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D. Muñoz a,*, E. Nadal a, J. Albelda a, F. Chinesta b, J.J. Ródenas a
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A B S T R A C T

Structural optimization is part of the mechanical engineering field and, in most cases, tries to minimize the 
overall weight of a given design domain, subjected to functionality constraints given in terms of stresses or 
displacements. The most relevant techniques are topology and shape optimization. Topology optimization 
provides the optimal material distribution layout into a given, static, design domain. On the other hand, shape 
optimization provides the optimal combination of the parameters that define the required parametrization of the 
domain’s boundary. Both techniques have strengths and weaknesses, thus a hybrid optimization approach that 
combines the former techniques will define a more general structural optimization framework that will take 
advantage of their synergistic combination. The difficulty arises when communicating both techniques for which, 
in this paper, we propose a machine learning-based methodology.   

1. Introduction

Optimization is the mathematical discipline that tries to find the best
element of a given set. The search is driven by the performance of each 
element, measured through a predefined loss function. Optimization 
techniques are extensively used in fields such as science, engineering or 
economics. We will focus on the engineering field, specially on struc
tural optimization. Structural optimization is a crucial tool in the design 
process of mechanical components, since it is able to generate the 
optimal design domain according to a set of applied loads. The optimal 
design must minimize or maximize an objective function while satis
fying a set of constraints. The most common pairs of objective function 
and constraints found in the structural optimization field are: the 
minimization of the mass/volume while satisfying a yielding stress 
constraint and the maximization of the stiffness while satisfying a vol
ume fraction constraint. There exist different approaches to solve the 
structural optimization problems. Among them, we will focus on the 
most common ones, namely, topology and shape optimization 
techniques. 

Topology optimization algorithms allow to modify the topology of 
the material in the design space at the expense of a large amount of 
design variables, such as the relative density of each element with the 

SIMP method [1–3], the distance of each node to the implicit boundary 
with the Level-Set approaches [4–6] or the Phase Field for topology 
optimization [7–9]. The current work is based on the SIMP method that 
provides an optimal material distribution layout over the design domain 
defined by a blurred boundary which is not directly suitable for 
manufacturing. A review of the SIMP method can be found in 
Appendix A.1. On the other hand, shape optimization techniques, use a 
CAD representation of the boundary of the geometry to compute the 
objective function and constraints. This CAD representation may be 
defined using many types of geometrical entities (splines, NURBS, etc.). 
In our case, the boundary will be represented using the STL format, i.e., a 
triangular tessellation of the geometric boundary. Thus, the optimal 
geometry provided is directly suitable for manufacturing. In this work, 
we consider the parameterized shape optimization algorithm which 
needs a user-defined parameterized boundary of fixed topology that 
does not allow to explore new topologies. The main benefit of using 
shape optimization techniques is the accuracy and smoothness of the 
boundary definition. This benefit is even greater if we take into account 
that the number of design variables necessary to parameterize the 
boundary of the geometry is usually low, this allowing the exploration of 
the design space with a huge variety of optimization algorithms. A 
description of the shape optimization problem considering geometrical 
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This hybrid algorithm could be defined by the following steps: 

1. Topology optimization. This step should provide a preform with to
pological characteristics defined in terms of an optimal material
distribution layout, consider the design domain defined by the
analyst.

2. Interface. This step should communicate both topology and shape
optimization algorithms. This interface should generate the para
metric geometrical model (defined by design variables) required by
the shape optimization algorithm from the results of the topology
optimization process.

3. Shape optimization. The shape optimization algorithm should then
use this model and will find the optimal combination of its param
eters that minimize a given objective function while satisfying the
prescribed constraints. The final results of this step should be a CAD- 
like representation of the optimal geometry directly suitable for
manufacturing.

The main issue that we face when implementing such a hybrid al
gorithm is the development of step 2, the interface step, that allies both 
topology and shape optimization algorithms. Below are, to the authors’ 
knowledge, the main contribution to this topic that can be found in the 
bibliography. Reference [10] manually parametrized the result of the 
topology optimization solution, and used it in the parametrized shape 
optimization algorithm. In the approach described in Refs. [11,12], the 
authors parametrize the optimal material distribution of a 2D design 
domain by means of curve fitting algorithms. The parameters that define 
those curves are then modified by the shape optimization algorithm to 
find the optimal geometry. Also, we would like to highlight the work in 
Ref. [13] where the use of Artificial Neural Networks allow to find the 
set of simple entities that reproduce the material distribution provided 
by the topology optimization algorithm. Additionally, alternative ap
proaches are found in the literature. For instance, in Ref. [14] the au
thors use an edge detection technique to identify the structural elements 
provided by the topology optimization algorithm. In Ref. [15] the au
thors use a edge detection technique, the Canny algorithm, and manu
ally create a B-spline representation of the model. In Ref. [16] the 
authors manually create the mesh for the shape optimization algorithm 
by means of the material distribution layout indicated by the topology 
optimization algorithm. Also, in Ref. [17] the authors simultaneously 
evaluate both optimization algorithms; in this case the shape is modified 
considering the variation of the nodal coordinates of the mesh by means 
of weights, acting as design variables, and predefined perturbation 
vectors. In Refs. [18,19], the authors create a two-stage algorithm where 
the overall geometric definition is achieve in the topology optimization 
step. Then the result is represented with Deformable Simplicial Complex 
entities whose vertices’ positions can be modified by the shape optimi
zation algorithm. Also [20], presented a new level-set algorithm that 
allows to reduce the dimension of the functional by means of the Radial 
Basis Functions. Finally, we highlight the interesting work developed in 
Ref. [21] where the authors propose to first use a shape optimization 
algorithm to define the design domain and then to use a topology 
optimization algorithm to find the optimal material distribution. 

In our work, we propose the use of a Machine Learning (ML) tech
nique to infer the geometrical characterization defined by a set of pa
rameters. Specifically, we use a Dimensionality Reduction (DR) 
algorithm, a subfield of the ML techniques. These algorithms will 
automatically create a parametric model, defined as a combination of 
geometrical modes that explicitly characterizes the implicit boundary 
given by the material distribution provided by the topology optimiza
tion algorithm. The extracted geometrical features may take the form of 

simple geometrical entities, such as radius or thickness but, in general, 
the extracted geometrical features will be more complex. In any case, the 
ML tool will be able to identify the geometrical modes, providing a 
parametric geometrical representation. We will then be able to use this 
parametric characterization to generate new geometries by modifying 
the value of the parameters, either manually or guided by an external 
algorithm. In our case, we will introduce these parameters as the design 
variables used by a shape optimization algorithm. 

