithm offers certain advantages in computation, the aim is to
reinforce the positive aspects of each approach by combining
them. For this purpose, the hybrid approach works in a way
that NSGA-II is used for the purpose of exploration while
MOPSO performs the task of exploitation.

The particle swarm optimization (PSO) was proposed
by Eberhart and Kennedy [47]. It is a single objective-
based optimization algorithm. PSO is inspired by the
behavior of birds flocking and fish schooling. A bird
is represented by a particle for single solution, and the
set of birds is represented by a swarm. During flight,
each particle can be defined in terms of its position (xtij
) and velocity (vtij ) which are updated in each iteration

of the algorithm. Coello et al. [48] formally introduced
MOPSO by incorporating the Pareto dominance and a
novel mutation operator. An important aspect of
MOPSO implementation is the selection of global best
position. In this regard, the same roulette wheel mech-
anism has been used in the current study as in [46, 48].
It selects the global best position (gbest) based on
crowding distance (CD). CD computes the closeness of
a particular solution about other solutions, and it is
based on an average value of distance from two neigh-
boring solutions. In other words, CD offers the density
of solutions around a particular solution.

The non-sorting genetic algorithm (NSGA-II) is a non-
domination-based technique which is used for multi-objective
analysis. It was proposed by Deb [49] and it represents an evo-

lutionary class of algorithms. The advantages offered by NSGA-
II are improved sorting, no a priori requirement of sharing pa-
rameter, and the inclusion of an elitism approach. It uses the
following five operators: initializing, sorting, crossover, muta-
tion, and elitist comparison.

Both algorithms use different search mechanisms. For in-
stance, genetic algorithm uses elitism and crowding distance
sorting to ensure diversity of solutions. On the other hand,
MOPSO uses a global best particle to guide the movement



of corresponding particles. These particles update their
speeds and velocities for searching the solution space.
MOPSO has a drawback of getting trapped in local
optima. To avoid the local optima, hybrid NSGA-II-
MOPSO divides the search space into exploration and
exploitation zones. The exploration task is performed by
NSGA-II by considering half of the population. This
half is improved by the algorithm by using the ranking
of non-dominated solutions. The remaining half of the
population is used by MOPSO for the purpose of ex-
ploitation. It searches for improved solutions in the
neighbor by guiding the lower-ranked solutions toward
global optimal solution. The flowchart of hybrid algo-
rithm is provided in Fig. 3. The overall procedure of
hybrid NSGA-II-MOPSO can be divided into 4 phases,
as discussed below.

5.3.1 Phase 1 of hybrid meta-heuristic

It concerns with the input information of RMS and meta-
heuristics. This phase evaluates the number of machines
(NM) of each configuration which is later used by phases
2 and 3. The pseudocode for NM is given in Algo. 2. An
operation is randomly selected, and all feasible configura-
tions are identified by using the machine-operation ma-
trix. The concerned failed operations and configuration
capacities are used to calculate the NM values by using
Eqs. 20 and 21, and all values are archived. These values
are used in phases 2 and 3 during the calculation of ob-
jective function values (OBV). During this process, re-
spective configurations and their NM are selected to en-
sure optimal OBV values.

5.3.2 Phase 2 and phase 3 of hybrid meta-heuristic

The application of phases 2 and 3 is performed by
using MOPSO and NSGA-II, respectively. NSGA-II
serves the purpose of exploration, while MOPSO per-
forms the task of exploitation. NSGA-II selects the up-
per half of population to create offspring. It uses a
single point crossover and a mutation operator to result
in a fresh pair of child chromosomes. Encoding is an
important aspect of the application of operators. The
encoding matrix of five rows and n columns (machine,
modules, features, operations, and quality characteristic)
is used, and an example is provided in Table 3. It is
interpreted column by column. For instance, machine
configuration 1 uses two auxiliary modules (A11 and
A15) to perform operation 1 (O1) of feature (F1) which
has the quality characteristic (k3) and so on. To avoid
non-feasible solutions causing penalty, only continuous
values between [0,1] are assigned to each cell.
Following this, the objective functions of TC, QDI,
and ME are computed by using the archived informa-
tion of number of machines (NM). In the next step, the
parent and child population are combined to perform
non-dominated sorting and crowding distance based on
non-domination of solutions. The solutions are added in
an ascending order. Lastly, the non-dominated solutions
are stored in an external archive. The remaining half of
population is used by MOPSO for exploitation. It ac-
quires the non-dominated solutions which are stored in
the repository. Its detailed procedure is provided in
Algo. 3.



