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Mechanical strength and shape 
accuracy optimization of polyamide 
FFF parts using grey relational 
analysis
Zohreh Shakeri1*, Khaled Benfriha1, Nader Zirak2 & Mohammadali Shirinbayan2

This paper investigates the effect of different additive manufacturing process parameters such as chamber 
temperature, Printing temperature, layer thickness, and print speed on five essential parameters that 
characterize the manufactured components: cylindricity, circularity, strength, and Young’s modulus, 
and deformation by Gray Relational Analysis method simultaneously. Taguchi method was used to 
design the experiments, and the PA6 cylindrical parts were fabricated using a German RepRap X500® 3D 
printer. Then the Gray Relational Grade (GRG) values were calculated for all experiments. In the 8th trial, 
the highest value of GRG was observed. Then, to discover the optimal parameters, the GRG data were 
analyzed using ANOVA and S/N analysis, and it was determined that the best conditions for enhancing 
GRG are 60 °C in the chamber temperature, 270 °C in the printing temperature, 0.1 mm layer thickness, 
and 600 mm/min print speed. Finally, by using optimal parameters, a verification test was performed, and 
new components were investigated. Finally, comparing the initial GRG with the GRG of the experiments 
showed an improvement in the gray relational grade (14%) which is accompanying with improving of GRG 
value.

One of the most widely used additive manufacturing (AM) methods is Fused Filament Fabrication (FFF), which 
can produce complex geometry parts. In this process, a continuous filament of thermoplastic material is deposited 
layer by layer to make the final piece. One of the essential goals in the production of parts with this method is to 
produce parts with high mechanical properties and excellent geometrical accuracy at the same time. Among the 
various methods used to improve the desired properties of produced parts is to determine the optimum process 
parameters in this process1–3.

ME, also known as Fused Filament Fabrication (FFF) as described in the ISO/ASTM 52900, is a popular AM 
method that involves selective deposition due to less material wastage, less expensive materials, and tools of ther-
moplastic polymers through a heated nozzle. As a 3D printing technique in prototype and end-product applications 
among additive manufacturing methods4,5.

In the FFF process, a polymer is supplied into a liquefier, which extrudes a filament while moving in successive 
X–Y planes along the Z-axis to layer-by-layer build a 3D object6,7. Polylactide (PLA), Polyamide (PA), Polycarbon-
ate (PC), Acrylonitrile Styrene Acrylate (ASA), Nylon, Acrylonitrile Butadiene Styrene (ABS) and, Polyether Ether 
Ketone (PEEK) seem to be the most often utilized thermoplastic polymers used in the FFF technique to make 3D 
parts8. The most significant disadvantages of this approach include poor surface quality, slow build speed, and aniso-
tropic mechanical properties resulting from the layer-by-layer strategy9,10. Due to 3D printed parts usage, mechanical 
behavior and geometrical accuracy must be carefully examined to avoid wasting materials and time11.

Because many parameters such as might impact the printing process, manufacturers’ default configuration of 
printing process parameters cannot guarantee the quality of printed products12. Various process parameters such as 
nozzle temperature, layer thickness, shell thickness, printing speed, infill density and other parameters with multiple 
responses, control the FFF process and they should be optimized to improve the required quality. From the perspec-
tive of analysis, this makes it a rather tricky procedure. Therefore, extensive research is being conducted to determine 
the impact of various FFF process parameters on the different responses13.

Ju-Long14 developed the Gray Relational Analysis (GRA), which is one of the multi-response optimization tech-
niques, and it is based on the Taguchi technique. Many recent studies based on the Gray Relational Analysis (GRA) 
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have been performed to improve different responses through processing parameter optimization. For example, 
Venkatasubbareddy et al.15, used the Taguchi method with Grey Relational Analysis (GRA) to determine the best 
combination of FDM process characteristics for ABS parts, resulting in improved surface finish and dimensional 
accuracy in terms of length, thickness, and diameter. L27 Orthogonal Array was chosen for this experiment using 
Taguchi’s DOE with five parameters: air gaps, layer thickness, raster width, raster angle, And part orientation at 
three levels of each parameter. It was stated that the layer thickness of 0.254 mm, part orientation and raster angle of 
0°, raster width of 0.4564 mm, and zero air gaps should improve the components’ surface quality and dimensional 
accuracy. Aslani et al.16 investigated the impact of the number of shells, printing temperature, infill rate, and printing 
pattern on the dimensional accuracy of the PLA. The Grey–Taguchi technique with ANOM and ANOVA techniques 
was used to determine the optimum printing parameter levels for PLA FFF components, resulting in the best dimen-
sional accuracy. Regarding dimensional deviations in two dimensions, a multi-response optimization was carried 
out and obtained results showed that the essential characteristic, according to the data, is the nozzle temperature. 
Furthermore, Analysis shows that the levels that minimize dimensional deviation are three shells, 230 °C Printing 
temperature, one of the recommended printing temperatures of PLA, 10 % Infill rate, and hexagonal printing pattern.