The paper is organized as follows. The implementation of the hybrid 
optimization algorithm relies on a set of technologies or methods, that 
are presented in Section 2. Following, in Section 3, we will describe the 
benchmark analytic problem used to check the functionalities devel
oped. Then, in Section 4 we will describe the strategy considered to 
achieve an hybrid optimization framework and how the previously 
described technologies interact with each other. Later, in Section 5 we 
will show the behaviour of the proposed methodology by means of nu
merical analyses considering the benchmark problem together with the 
numerical analyses on the well-known MBB beam problem and a hook 
problem. Finally, in Section 6, we will conclude the paper with some 
final remarks. An Appendix is also included, for the sake of completeness, 
to properly describe some methods and technologies discussed in this 
work. 

2. Methodologies

As proposed in Section 1, our goal is to ally topology and shape
optimization techniques in order to develop a hybrid optimization 
framework. To accomplish this objective, we will make use of different 
methodologies and technologies. 

On one hand, we will harness the capabilities of Machine Learning 
(ML) techniques to infer information from datasets.

The topology optimization technique produces intermediate solu
tions during the iterative process. After the initial steps of the process, 
characterized by substantial modification of the solution, i.e., once the 
final convergence to the solution has started, the intermediate solutions 
will only undergo minor modifications around the final solution. Then, 
we propose to consider these solutions obtained from the iterative 
process as snapshots that will be used by a ML algorithm to infer the 
characteristics of the geometry provided by the TO technique. We will 
use the parameters associated to the geometrical modes to generate new 
geometries, not existing in the original dataset. The generation of the 
new geometries may be guided through a shape optimization technique, 
accordingly, obtaining an optimal geometry suitable for manufacturing. 
In order to achieve this objective, we rely on the Dimensionality 
Reduction (DR) algorithms, a sub-field of ML. There exist a huge variety 
of techniques in the DR field, such as the Principal Component Analysis 
(PCA) [22], which finds the directions of maximum variation in the 
original dataset. The former algorithm is a linear technique, mainly used 
some time ago, but currently non-linear techniques have been developed 
to obtain the inherent structure of the dataset. These techniques can 
preserve the non-linear behaviour of the initial dataset, such as the 
Locally Linear Embedding (LLE) [23] (see Appendix A.3). In this work 
we use the LLE to compute the manifold space. As the geometrical modes 
indicate the directions of the geometry evolution towards the minimi
zation of the fitness function, we will use the parameters associated to 
the geometrical modes to generate new geometries, not existing in the 
original dataset. 

On the other hand, the main concerns about structural optimization 
are its efficiency and accuracy. Therefore, we use the cgFEM framework 
to compute the FE calculations. In short, cgFEM [24,25] is a Fictitious 
Domain Method (FDM) [26–28], thus the domain discretization is 
considered over an easy-to-mesh fictitious domain that embeds the 
physical domain. In cgFEM, this embedding domain is a cube and the 
mesh is obtained by using a set of Cartesian grids. The inherent hierar
chical structure of mesh allows to easily share information between el
ements or meshes. Thanks to the use of the Cartesian grids, all elements 

parameters can be found in Appendix A.2. 
Given the characteristics of these two types of optimization tech-

niques, it would be desirable to develop a hybrid approach that harness 
the strengths and discards the weaknesses of the topology and shape 
optimization techniques when used separately. 



in the mesh are regular hexahedrons. This particular feature decreases 
drastically the computational effort devoted to integration, as the in
formation of one element may be shared with the rest. Appendix A.4 
conscientiously review the cgFEM. 

3. Reference benchmark problem

The reference problem used to describe the proposed methodologies
is defined in Fig. 1 where we use a coherent system of units. This 
problem corresponds to a constant hollowed cross sectional area beam, 
with 2 perpendicular planes of symmetry (x = 0 and z = 0), under plain 
strain conditions, subjected to a pressure P on the internal cylindrical 

surface. 
The objective of the optimization problem is to minimize the amount 

of material while the maximum von Mises stress value (max(σvm)) is 
equal to the yield limit (Sy). It is known that the optimal shape will also 
correspond to a circular external shape, i.e., the optimal shape will take 
the form of a thick-walled cylinder. The following equations are the 
analytical solutions for displacements (1) and stresses (2) of thick-walled 
cylinders subjected to internal pressure [29]: 

u =

⎧
⎨

⎩

uRcos(θ)
0

uRsin(θ)

⎫
⎬

⎭
uR =
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1 − 2ν)r + r2
ext

r

]

(1) 

Fig. 1. Reference problem.  

Fig. 2. Hybrid optimization workflow.  
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where r =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
x2 + z2

√
is the radius of a point of coordinates (x, y, z) in the 

domain, rext and rint are the external and internal radii, κ = rext/rint, 
θ = arctan(z, x), E is the Young Modulus and ν is the Poisson’s ratio. 

The maximum von Mises stress in the cylinder can be evaluated, 
considering the exact solution in stresses, as a function of the external 
radius. Therefore, it is possible to find the value of the minimum external 
radius that satisfies max(σvm) ≤ Sy. For the data shown in Fig. 1, this 
radius is Ropt = 9.0468, represented in Fig. 1, that leads to an optimum 
volume Vopt = 446.4545. 

4. Hybrid optimization

In this section we will describe the details about the strategy that we
propose to ally topology and shape optimization techniques and to 
create a general structural optimization framework. We will describe the 
procedure developed to automatically extract the geometrical parame
ters and how we use them. In Fig. 2, we show the main steps in the 

proposed strategy. 
To summarize, as represented in Fig. 2, we postprocessed the ma

terial distribution layout provided by the TO algorithm to create a dis
tance level-set. This level-set has the information of the distance 
between each node to the implicit boundary. Then, the level-set is used 
to extract the geometrical modes by using a DR tool. This process is 
based on the procedure presented in Ref. [30] where, using a set of X 
segmented images of livers, a DR technique, trained to infer the shape of 
livers provided a parametrized model to represent livers based on just 
two parameters. Finally, using the reduced parametric geometrical 
model, the procedure is able to reconstruct a CAD geometry and, thus, to 
use a standard parametric shape optimization tool to obtain the final 
geometry, both topologically and structurally optimized. 

4.1. Dimensionality reduction. Parametrization 

Topology optimization algorithms provide an optimal material dis
tribution layout of the design domain, i.e. the material/void status of 
each element considered in the discretization. In our case, based on the 
SIMP method, the elements also may have intermediate relative den
sities, representing fictitious material properties. We want to infer the 
geometry of the solution provided by the TO algorithm, described by a 
large number of parameters (one relative density per element) and to 
describe it using a reduced number of parameters. Hence, we will use a 

Fig. 3. Reference problem. Optimal topology optimization material distribution (a) with its nodal projection equivalent (b).  