5.3.3 Phase 4 of hybrid meta-heuristic

The 4th phase combines the results of NSGA-II and MOPSO
obtained from phases 2 and 3. It takes the population of both
algorithms and combines them to be stored in the archive of
NSGA-II. The ranking of stored solutions takes place based
on non-domination of solution. Only a pre-defined number of
non-dominated solutions are stored and remaining are
discarded. The loop continues until the optimal solutions are
found or the stopping criteria are met. Two stopping criteria
are discussed in Sect. 5.4. The pseudocode for merging the
population of both meta-heuristics is given in Algo. 4.

The input parameters of the hybrid algorithm were
fine-tuned by using a set of experiments. Each experi-
ment was defined by configurations_operations such as
3_5 means 3 configurations and 5 operations. The opti-
mal parameters were based on the following values:
population size= 150, maximum iterations= 500, cross-
over probability= 0.6, mutation probability= 0.3,
c1=c2=2, size of external archive in MOPSO= 150,
maximum inertia= 0.7, and minimum inertia=0.3.

5.4 Performance metrics

The results of ε − constraint method and hybrid algorithm
were compared to the results of NSGA-II and MOPSO. This
comparison was carried out on small and large problem sizes
by using two performance metrics, i.e., inverted generational
distance (IGD) and hyper volume (HV), and two termination
criteria. The termination criteria were based on first improve-
ment (FI) and best improvement (BI). FI returns the solutions
when first improvement in the results is found, whereas
BI returns the solutions when best improvement in the
results is found. The IGD calculates the average dis-
tance of non-dominated solutions from a true Pareto
front (PF), and it represents the convergence of solu-
tions. The HV calculates the covered space, and a max-
imum value of HV refers to higher diversity of solu-
tions. These metrics are further discussed below.

i) The IGD works on improving the quality and uniformi-
ty of approximate Pareto solutions (AP). It considers
the distance between a real Pareto solution (RS) and
an approximate Pareto solution (AP). The equation of
IGD is given in (35) where d(RS(a), AP)= Euclidean
distance between RS and AP.

IGD AP;RSð Þ ¼ ∑
a∈F

d RS að Þ;APð Þ= RSj j ð35Þ

ii) The hyper volume (HV) calculates the covered space
size between AP and a reference point r. The equation
to calculate HV is provided in (36) where r* ¼
r*1; r

*
2…r*s

� �
is the set of reference points values, s=

number of objective functions, and V= Lebesgue
measure.

HV APð Þ ¼ V
�
Ua∈AF f 1 að Þ; r*1

� �� f 2 að Þ; r*2
� �

�……� f s að Þ; r*s
� � ð36Þ

A solution with minimum IGD and maximum HV values
will ensure an excellent convergence and higher diversity of
solutions.

6 Analysis and results

6.1 Model verification

Model 1 was used for comparing the efficiency of different
solution approaches. The solution approaches were coded in
MATLAB 2016a on a 2.6 GHZ Core i5 system and 8 GB
RAM. The results were obtained for small- and large-sized



problems by using FI and BI termination criteria. A problem
was defined by i_o (where i=machine configuration and o-
=operation). The respective results are provided in Figs 4, 5,

6, and 7. It can be observed that ε-constraint offers better
results for small-sized problems; however, its solutions are
less in number compared to other approaches. As the problem

Fig. 3 Flowchart of 4 phases of
hybrid NSGA-II-MOPSO

Table 3 Example of matrix used
for encoding scheme Machine M1 M3 M2 M1 M3 M3 M2 M1 M1