Fig. 4. MC polygonal meshes representing the external cylindrical shape of the solution obtained from the material distribution considering an isovalue ρc = 0.5, for 
vf equal to 0.5 (a) and 0.15 (b). 



ML algorithm to reduce the dimensionality of the solution. The training 
process of a ML algorithm requires the use of a sufficiently large amount 
of snapshots, each of them representing the geometry to be inferred. As 
most optimization techniques, TO is an iterative method, which means 
that the material distribution information of each iteration will be 
available. Once the TO process has started to converge, there will only 
be minor changes in the material distribution, that will be very similar to 
that of the final solution and, therefore, with the same topology. Hence, 
these intermediate material distributions of the iterative process will be 
suitable for the ML tool, that will be able to describe the geometry using 
a reduced number of parameters, each of them associated to a geomet
rical mode. The choice of snapshots is arbitrary, as far as all of them 
maintain the same topology. The strategy followed in this work is to 
select the last iterations from the topology optimization process, thus 
mainly ensuring the topology invariance while detecting the evolution 
of the geometry in these last steps. As each snapshot can have different 
size, we propose to project the information of each snapshot to a com
mon uniform mesh of elements having the size of the smallest element 
used in the definition of the snapshots. Thanks to the Cartesian grid and 
the hierarchical data structure of cgFEM, this projection process is 
costless and straightforward. 

In Fig. 3a, we show the optimal material distribution layout provided 
by the TO algorithm for the Benchmark problem. Although, in this 
example there will be no change in the topology, but it will help us to 
illustrate the procedure. The element-wise solution directly provided by 
the TO algorithm, will be first smoothed using nodal averaging pro
cedure, whose result is show in Fig. 3b, to obtain a nodal representation. 

As shown in Fig. 3b, the field represented over the design domain is 
quasi-boolean, so the information it provides is very limited. To solve 
this problem, this information must be postprocessed in order to obtain a 
much richer information given by the distance of each node to the im
plicit boundary. As the boundary in the regions with intermediate values 
of ρ is not explicitly defined, we have to generate an explicit geometrical 
definition. To do it, we use the Marching Cubes (MC) [31] algorithm that 
provides a polygonal mesh from the isosurfaces, defined by an isovalue 
ρc, existing in the material distribution with ρc ∈ [0, 1]. Fig. 4 represents 
the polygonal mesh obtained from the MC algorithm for different values 
of vf for an isovalue ρc = 0.5 in both cases. The final volume is repre
sented by the isosurface of selected value of ρc in the regions with in
termediate values of ρ (red surface in Fig. 4) and by the regions of the 
CAD surface that define the design space with ρ = 1 (green transparent 
surfaces in Fig. 4). 

Once the surface defining the volume has been evaluated, the solu
tions represented by nodal densities are replaced by the level-set infor
mation that represents the distance of each node to the surface. In Fig. 5, 

we represent the distance level-set obtained from the cases represented 
in Fig. 4. With this procedure we transformed the quasi-boolean infor
mation of the material distribution into a smooth and monotonous level- 
set. 

In the original algorithm of the SIMP method (see Algorithm 1 in 
Appendix A.1) the volume fraction is set as a constraint and the 
compliance is minimized. The algorithm will only provide a limited 
exploration of the design space as a single value of the volume fraction 
will be considered. Additionally, as no further constraints are taken into 
account, the outcome of the algorithm is not fully useful for structural 
applications where, for example, stress constraints are very common. To 
ensure design richness, we have implemented a simple, not fully robust 
implementation of a TO algorithm, where a heuristic stress scaling 
technique, not to be compared with a stress constraint, adapts the vol
ume fraction to target a given maximum stress value, for instance the 
yield limit [32]. It must be taken into account that this simple strategy, 
not suitable for problems with stress singularities, is not a procedure to 
impose stress constraints, which would require a consistent treatment of 
the stress gradients, including a regularization of the stress field [33,34] 
and a more advanced optimization algorithm. These more advanced 
algorithms could also be considered, but they are out of the scope of the 
paper as we simply need a basic exploration of the design space 
considering appropriate volume fractions. Hence, we propose the use of 
Algorithm 2 defined in Appendix A.1. Algorithm 2 consists of two nested 
loops. The inner loop follows the strategy of the original SIMP method 
and produces solutions of minimum compliance, subjected to the vol
ume fraction constraints dictated by the outer loop. The main benefit of 
using this approach within the hybrid optimization framework is that it 
will automatically increase the richness of the snapshots dataset by 
extending the exploration of the design space varying the values of the 
volume fraction that will tend to increase the density of the snapshots 
around the vicinity of the optimal volume fraction. 

We also propose to increase the number of snapshots, by simply 
repeating the previous strategy. Considering, for each material/void 
layout different values of ρc. The snapshots chosen to train the DR model 
are arbitrary, but all of them must have the same topology. Once the 
snapshots have been evaluated as previously described, we will use them 
as the training dataset for the DR model, specifically for the LLE algo
rithm, as indicated. LLE algorithm is a DR technique that extracts the 
embedded manifold structure existing in a high-dimensional space, 
which in our case is defined by the distance level-set. This embedded 
manifold or low-dimensional space will be defined by a set of parame
ters. We will consider that these parameters characterize and describe 
the geometrical features of our preform. Let Xi be each of the training 
high-dimensional points (or snapshots). The LLE hypothesize that any 

Fig. 5. Distance function to the boundary, represented as a value equal to 0, obtained from Fig. 4.  



point may be obtained as a linear combination of K neighbours with Wij, 
j ∈ [1, K]. The number of neighbours K is user-defined and the weights 
are obtained by minimizing the functional represented in equation (3): 

e(W)=
∑

i
‖Xi −

∑

j
WijXj‖

2
, (3)  

where Wij are subjected to the constraint 
∑

jWij = 1. The LLE entrusts 
that these weights are invariant to space transformations. Hence, the 
value of the weights is preserved when changing between spaces. Now, 

the low-dimensional parameters may be obtained by minimizing the 
functional in (4): 

φ(Y)=
∑

i
‖Yi −

∑

j
WijYj‖

2
, (4)  

where Yi represent each of the points projected to the embedded space. 
The former equation may be represented in the form shown in (5): 

φ(Y) = YT MY, (5)  

with, 

M = (I − W)
T
(I − W). (6)  

The minimization problem could be considered as an eigenvalue prob
lem, where the eigenvectors represent the low-dimensional points Y. 
The dimension of the embedded space may be a user-defined parameter, 
but it is convenient to study the eigenvalues of M. As we minimize (5), 
the target eigenvectors are related to the smallest eigenvalues, as shown 
in Fig. 6, we define the dimensionality as d = 1 because the first eigen
value is far from the following. The detailed mathematical procedure to 
obtain the low-dimensional embedded space is explained in Ref. [35]. 

Fig. 7 shows the embedded space obtained by this technique applied 
to the reference problem. The y-axis represents the volume of the final 
geometry whereas the x-axis represents the extracted low-dimensional 
parameter. We used K = 21 neighbours from a total amount of 101 in
dividuals (snapshots). The colours of the graph in Fig. 7 represents the 

Fig. 6. Reference Problem. First 25 eigenvalues of M (see (6)), in the 
LLE procedure. 

Fig. 7. Reference problem. Embedded space1 for the reference problem considering K = 21 neighbours and d = 1 parameters. The y-axis represents the volume of 
each individual, while the colour represents if the maximum stress value is below (green) or above (red) the yield stress limit. (For interpretation of the references to 
colour in this figure legend, the reader is referred to the Web version of this article.) 

Fig. 8. Reference problem. New geometry obtained from the ispace transformation of Ŷ i into X̂ i.  



feasibility of the individuals, green points denote structures with 
maximum stress below the (yield) stress limit while red points have von 
Mises stresses above the yield limit Sy. 

4.2. Generation of new geometries 

We have obtained a low-dimensional embedded manifold that de
fines the geometrical characteristics of the material distribution. Our 
goal is to use this information to create CAD representations of the ge
ometry. Hence, we define the value of a set of parameters Ŷ i in the 
embedded space Y. This point may be user-defined, however the inter
esting part of this approach is that it can be automatically defined by an 
algorithm, e.g. a shape optimization algorithm. We hypothesize that Ŷ i 

is a weighted interpolation between a set of K̂ neighbours. The value of 
interpolation weights Ŵij is obtained minimizing the functional, 

e(Ŵ )=
∑

i
‖Ŷ i −

∑

j
Ŵ ijYj‖

2 (7) 

In this case, we assume, as in the LLE technique, that weights Ŵij are 

Fig. 9. Reference problem. Optimal geometry (in red) from the hybrid optimization algorithm with the optimal analytic radius (in green) Ropt = 9.0468 (a) and the 
recovered von Mises stress field (b) The results were obtained using meshes of element size hTO = hSO = 0.9563. (For interpretation of the references to colour in this 
figure legend, the reader is referred to the Web version of this article.) 

Fig. 10. Reference problem. Hybrid optimization result of the reference problem with the optimal analytic radius Ropt = 9.0468 (a) and Von Mises stresses (b). The 
results were obtained using meshes of element size hTO = 0.9563 and hSO = 0.2391. 

Table 1 
Reference Problem. Relative time comparison for the different analysis consid
ered. TO(vf (Sy)) stands for the Topology Optimization process where the vf 

scales the von Mises stress to target Sy, MG represents the Model Generation 
procedure and SOσ(Sy) refers to the Shape Optimization process defined by (9a) 
and (9b). The column Total is the accumulated processing time. The last column 
represents the relative error (err(R)) in the radius with respect to the optimal 

analytical radius for each analysis obtained as err(R) =
R − Ropt

Ropt
× 100.   

Relative time err(R) 
(%) 

TO(vf (Sy)) MG  SOσ(Sy) Total 

hTO = 0.9563; 
hSO = 0.9563  

1 1 1 1 − 5.1862 

hTO = 0.9563; 
hSO = 0.4781  

1 1.333 2.4943 1.5894 − 0.0971 

hTO = 0.9563; 
hSO = 0.2391  

1 3.9167 14.3239 6.2539 0.0101 

hTO = 0.4781; 
hSO = 0.4781  

4.6415 12.2500 3.7898 4.5121 − 0.8554 

hTO = 0.4781; 
hSO = 0.2391  

4.6415 14.8333 15.3864 9.0861 − 0.0043 

hTO = 0.2391; 
hSO = 0.2391  

54.4868 187.3333 13.5739 42.1104 − 0.0021  

1 Notice that the design space is not fully represented as it depends on the 
exploration performed by the topology optimization algorithm. 



invariant to space transformations. As we have computed the neigh
bours Yj, we gather the matching high-dimensional points Xj. Finally, we 
apply the following weighted interpolation to compute X̂ i, i.e., a level- 
set of the new geometry defined in the high-dimensional space: 

X̂ i =
∑

j
Ŵ ijXj (8) 

In order to show how the geometries are generated, we select a point 
Ŷ i = 0.5 that belongs to the embedded space created by Y. In Fig. 7, we 
show the individual Ŷ i (in blue) in its space Y. This procedure provides 
as a result a new point located in the high-dimensional space X, called 
X̂ i. The individual X̂ i has the distance information of each node to the 
boundary of the geometry, as represented in Fig. 8a. We harness this 
information to compute the boundaries that define the new geometry, as 
shown in Fig. 8b. 

A clearer understanding of the influence of the geometric modes 
using this procedure can be obtained through the example shown in 
Section 5.1, where a more complex geometry has been considered. 

4.3. Shape optimization 

In previous sections, we have presented a procedure to automatically 
parametrize the material distribution from the topology optimization 
and to extract the main geometrical features (Section 4.1). We have also 

shown how this parametrization is used to generate new geometries 
(Section 4.2). This strategy has interest in itself, as we are able to 
generate new geometries not existing in the training set of data. As the 
purpose of this paper is to ally topology and shape optimization tech
niques, we propose a final step where the modification of the parameter 
Ŷ i is guided by the updating scheme of a shape optimization algorithm, 
the minimization of the volume into the region of feasible design where 
the maximum von Mises stress value is below the prescribed yield limit. 

As we have defined our implicit parametrization of the boundary of 
the design domain, our shape optimization problem can be expressed 
with the following equation, 

where σeq represents an equivalent stress value and Scr is the limit value 
of σeq. For example, the stress value used in this paper is the recovered 
von Mises stress σ*

vm while the limit value is equal to the yield limit Sy. 
Once we have expressed the geometry as a function of a reduced set 

of design variables, as if we were having a parametrized CAD model, we 

Table 2 
Reference Problem. Comparison of solutions obtained with each analysis. The green curve corresponds to the optimal analytical radius Ropt = 9.0468.  

TOσ(Sy)\SOσ(Sy) h = 0.9563 h = 0.4781 h = 0.2391 

h = 0.9563 

h = 0.4781 – 

h = 0.2391 – – 

Fig. 11. MBB problem.  