Module A11, A15 A31 A43 A16, A12 A32 A34 A21 A13 A13, A16

Feature F1 F1 F2 F3 F2 F1 F1 F3 F2
Operation O1 O2 O9 O14 O10 O4 O3 O16 O12

Quality characteristic k3 k2 k5 k1 k6 k4 k8 k7 k9



size gets bigger, ε-constraint does not provide feasible results
(Figs. 6 and 7). Hybrid NSGA-II-MOPSO performs well
compared to NSGA-II and MOPSO, and it has the highest
number of non-dominated solutions. In other words, the solu-
tions offered by hybrid heuristic are part of the non-dominated
solutions. Moreover, as TC, QDI, and ME objectives are to be
minimized, a solution closer to the origin (intersection of TC,
QDI, and ME) will be preferred. From Figs. 4, 5, 6, and 7,
among the meta-heuristics, the solutions offered by hybrid
approach are closer to the origin. Similarly, the solutions of
hybrid approach are uniformly distributed as compared to oth-
er approaches. The reason behind this improved performance
of hybrid NSGA-II-MOPSO is due to the (i) division of pop-
ulation and (ii) merger of external archive of NSGA-II with
the repository of MOPSO. Once the population is divided
between NSGA-II and MOPSO, it becomes easier to refine
the solutions to obtain a higher number of Pareto (non-
dominated) solutions. In addition, the merger of external ar-
chive of NSGA-II with the repository of MOPSO helps in
avoiding a pre-mature convergence.

Though ε−constraint offers feasible solutions for some
problems, it is not viable as it takes a higher computation
time. As an illustration, Fig. 8 provides the computation
time (CPU) of solution approaches against different sizes
of problems. It can be observed that as the problem size
increases, CPU of ε−constraint increases non-linearly. On
the other hand, HYB (FI) (hybrid with first improvement)
performs better, and it takes less time in returning the
results. Further, FI of a particular approach works well

compared to BI in terms of computation. It is because
BI is a more exhaustive termination criteria which
searches for the best solution and hence takes more time
in offering Pareto optimal solutions.

From Figs. 4, 5, 6, and 7, MOPSO performs non-
satisfactorily compared to other solution approaches. The rea-
sons behind its non-satisfactory performance are twofold.
Firstly, the repository of MOPSO is pre-defined with a fixed
limit. If the number of solutions exceeds the limit, the repos-
itory discards some of the existing solutions which can affect
the quality of returned solutions. Secondly, its non-
satisfactory performance can be due to an inappropriate selec-
tion of mutation operator. Particle swarm optimization uses
mutation to perform exploitation on portion of the population.
The selection of mutation operator is pertinent as it can impact
the population and convergence of solutions. As an illustra-
tion, different mutation values were selected to understand
their impact on the solutions. Figure 9 provides the respective
results of percentage convergence of different problem sizes
against three mutation values. It can be observed that mutation
impacts the convergence of solutions; however, an improved
convergence can be ensured by selecting a higher rate of mu-
tation. Further, mutation affects the population up to certain
number of iterations. As shown, mutation rates of 0.4, 0.5, and
0.6 affect the population up until 45, 80, and 140 iterations,
respectively, and stability in solutions is attained afterward.
Thus, a higher rate of mutation is advantageous in obtaining
higher convergence, and a lower rate of mutation is beneficial
for minimum impact on population.

Fig. 5 Non-dominated solutions
of small-sized problems using BI
(model 1)

Fig. 4 Non-dominated solutions
of small-sized problems using FI
(model 1)



The results of small and large sets of problems by using the
termination criteria of FI and BI are provided in Figs. 10 and
11, respectively. It can be observed that hybrid NSGA-II-
MOPSO has the standout scores of IGD and HV for both
small and large sets of problems. Further, all solution ap-
proaches perform well under the BI termination criteria, and
MOPSO performs non-satisfactorily compared to other ap-
proaches. These findings reinforce the earlier presented anal-
ysis. It can be concluded that the hybrid approach ensures
higher convergence as well as diversity of solutions and hy-
brid NSGA-II-MOPSO (BI) is the best solution approach;
however, it takes more time in returning solutions. Due to its
higher efficiency, the case study analysis is presented by using
hybrid approach with BI criteria.