Fig. 12. MBB Problem. Optimal material distribution layout from the topology 
optimization algorithm, obtained with a uniform mesh of non-conforming 
hexahedra of size hTO = 0.9563, represented on the conforming tetrahedra 
used as integration subdomains. Some finite elements, in blue, are added in the 
representation to show the difference between the integration subdomains and 
elements. (For interpretation of the references to colour in this figure legend, 
the reader is referred to the Web version of this article.) 



are able to use a wide range of shape optimization algorithms. In this 
work, we use, for the numerical examples, the Bayesian optimization 
algorithm. Additionally, other approaches are available such as Genetic 
Algorithms or Gradient-based algorithms. Fig. 9a shows the optimal 
geometry of the reference problem, and Fig. 9b represents the recovered 
von Mises stress field. These results are obtained using a mesh of element 
size hTO = hSO = 0.9563, for both optimization algorithms. 

The results shown in Fig. 9 satisfy that the maximum stress value is 
equal to the stress limit (Sy). However, the optimal geometry is far from 
the analytical optimum. As the optimization process is guided by the FE 
numerical results, we need to improve their quality to improve the ac
curacy of the optimal solution. One strategy to improve the solution is to 
reduce the element size of the FE analysis mesh. If we consider that the 
main objective TO algorithm is to obtain the preform of the solution, i.e. 
a definition of its topology, the TO algorithm does not require the use of 
fine discretizations, therefore, we focus the solution improvement on the 
shape optimization step, the step that will finally define the geometry. 
The optimal solution shown in Fig. 10 was computed with an element 
size of hTO = 0.9563 for the topology optimization algorithm and an 
element size of hSO = 0.2391 for the shape optimization. 

As in the previous analysis, the maximum von Mises stress value is 
equal to the prescribed yield limit, but in this case the optimal radius we 
get is far closer to the optimal analytic solution. In order to understand 
the influence of the mesh in the accuracy and performance, in Table 1 
we compare the time consumed in each optimization along with the 
relative error with the optimal analytic solution. Table 1 includes the 
analyses whose FE meshes correspond to hTO = hSO = 0.9563, hTO =

0.9563 with hSO = 0.4781, hTO = 0.9563 with hSO = 0.2391, hTO =

hSO = 0.4781, hTO = 0.4781 with hSO = 0.2391 and hTO = hSO =

Fig. 13. MBB Problem. Optimal material distribution layout from the topology 
optimization algorithm, obtained with an h-adapted mesh of non-conforming 
hexahedra of sizes hTO = {0.4782, 0.9563, 1.9126}, represented on the con
forming tetrahedra used as integration subdomains.2. 

Fig. 14. First 25 eigenvalues of the M (see (6)), belonging to the 
LLE procedure. 

Fig. 15. MBB problem. Embedded space for the reference problem considering 
K = 30 neighbours and d = 3 parameters. The colours show the volume of each 
individual. Additionally, some individuals are visualized with its CAD geometry 
representation. (For interpretation of the references to colour in this figure 
legend, the reader is referred to the Web version of this article.) 

Fig. 16. Influence of each geometry mode in the new generated geometries. 
The reference geometry, obtained from the mean values of the range of each 
parameter, is represented in grey. We show the variation of each geometric 
mode by representing their lower and upper values, in red and green colour, 
respectively. (For interpretation of the references to colour in this figure legend, 
the reader is referred to the Web version of this article.) 



0.2391. Additionally, in Fig. 2, we gather the optimal geometry ob
tained with each of the analysis and compare it with the optimal analytic 
solution (see Table 2). 

Table 1 and Fig. 2 show that, for this problem:  

• Obviously, the largest influence on the time taken for the Model
Generation (MG) comes from the size of the elements used by the TO
process.

• The last column of Table 1 shows that, although smaller values of
hTO lead to more accurate results, the main influence on the accuracy
comes from the hSO, the size of the elements used for the SO process.

5. Numerical examples

After having shown the results provided by the proposed hybrid
optimization algorithm for the academic reference problem, in this 
Section, we will use two additional examples. Specifically, we will use 
the well-known MBB problem and a hook problem. 

5.1. MBB problem 

Let us consider the well-known “MBB-Beam” problem to illustrate 
the proposed procedure. To reduce computational cost only half of the 
beam has been modelled, considering the symmetry of the problem, as 
shown in Fig. 11. Additionally, in order to consider Plane Strain 
behaviour, the surface shown in front and its opposite are constrained in 
its normal direction. Also in Fig. 11, we represent the geometrical di
mensions of the design space and the boundary conditions. In particular, 
the beam is bi-supported and subjected to a parabolic pressure P, whose 
maximum value equals Pmax = 1. As the elastic properties of the mate
rial, we consider a Young’s Modulus E = 1000, a Poisson’s ratio ν = 0.3 
and a yield limit Sy = 0.3. 

The first step of the procedure is to run the topology optimization 
algorithm that will provide the optimal material distribution layout to 
be used as preform. The analysis was been carried out considering a 
initial mesh with elements of uniform size hTO = 0.9563 and a filter 
radius set to rf = 1.5hTO = 1.4345. In Fig. 12 we show the optimal 
material distribution provided by the topology optimization algorithms. 

From Fig. 12, we consider that the preform provided by the topology 
optimization algorithm lacks of enough boundary definition as the 
diffuse region (elements with intermediate densities) represents a high 
percentage of the total design domain. As shown in Ref. [32], h-adaptive 
mesh refinement strategies allow to enhance the boundary resolution 
and to improve the solution’s quality. In cgFEM we can consider two 
refinement strategies, a) a density-based refinement, where elements 
with intermediate values of relative density are refined to sharpen the 

boundary definition, and b) a quality-based refinement where the mesh 
refinement is guided by the estimated error in energy norm. In this 
particular case, we harness the density-based refinement strategy to 
improve the boundary definition, since the shape optimization algo
rithm will be in charge of the quality of the solution, as explained in 
Section 4.3. We need to define an acceptable error level to ensure the 
proper convergence of the Algorithm 2. In this example we prescribed a 
maximum estimated relative error on energy norm ηmax = 12.5% [32]. 
With these considerations, we analyzed the MBB problem with an initial 
mesh with elements of uniform size h1

TO = 0.9563 and a filter radius set 
to r1

f = 1.5h1
TO = 1.4345 and a second h-adapted mesh with elements of 

size h1
TO and h2

TO = 0.4782 and an adaptive filter radius with lengths of 
r1
f and r2

f = 1.5h2
TO = 0.7173. The resulting material distribution layout 

is shown in Fig. 13, that shows a sharper boundary definition, and a final 
relative error in energy norm of η = 12.0839%. 

As in the Reference benchmark problem, once the preform is defined 
by the topology optimization algorithm, we train the reduced model 
with the material distributions obtained during the topology optimiza
tion process. To accomplish this, we use the LLE algorithm with a vi
cinity K = 30 over a total of 140 points (snapshots). Later, we define the 
number of dimensions of the embedded space taking into account the 
eigenvalues obtained from the LLE procedure. In this case, we consid
ered d = 3 because the first three eigenvalues were isolated from the rest, 
as shown in Fig. 14. Fig. 15 represents the resulting embedded space 
along with several geometries to illustrate the results. 

In Fig. 16, we show the reference geometry (obtained with the mean 
values of the range achieved for each of the three parameters consid
ered) in grey, and the variation of each geometric mode between its 
lower and upper limit, in red and green colours, respectively. As shown, 
the variation of the parameters do not only imply the erosion of the 
structure but also variation of the bars’ angles and non-uniform bar 
sections variations. 

With the low-dimensional space properly defined, the shape opti
mization algorithm will use it as a design space. We used a Bayesian 
algorithm to update the design variables until the convergence criterion 
was satisfied. The analysis was carried out with an initial uniform mesh 
with element size equal h1

SO = 0.4782. In order to get a solution with a 
high quality, we use an h-adaptive refinement strategy based on the 
error, specifically we enforce the maximum estimated relative error to 
ηmax = 6%. Hence, we allow following h-adapted meshes with elements 

Fig. 17. MBB problem. Convergence graph of the Bayesian optimization algorithm.  

2 Note that some elements have been coarsened as they do not influence the 
overall error. 



of size h1
SO and h2

SO = 0.2391. The evolution of the optimization process 
through the Bayesian algorithm is represented in Fig. 17. The optimal 
CAD geometry is shown in Fig. 18a, while, in Fig. 18b, we display the 
corresponding recovered von Mises stress field, calculated with a final 
relative error in energy norm of η = 5.4659%. 

As shown in Fig. 18a, we obtained a CAD representation of the MBB 
problem, which is directly suitable for manufacturing. Furthermore, in 
Fig. 18b, we represented the von Mises stress field whose maximum 
value is equal to the yield limit Sy = 0.3. 

5.2. Hook problem 

The second example corresponds to a hook as displayed in Fig. 19. 
The essential boundary conditions are imposed over the green surface, 
while we consider symmetry on the red surface. Rigid body motion is 
avoided using appropriate constraints on these surfaces. A parabolic 

Fig. 18. MBB Problem. Hybrid optimization optimal geometry (a) and the 
corresponding recovered von Mises stress field (b). 

Fig. 19. Hook Problem. Problem representation with geometrical dimensions. 
Essential boundary conditions imposed over the green surface and symmetry on 
the red surface, also a parabolic pressure with maximum value P = 1 is imposed 
in the inner cylindrical surface. (For interpretation of the references to colour in 
this figure legend, the reader is referred to the Web version of this article.) 

Fig. 20. Hook Problem. Optimal material distribution layout obtained from the 
topology optimization algorithm, represented on the conforming tetrahedra 
used as integration subdomains. Notice that integration subdomains whose 
elemental density is ρe < 0.5 are discarded from the representation. 

Fig. 21. Hook Problem. Eigenvalues of the LLE method that define the quantity 
of independent geometrical modes. 



pressure with a maximum value P = 1 is imposed in the inner cylindrical 
surface. The material properties considered in this problem are: Young’s 
Modulus E = 1000, Poisson’s ratio ν = 0.3 and yield limit Sy = 3. 

As in previous examples, the process starts with the topology opti
mization algorithm. As in the MBB problem, we consider density and 
error-based h-adaptive refinement with a prescribed maximum esti
mated relative error in energy norm equal to ηmax = 7.5%. Specifically, 
we consider an initial mesh with uniform size h1

TO = 0.1275 and a sec
ond h-adapted mesh with elements size h1

TO and h2
TO = 0.0637. In 

Fig. 20 we represent the optimal material distribution provided by the 
TO algorithm, obtained with a final relative error η = 5.9703%. 

Once the preform is defined by the topology optimization algorithm, 
we obtain the embedded manifold. As previously, we use the LLE al
gorithm, in this particular case, we consider a vicinity of K = 12 
neighbours over a total of 60 snapshots. Studying the eigenvalues ob
tained, represented in Fig. 21, we consider a dimensionality d = 2, as the 
first two eigenvalues are isolated from the rest. 

With the reduced embedded space generated from the LLE algo
rithm, we run the shape optimization algorithm. The analysis is calcu
lated with an initial uniform mesh of size h1

SO = 0.0637 and an h- 

adapted refinement strategy that allows following meshes with element 
size h1

SO and h2
SO = 0.03185, and a prescribed maximum relative error 

in energy norm ηmax = 3%. For this example, we also use a Bayesian 
optimization algorithm. The iterative process is represented in Fig. 22 
and the results we obtained are shown in Fig. 23, which are calculated 
with a final relative error of η = 2.7010%. 

6. Conclusion

In order to conclude the current work, we would like to synthesize
some final remarks:  

• Shape optimization algorithms based on parametrized geometrical
representations provide manufacturable solutions but are unable to
explore topologies other that the topology described by the pre
scribed parametrized geometrical model.

• The topology optimization algorithms based on the extensively used
SIMP method for structural optimization provide a material distri
bution that characterizes the topology of the solution. However, this
material distribution is not directly suitable for manufacturing.

Fig. 22. Hook problem. Convergence graph of the Bayesian optimization algorithm.  

Fig. 23. Hook Problem. Representation of the result obtained: optimal geometry (a) and von Mises stress field (b).  
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odology, Writing - Review & Editing, Supervision, Funding acquisition. 

Declaration of competing interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Acknowledgements 

The authors gratefully acknowledge the financial support of Minis
terio de Educación y Formación Profesional (FPU16/07121), General
itat Valenciana (Prometeo/2021/046), Ministerio de Economía, 
Industria y Competitividad (DPI2017-89816-R) and FEDER.  

A. Appendices

A.1. Appendix: Topology Optimization

Topology optimization tries to find the optimal material distribution layout over a given physical design domain. As it belongs to the structural
optimization field, it handles the minimization of an objective function subjected to the satisfaction of a set of constraints. The topology optimization 
problem is defined over a design domain, thus it is characterized by a large set of design variables, as any element of the discretization may be material 
or void. Thanks to the consideration of the fictitious material as a composite behaviour [36] where the elastic properties are defined through a 
characteristic function, topology optimization has become widely used. The Solid Isotropic Material Penalization (SIMP) method regularizes the 
material properties as a penalization of the density interpolation function. In addition to the SIMP method, there exist other techniques in the 
bibliography: strictly based in the 0–1 values of relative density [37–40], level-set based on the nodal values of an implicit function [41–45] and based 
on the phase-field [46], for instance. 