6.2 Model validation

The mathematical model can be applied to many industrial
parts if the features and operational details of such parts are
available. The proposed solution approaches are powerful
enough to solve complex real-life problems. For instance,
process planning can be carried out for the cylinder head
[50], reconfigurable integrated manufacturing systems and
reconfigurable assembly systems [4], real industrial parts
[51], and products with complex features [40] by using the
proposed approaches.

Without the loss of generality, a case study was used for
implementing the models. The detailed part and precedence
order of the case study are provided in Figs. 12 and 13,

respectively. The product needs the completion of 17 opera-
tions by using thirteen candidate machine configurations. The
data related to TADs, modules, processing time, and cost of
operations is given in Table 4. The data of tool approach
directions (TADs), modules, and exploitation cost of machine
configurations is provided in Table 5. Table 6 provides the
addition, subtraction, and re-adjustment time of different mod-
ules. The production feasibility and production rate of ma-
chine configurations for different operations are provided in
Table 7. A value in the corresponding cell means that a con-
figuration is eligible to perform the associated operation. For
example, machine configuration 1 can perform operation 2
with the production rate of 45 units/machine. The matrix of
reconfiguration cost between different machine configurations
is provided in Table 8. The production is to be carried out for a
product demand of 250 units. The analysis was performed by
using MATLAB 2016a on a system with specifications Intel
Core i5, 8th generation with 8 GB RAM.

The top 17 non-dominated solutions of both models are
provided in Table 9. Model 1 gives a minimum cost value of
9904 USD (s#15) compared to model 2 which has a minimum
cost value of 8235USD (s#15). Similarly, ME has a minimum
value of 23.85 (s#7) and 19.03 (s#3) for model 1 and model 2,
respectively. If we compare the values of TC (model 1) and
TC (model 2), it can be concluded that all TC values of model
2 are less than the minimum TC value of model 1 (9904
USD). On the other hand, the average ME value of all solu-
tions of model 1 is 33.25, and it is 25.79 for all solutions of
model 2. Thus, on average, 22% less modularity effort is

Fig. 6 Non-dominated solutions
of large-sized problems using FI
(model 1)

Fig. 7 Non-dominated solutions
of large-sized problems using BI
(model 1)



needed in model 2. It means that if practitioner selects a ran-
dom solution of model 2, it will have less cost than the min-
imum TC-based solution of model 1 and will need less aver-
age modular effort in completing the process plan. This high-
lights the role of quality variations in selecting a minimum
cost and minimum modularity effort-based process plan.

It can be argued that the higher cost and modularity effort
values of model 1 are due to the quality disruptions and failed
operations. Due to it, modular effort has been invested in some
operations which are discarded due to poor quality. The qual-
ity decay index (QDI) has a minimum value of 0.1511 (s#11)
which means that the process plan has almost 15% failed
operations compared to conforming operations. Since quality
is only analyzed through model 1, we can see that the mini-
mum solutions of TC, QDI, andME contain 23.71%, 15.11%,
and 22.65% failed operation units which corresponds to 60,
38, and 57 units of failed products, respectively. There is a
trade-off involved in selecting a particular process plan. Some
plans can offer less cost with higher quality decay index and
modular effort and vice versa. For example, in some cases, as
QDI value increases, the correspondingME value increases as
well. It means that (i) variation in quality necessitates a higher
modular effort to complete the required level of conforming
operations and (ii) higher QDI value means more failed oper-
ations and hence an increase in the lost modularity effort.

The detailed process plans against different objective func-
tions are provided in Table 10. They can be interpreted col-
umn by column. For example, operation 1 (O1) can be

performed by the 11th configuration for a minimum value of
TC (M1), QDI (M1), and TC (M2). Similarly, we can use the
8th and 2nd configuration for operation 1 (O1) to attain a
minimum value of modular effort in model 1 and model 2,
respectively.

The cost breakdown of minimum cost solutions of both
models is presented in Fig. 14. Both models have the same
reconfiguration cost (RC) as they provide minimum cost so-
lution against the same process plan (s#15). Similarly, model
1 includes the values of scrap and re-work costs due to differ-
ent defects and failed operations. The TMC value of model 1
is higher as it uses a higher number of machine configurations
in the presence of variation in quality (Eq. 21).

A detailed analysis of modularity is presented in Fig. 15.
These values are based on different components of ME (Eqs.
15 and 16). The total cost solution of model 1 uses higher
addition, subtraction, and re-adjustment of modules as com-
pared to the total cost solution of model 2. The same is true for
the comparison of modules in the objective function of ME of
both models. RMS is known for its cost-efficiency which can
be achieved by performing more operations using less chang-
es between configurations. This can be ensured if there are no
quality-related problems and if less modular effort is needed.
For example, in Fig. 15, we can see that the minimum number
of configuration changes occur when a minimumME solution
of model 2 is used (144 configuration changes). Besides this,
the solutions of model 1 relatively undergo a higher number of
configuration changes. If we compare the number of machine

Fig. 8 CPU time of solution
approaches against different
problem sizes

Fig. 9 The effect of mutation rate
on convergence and population



configurations used by minimum ME solutions of model 1
and model 2, interestingly, both solutions use the same num-
ber of configurations (i.e., 36). However, minimumME(M1)-
based process plan has a value of 23.85 which is higher than
the minimum ME(M2)-based process plan value of 19.03.
The reasons behind using the same number of configurations
and a higher difference of modularity effort values are two-
fold. Firstly, from Table 10, we can see that ME(M2) process
plan uses configurations more repetitively as compared to
ME(M1) solution (e.g., it uses configuration 10 five times)
which results in relatively less need for modular reconfigura-
tion. This is reflected by the different sets of modules (added,

subtracted, re-adjusted) used in ME(M1) (361, 253, 90) and
ME(M2) (163, 218, 37). Secondly, ME(M1) is based on qual-
ity issues, and hence it contains an extra proportion of lost
modular effort due to failed and scrapped operations. Thus,
quality aspects are not only important from cost and number
of failed operations viewpoints, but they also impact the mod-
ularity of reconfigurable manufacturing system.

These findings can be generalized to multiple contexts.
Practitioners need to know at the outset the number and types
of modules they will be using for production. In the presence
of variations and defects, the comparative analysis provides
the details of extra modules and their dynamics (addition,

Fig. 10 HV and IGD scores of small- and large-sized problems using FI termination

Fig. 11 HV and IGD scores of small- and large-sized problems using BI termination



subtraction, and re-adjustment) due to such defects. These
findings will help in calculating the number ofmodules added,
subtracted, and re-adjusted in the presence and absence of
defects and quality variations. In addition, productivity can
be enhanced (or production time can be minimized) by reduc-
ing the number of “reconfigurations” between different pro-
cesses. A smaller number of reconfigurations is achieved in
the case of minimummodularity effort solution in the absence
of quality variations (ME (M2)). Thus, more focus should be
given to simultaneously control the quality variations and
minimize the modularity efforts to enhance the productivity
of a reconfigurable manufacturing system. Lastly, the impact
of multiple sources of quality variations was studied on the

cost, quality, and modularity performance of a reconfigurable
manufacturing system. These findings can be compared with
the real-time behavior of such sources of quality variations
and defects. The real-time behavior of different defects can
be analyzed by using a reconfigurable integrated manufactur-
ing system (RIMS). RIMS can inspect and detect different
sources of defects. Thus, the robustness of presented ap-
proaches and the accuracy of RIMS can be validated by com-
paring their respective findings.