In structural topology optimization we compute the optimal material distribution ρ in a given design domain Ω, which is defined as a continuous 
variable bounded between 0 (void) and 1 (material). When the structural topology optimization problem is solved using the SIMP method, introduced 
in Refs. [1–3], usually, the optimization problem consists in minimizing the compliance c(ρ) subject to certain constraints concerning the amount of 
material. In order to enforce the material/void segregation as much as possible, the method uses a penalization parameter p to penalize intermediate 
density values. Thus, the SIMP method considers the following optimization problem: 

considering Voigt’s notation ε is the strain field, u is the displacement field and ν is the test function. D is the matrix of the Hooke’s law that relates 
strains ε and stresses σ. As shown in the equation, in the SIMP D is defined as a function of D0 (the matrix of the Hooke’s law for the fully dense 
material), the density field ρ and the penalization parameter p. Additionally, vf is a prescribed volume fraction and V0 is the total volume of the design 
domain. Finally, an additional side-constraint is added on ρ. 

In Algorithm 1, we show the structure of the SIMP method with the compliance c as a objective function and the volume fraction as constraint. 
Additionally, we remark the need of a filtering technique to avoid numerical instabilities, in this case sensitivities filtering. Finally, the use of an 

• In this paper we have proposed a hybrid structural optimization 
methodology that allies TO and SO algorithms to obtain a synergetic 
combination of both techniques. This hybrid methodology would 
represent a more general and powerful structural optimization 
framework.

• The key aspect of this methodology is the use of a machine learning 
algorithm to automatically bridge TO and SO algorithm.

• The use of a manifold learning technique, such as the LLE, allowed 
us to extract the geometrical modes defined by the material 
distribution information provided by the TO algorithm. In order to 
correctly use these techniques, the data must be adequately 
processed. We trans-form the quasi-boolean material distribution 
into a richer level-set with the information of the distance of each 
node to the boundary.

• The existence of a latent embedded space among the material dis-
tribution data, allows to extract the geometrical modes that define 
the solution of the TO algorithm. These modes can then define a 
parametric geometrical model that will be used to create brand new 
geometries topologically equivalent to each other.

• The geometry parametrization tool developed in this work may be 
guided by a user or by an algorithm. In case the tool is managed by a 
parametrized shape optimization algorithm, this algorithm will 
consider the embedded space as its design space.



updating scheme f to obtain a new set of design variables ρi+1, such as the Optimality Criteria (OC) [47], is also required.  

Algorithm 1 
TO(vf ).Compliance minimization algorithm. 

For the sake of simplicity, we implemented a very basic, not necessarily efficient algorithm (Algorithm 2) that performs a heuristic stress scaling 
procedure [32], whose behaviour has been checked for the examples presented in this paper. The proposed algorithm allows us to explore different 
volume fraction following a simple stress scaling procedure where the volume fraction is adapted to target a predefined maximum stress value. In 
particular, the objective of the implemented algorithm is to find the value of volume fraction that would produce a solution whose maximum von 
Mises stress targets the value of a critical stress, max(σ*

eq) ≡ Scrit . To accomplish this objective, we define two nested loops, the outer loop will drive the 
selection of the value of the volume fraction and evaluate if the prescribed level of stress is achieved. Meanwhile, the inner loop will follow the strategy 
proposed in the original SIMP method, that minimizes the compliance of the component subjected to a volume fraction constraint, whose value has 
been defined in the outer loop. As our procedure is based on the original SIMP method, we will only consider minimum compliance solutions. The 
algorithm described above, may be formulated as follows, where we indicate that the problem is subjected to the calculation of the algorithm that 
describes the SIMP method (Algorithm 1), 

where Scrit is the limit value of σ*
eq. In this work we considered Scrit as the yield limit Sy and σ*

eq represents an equivalent uniaxial stress value. In this 
work, we used as σ*

eq the recovered von Mises stress field σ*
vm evaluated from σ*, the so called recovered stress field, more accurate than the stress field 

σh provided by the FEM. There are different procedures to obtain σ*. Because of their accuracy, the most commonly used techniques are the 
Superconvergent Patch Recovery (SPR) technique (proposed by Zienkiewicz and Zhu [48]) and enhanced versions of this technique, like the SPR-C 
technique [49]. 

The use of the density field ρ in topology optimization implies, a particular definition of the stress field to keep consistency with the expression of 
the strain energy (compliance) in (10a). We can rewrite equation (10a) as: 

σhρ
e = D(ρe)εh

e = ρp
eD0εh

e = ρp
eσh0

e (12)  

where σh0
e = D0εh

e would represent the original FE stress field at the element, before considering the density correction. The penalization parameter p in 
(12) is consistent with equation (10b) [33,50]. Taking into account equation (12), for the evaluation of the recovered stress field we propose to smooth
the original stress field at elements, σh0 , and then to modify the resulting recovered stress field using the density correction.

The steps to address the problem in (11) are presented in Algorithm 2. As previously mentioned, the structure of the problem is a nested opti
mization loop. The outer loop searches for the volume fraction whose corresponding maximum von Mises stress equals the yield limit, while the inner 
loop minimizes the compliance of the component subjected to the volume fraction defined in the outer loop. For the sake of simplicity, the updating 
scheme g in Algorithm 2 consists of a quadratic curve fitting procedure. This method uses the information of the last 3 iterations, specifically the values 
of volume fractions vf and their corresponding stress max(σ*

vm), to fit a surrogate model and infer the next value of vi+1
f that would produce a 

max(σ*
vm) ≡ Sy. A schematic representation of this strategy is show in Fig. 24.  

Algorithm 2 
TO(vf (Sy)). Stress scaling algorithm for evaluation of volume fraction for which max(σ*

vm) ≡ Sy, with inner topology optimization loop based on the SIMP method. 



Fig. 24. Schematic representation of the curve fitting procedure (g in Algorithm 2). Considering the volume fraction exploration algorithm, we use the value of the 
last three iterations and its corresponding maximum von Mises stress, and adjust a curve. The volume fraction value for which this curve will reach the value of the 
yield limit (Sy) corresponds to the next value of volume fraction. 

A.2. Appendix: Shape Optimization

In this work we consider the parametrized shape optimization where the boundary is defined a priori by means of a set of parameters, also known as
design variables a, as shown in Fig. 25. 



Fig. 25. Parametrized boundary of the design domain.  