The findings can be summarized as:

& Although RMS is known for its cost-efficiency, it seems
that the variation in quality and failed operation units

Table 4 Operations, TADs, modules, operation time, and cost associated with different product features

Feature Operations TADs Modules tof (min) ftt (min) pco (USD)

F1 O1 +x, −z A11, A13, A31, A32 3.5 39.5 07

O2 +y A22, A34 05 10

O3 −y, +z A11, A21, A22, A24 07 11

O4 −x, −y, −z A12, A16 12 15

O5 +y, -z A14, A16 04 06

O6 −y A15, A23, A33 08 10

O7 −y, +z A12, A21, A31 04 09

F2 O8 +x, +z A16, A25, A34 4.5 35.5 07

O9 −y, −z A14, A24 03 09

O10 −y, +z A15, A22, A32 05 10

O11 −y A11, A13, A25, A32, A33 10 12

O12 −y, −z A23, A33, A34 13 18

F3 O13 +x A16, A23, A31 3.5 25.5 07

O14 −y, −z A13, A24, A32 04 06

O15 −y A15, A16, A21 05 09

O16 −y, −z A12, A31, A34 09 12

O17 −x, +z A21, A33 04 08

Table 5 TADs, modules, and
exploitation cost of different
machine configurations

Machine Configuration TADs Modules eci

M1 1 +x, +y, −y, +z, −z A11, A14 350

2 +x, −x, +y, −y, +z, −z A12, A14, A16 380

3 +x, −y, +z, −z A11, A13, A15 440

4 +x, −y, +z, −z A13, A15 330

5 +x, −x, +y, −y, +z, −z A12, A14, A15, A16 475

M2 6 +x, −x, −y, +z, −z A23, A24, A25 420

7 −x, +y, −y, +z, −z A21, A22, A24, A25 580

8 +x, −x, +y, −y, +z, −z A22, A23, A25 450

9 −x, −y, +z, −z A21, A24 350

M3 10 +x, −x, −y, +z, −z A32, A33 365

11 +x, +y, −y, +z, −z A31, A32, A34 410

12 +x, −x, +y, −y, +z, −z A33, A34 380

13 +x, −x, −y, +z, −z A31, A33 350



impact the performance of RMS. Thus, it is imperative to
safeguard it against different sources of variation to per-
form cost-optimally.

& There is a trade-off among cost, quality, andmodularity. A
process plan based on minimum quality variation affects
the solutions of cost and modularity.

& The presence of quality variation results in a different
process plan (model 1) as opposed to a manufacturing

systemwhich does not contain any quality variation (mod-
el 2). Both models performed quite differently in terms of
modular needs and number of configurations.

& The presence of quality variation affects the overall effi-
ciency of a process plan. It can be argued that in the ab-
sence of variation, even maximum cost solution is more
viable than the minimum cost solution in the presence of
variation. In addition, less average modular effort is need-
ed by a process plan which is free from defects and vari-
ation. More modular efforts are needed by a process plan
where there are higher quality concerns. This highlights

Table 6 Module addition, subtraction, and re-adjustment time for dif-
ferent auxiliary modules

Module Associated time (min)

Addition Subtraction Re-
adjustment

A11 2.7 2.3 1.5

A12 3 2.5 2.0

A13 2.5 2.0 1.5

A14 5 4.5 2.5

A15 4 3.0 2.0

A16 5 4.0 3.0

A21 4.2 3.5 2.5

A22 3.5 2.8 1.8

A23 5 4.0 2.5

A24 3 2.0 1.4

A25 4.5 2.0 1.1

A31 2.8 2.4 2.0

A32 4.2 2.5 1.5

A33 5.2 3.8 3.0

A34 5.5 4.0 2.6

Table 7 Feasibility and production rate of configurations for different operations

Conf. Operation

O1 O2 O3 O4 O5 O6 O7 O8 O9 O10 O11 O12 O13 O14 O15 O16 O17

1 -- 45 -- 75 55 70 -- -- 50 -- 45 -- 45 40 -- -- 60

2 75 55 -- -- -- 60 -- 60 -- -- 65 45 -- -- 55 -- --

3 -- -- 60 60 -- -- 55 -- 60 65 -- 55 60 -- 60 45 --

4 65 -- 80 -- 65 -- 50 -- 70 -- 60 -- -- 55 -- -- 65

5 -- 50 67 65 -- 70 -- 55 -- -- 75 -- 55 -- 70 45 --

6 60 -- -- 55 60 55 65 -- 75 70 -- 48 -- 65 -- 55 55

7 -- 60 60 -- 70 -- 65 -- 60 -- 65 -- 45 60 -- 65 --

8 55 -- 70 -- -- 75 -- 50 -- 55 60 -- 50 -- 45 -- 45

9 -- 45 -- 70 -- 65 -- 70 55 -- -- 53 -- 70 75 60 --

10 -- 55 50 -- 65 -- 70 -- 60 50 50 -- 60 -- -- -- --

11 60 -- 55 75 -- 60 -- 65 -- 70 -- 45 -- 55 -- -- 50

12 -- 50 -- -- 60 -- 65 55 -- -- 63 -- 65 -- 65 70 --

13 70 -- 75 -- -- 50 -- -- 77 -- -- -- 60 -- 60 -- 60

Table 8 Configuration change cost between different machine
configurations

Conf. Configurations

1 2 3 4 5 6 7 8 9 10 11 12 13

1 185 165 150 190

2 145 170 140

3 175 180

4 130

5

6 155 175 140

7 150 180

8 160

9

10 145 180 165

11 165 190

12 155

13



the role of quality variation in the selection of a process plan
based on minimum cost and minimum modular effort.

& Practitioners are interested in enhancing the productivity
of RMS byminimizing the “reconfiguration” between dif-
ferent operations. The findings suggest that modular ef-
forts and quality variation need to be simultaneously ana-
lyzed to enhance the overall productivity and efficiency of
a process plan.

& As variation and defects are inevitable in a real manufactur-
ing setup, it is opportune to know the extra modular efforts
needed due to such variation. This will enable a practitioner
to decide at the outset the number of extra modules added/
subtracted/re-adjusted in the presence of variation. The find-
ings of this paper are applicable to any real-life RMS system
to calculate the extra modular needs in the presence of vari-
ation and defects.

& The proposed model and solution approaches are general,
and they can be applied to multiple real-life RMS systems.
For this, the acyclic graph and operational details of the
considered products will be required.

& The hybrid meta-heuristic approach was efficient com-
pared to the stand-alone application of meta-heuristics. It
resulted in uniformly distributed and dominant solutions
due to the merger of solution storage capacities of both
meta-heuristics. Further, the best improvement criterion

works well; however, it takes more time in returning the
solutions.

& The impact of multiple sources of variation was mathe-
matically studied on the overall cost, quality, and modu-
larity efficiency of process planning. The robustness of
presented approaches and the accuracy of RIMS can be
validated by comparing their respective findings.

7 Conclusion and future recommendations

Reconfigurable manufacturing system has received an over-
whelming amount of research attention due to its high
throughput, responsiveness, and cost optimal production.
This study analyzed the impact of quality variations on the
performance of process planning in reconfigurable
manufacturing system. A multi-objective model containing

Fig. 12 Product features of the
case study and their operations

Fig. 13 Operation precedence of different product features

Table 9 The non-dominated solutions of model 1 and model 2

S. no Model 1 Model 2

TC QDI ME TC ME

1 11300 0.2196 34.71 8804 24.22
2 10435 0.2235 30.51 8566 25.69
3 10362 0.2465 24.39 8989 19.03
4 11402 0.1799 24.39 8963 19.84
5 10402 0.2019 47.53 8555 25.83
6 10403 0.1843 34.92 8528 26.15
7 10531 0.2265 23.85 8824 19.94
8 10407 0.1776 40.61 8407 36.22
9 10470 0.1841 36.34 8514 31.54
10 11012 0.1705 35.48 8818 24.12
11 10530 0.1511 38.34 8525 26.19
12 11540 0.1797 29.49 8598 24.88
13 10414 0.2035 34.87 8572 25.43
14 11059 0.2229 34.82 8802 24.28
15 9904 0.2371 29.12 8235 36.24
16 10923 0.2234 31.08 8742 24.86
17 10818 0.2031 34.86 8819 24.08