The shape optimization formulation applied to the structural behaviour commonly uses the volume or mass as the objective function and a given 
measure of the stresses as a constraint, for instance to keep the maximum von Mises stress max(σ*

vm) below the yield stress limit Sy, as follows: 

A.3. Appendix: Dimensionality Reduction

The data in most fields of science and engineering has high dimensionality. In order to manage high quantity of data and to handle it adequately, its
dimension must be reduced. Dimensionality Reduction (DR) techniques are a set of algorithms that transform the high-dimensional data into a 
reduced space. This manifold preserves the original structure of the high-dimensional space by extracting the main principal characteristics. The 
dimensionality reduction eases the classification, visualization or even understanding of the high-dimensional data. Additionally, in this work the 
reduced dimensions are used to generate new high-dimensional data, not existing in the original dataset. Linear techniques, such as Principal 
Component Analysis (PCA) were initially used to perform the dimensionality reduction. But in last decades, non-linear techniques have been 
developed to obtain the manifold space. The advantage of this techniques is that they are able to transform complex non-linear data. We propose the 
use of the Locally Linear Embedding (LLE). Fig. 26 shows how it maintains the structure of a given dataset. 



Fig. 26. Example of the LLE algorithm, (a) represents the original high dimensional data, (b) shows a sampled space from the high dimensional space and (c) il
lustrates the embedded manifold provided by the LLE algorithm over the sampled high dimensional space. 

A.4. Appendix: Cartesian Grid Finite Element Method (cgFEM)

The accuracy of the FE analysis is a relevant factor in optimization processes but, as these are iterative algorithms, the computational efficiency of
the FE analysis is critical. The use of meshes where all the elements have the same shape helps to improve the overall performance of the FE analysis. In 
these cases, the stiffness matrix evaluated for one element can be used for any other element having the same material properties simply considering a 
stiffness scaling factor evaluated as a function of the ratio of the element sizes. In fact, in most numerical examples shown in the literature of topology 
optimization, the domain used for the optimization is a rectangle (2D) or a cuboid (3D), as these shapes can be easily meshed with Cartesian elements. 
However, practical applications cannot be restricted to this kind of domains. If standard boundary-conforming FE meshes were used, it would not be 
possible to ensure that all the elements have the same shape. The use of Fictitious Domain Methods (FDM), where the FE mesh is not necessarily 
conforming to the geometry, like the Finite Cell Method [26–28] or the Cartesian grid finite element method (cgFEM) [24,25], both of them based on 
the use of Cartesian grids, is an alternative to solve this issue. 

In particular, in cgFEM we embed the physical domain, ΩPhys, in a cuboid defining the fictitious domain, ΩFic. The fictitious domain is meshed with 
elements of different levels. Considering the Level-0 mesh as a single element embedding the cuboid, we split the mesh into 8 new Cartesian elements 
that structure the Level-1 mesh. We repeat the same process recursively to create meshes with higher refinement levels, so they have a hierarchical 
structure. Then, the mesh for the FE analysis is created with elements of different levels of refinement. In order to impose C0 continuity between 
contiguous elements from different level, we use multi-point constraints. 

Fig. 27 a represents an example of physical domain, ΩPhys, with a sufficiently smooth boundary Γ, embedded into the embedding domain ΩFic. The 
boundary Γ of ΩPhys can be divided into two non-overlapping parts, ΓD and ΓN, where the Dirichlet and Neumann conditions are respectively imposed. 
Fig. 27b, shows the embedding domain ΩFic, discretized with Cartesian elements. The following expression relates the different domains: 

ΩPhys⫅ΩFic =
⋃ne

e=1
Ωe (14)   



Fig. 27. Cartesian grid finite element method (cgFEM). Representation of the physical domain and the discretization of the fictitious domain.  

Fig. 28 shows a 3D example analyzed with cgFEM that is used here to summarize the main characteristics of this methodology:  

• cgFEM is an efficient FE analysis technique as it considers a Cartesian discretization of the embedding domain (see Fig. 28a).
• The analysis mesh used by cgFEM to model the physical domain ΩPhys can consider elements of different refinement levels. These elements include

elements fully placed into ΩPhys and elements cut by its boundary Γ. Elements fully outside of ΩPhys are not considered in the analysis mesh (see
Fig. 28b).

• cgFEM uses a specifically designed integration mesh (Fig. 28c), based on the NEFEM integration approach [51] that allows to consider the exact
boundary representation given by, for instance, NURBS or T-Splines [52].

Fig. 28. cgFEM. Different domains involved in a finite element analysis.  

A stabilized Lagrange multipliers formulation is used to impose boundary conditions in elements cut by the Dirichlet boundary. As a result, 
equation (10d) is replaced by the following equation, 



a(u, ν) + k
h

∫

ΓD

u⋅νdΓ = l(ν) + k
h

∫

ΓD

g⋅νdΓ +

∫

ΓD

T(u)⋅νdΓ (15) 

A detailed description of the derivation of this equation and the description of its behaviour, out of the scope of this paper, can be found in 
Ref. [53]. The most relevant feature of the proposed stabilized Lagrange multipliers formulation is that the stabilization term T is evaluated as a 
recovered [48,49] traction field. As this traction field depends on the FE solution, an iterative process, i.e. Richardson iterations, is used to solve (15). 
The stabilization terms are not affected by ρ and do not play any role in the TO procedure. 
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[7] L. Dedè, M.J. Borden, T.J. Hughes, Isogeometric analysis for topology optimization 
with a phase field model, Arch. Comput. Methods Eng. 19 (3) (2012) 427–465. 

[8] A.L. Gain, G.H. Paulino, Phase-field based topology optimization with polygonal 
elements: a finite volume approach for the evolution equation, Struct. Multidiscip. 
Optim. 46 (3) (2012) 327–342. 

[9] S.H. Jeong, G.H. Yoon, A. Takezawa, D.H. Choi, Development of a novel phase- 
field method for local stress-based shape and topology optimization, Comput. 
Struct. 132 (2014) 84–98. 

[10] M. Papadrakakis, B.H. Topping, Innovative Computational Methods for Structural 
Mechanics, Saxe-Coburg Publications, 1999. 

[11] P.S. Tang, K.H. Chang, Integration of topology and shape optimization for design of 
structural components, Struct. Multidiscip. Optim. 22 (1) (2001) 65–82. 

[12] G.W. Jang, K.J. Kim, Y.Y. Kim, Integrated topology and shape optimization 
software for compliant MEMS mechanism design, Adv. Eng. Software 39 (1) (2008) 
1–14. 
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[44] S. Amstutz, H. Andrä, A new algorithm for topology optimization using a level-set 
method, J. Comput. Phys. 216 (2) (2006) 573–588. 

[45] T. Yamada, K. Izui, S. Nishiwaki, A. Takezawa, A topology optimization method 
based on the level set method incorporating a fictitious interface energy, Comput. 
Methods Appl. Mech. Eng. 199 (45–48) (2010) 2876–2891. 
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