Sum 565.31 438.54
Average value 33.25 25.79

Bold values refer to the optimal objective function values



the objectives of total cost, quality decay index, and modular
effort was presented. A novel hybrid version of two powerful
meta-heuristics (i.e., non-sorting genetic algorithm and multi-
objective particle swarm optimization) was implemented to
obtain solutions. A set of experiments revealed that the hybrid
solution approach is more efficient. The hybrid heuristic takes
advantage of dividing the population and merging storage
capacities which enhances the number of non-dominated so-
lutions and mitigates a pre-mature convergence. The findings

suggested to control quality variations and defects as it im-
pacts different aspects of decision-making. Moreover, there is
a trade-off among cost, quality, and modularity. It is important
to reduce the quality variations, defects, andmodularity efforts
for a cost-optimal reconfigurable system.

This study offers the following implications for practi-
tioners. The manufacturing system design decomposition
(MSDD) divides a complex system into different levels to
identify the prominent causes of quality variation. These
causes can be modeled to examine their impact on the cost
and modularity aspects of a complex reconfigurable system.
Practitioners may install a reconfigurable integrated
manufacturing system (RIMS) to study the real-time behavior
of such causes of variations. In addition, with and without
quality variation results can be used to focus on minimizing
the additional cost components and lost modularity efforts due
to quality issues. These findings will help in calculating the
extra number of added, subtracted, and re-adjusted modules in
the presence of quality variations. Though the mathematical
model and solution approaches were applied to a single prod-
uct, they can be generalized to multi-unit complex
reconfigurable process planning.

Table 10 Detailed process plans of optimal objective functions-based solutions

S.# O1 O2 O3 O4 O5 O6 O7 O8 O9 O10 O11 O12 O13 O14 O15 O16 O17

15 TC (M1) 11 7 5 9 1 9 4 8 4 10 2 6 10 6 9 12 11

11 QDI (M1) 11 1 5 9 10 13 10 2 6 6 12 6 8 11 5 5 11

7 ME (M1) 8 10 7 3 7 2 3 11 13 6 7 3 5 7 5 12 11

15 TC (M2) 11 7 5 9 1 9 4 8 4 10 2 6 10 6 9 12 11

3 ME (M2) 2 1 10 1 10 2 10 11 10 3 10 11 12 9 8 7 11

Fig. 14 Cost breakdown of model 1 and model 2

Fig. 15 Comparison of modular
features of different models



The following can be considered as recommendations for
future research. In the implemented e-constraint approach, the
loop is completed when the epsilon values related to either
QDI orME cannot be reduced anymore. This was done by using
an “and” operator between both epsilons. Future research can use
an “or” operator so that the epsilon values of both constraints can
be saturated. This might result in improved solutions for a differ-
ent set of problems. A deterministic model with respect to pro-
duction capacities, disruption, and failure rates was used. Future
research can relax this assumption by considering stochastic pa-
rameters in the model. These stochastic parameters can be asso-
ciated with the disruption profile, failure rates due to different
variations, etc. A pessimistic approach for the evaluation of dif-
ferent defects was considered. This assumption can be modified
by considering the interaction between different defects at the
level of machine, process, and tool. The presented analysis fo-
cused on the causes of variations during production. The pre-
production cause of variation, i.e., deficiency in the quality of
rawmaterials, can be modeled in the future research. In this way,
process planning can be carried out in the context of supply chain
by analyzing the quality of rawmaterials and supplier evaluation.
Lastly, these findings can be compared with other evolutionary
approaches such as whale optimization algorithm (WOA) and
strength Pareto evolutionary algorithm (SPEA).
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