Deng et al.17, analyzed the effect of 4 parameters, including printing speed (20, 40 and 60 mm/s), layer thickness 
(0.2, 0.25 and 0.3 mm), printing temperature (350, 360 and 370 °C), and filling ratio (20, 40 and 60 %) on strain, 
strength, and stiffness. The substance studied in this study is polyether-ether-ketone (PEEK) which is manufactured 
by FFF. It was observed that the mechanical properties would increase in printing speed of 60 mm/s, the layer thick-
ness of 0.2 mm, the temperature of 370 °C, and the filling ratio of 40%. Also, they observed the microstructure of 
PEEK parts. They understood that there is more air gap and fusion lines in the part with lower strength, so it was 
concluded that lower printing temperature and printing speed caused more defects in the part. In addition, the con-
nectivity could be influenced by a subcooled temperature between the fused filament, chamber, and bed temperatures. 
Xiaoyong et al.18 investigated the effect of bed temperature (130, 110 and, 25 °C), chamber temperature (60 and 25 
°C) and filling ratio (50% and 100%) on mechanical properties and forming precision, the sheet forming of PEEK 
thermoplastic parts fabricated using FFF method. They understood that temperature significantly impacts mechanical 
properties, and increasing the temperature can improve mechanical qualities. In the higher bed and chamber tem-
perature, the tensile strength and printing precision will be enhanced due to the increase in bonding force between 
the layers. Also, mechanical properties are improved at low filling ratios. By comparing the PEEK and PLA strength 
results, it was discovered that the tensile strength of PEEK parts is higher than previously thought. Aamir et al.19 
applied the Taguchi and GRA technique to determine the effects of five parameters: raster width, layer thickness, 
printing speed, and extrusion temperature on build time, surface roughness, and flatness error of PC/ABS blend 
parts. L27 Orthogonal Array of Taguchi’s design of experiments Selected and GRA techniques were used to select 
the optimum FDM variables for responses using multi-objective optimization. According to the investigation results, 
Raster width, layer thickness, and printing speed significantly impact multiple control factors. The layer thickness of 
0.2 mm, the Raster width of 0.55 mm, extrusion temperature 270 °C, Bed temperature 100 °C, and Printing speed 40 
mm/s are optimal conditions. Using the full factorial design methodology, Kechagias et al.20 investigated the effect 
of Raster deposition angle, cutting speed, Laser power, and Stand-off distance on dimensional accuracy and surface 
roughness using a low-power CO2 laser cutting of thin acrylonitrile butadiene styrene (ABS) plates manufactured 
with the FFF process. Finally, ANOVA analysis, interaction studies, and quadratic regression models were used to 
match input and output parameters, optimize the process kerf angle near 0°, and decrease surface roughness near 0 
m. The best prosses parameters were 7.5 mm stand-off distance, zero raster deposition angle, 14.4 mm/s laser speed, 
and 105 W laser power. Anusree et al.21 analyzed the effects of four variables, including print speed, layer thickness, 
support material density, and raster width, on dimensional accuracy, tensile strength, and surface finish of FDM-
processed helical surfaces using Taguchi and GRA methods. It was stated that the better dimensional accuracy, 
tensile strength, and surface finish were obtained by a minimum level of the layer thickness, in a print speed of 58 
mm/s, and maximum level of raster width and rough support material. In N. Vidakis et al.22 research examined the 
influence of layer height (0.15, 0.2, and 0.25 mm), nozzle temperature (250, 260, and 270 °C), and raster angle (0, 45, 
and 90°) on the mechanical strength and toughness of FFF Polyamide 12 polymer using a full factorial methodol-
ogy. Experimental results were analyzed using ANOVA analysis, interactive diagrams, and box diagrams, and it was 
determined that experimental results were analyzed using ANOVA analysis, interaction, and box diagrams. It was 
found that while 270°C optimizes static mechanical strength and elastic modulus and at 260 °C, the toughness and 
zero degrees raster angle, static mechanical strength, and toughness values ​​are optimized at 45 degrees raster angle 
elastic modulus values ​​are optimized. In addition, all responses are optimized with a layer height of 0.25 mm. Kecha-
gias et al.23 used the Taguchi L18 orthogonal array to analyze the effect of the nozzle temperature (180, 200, and 220 
°C), layer thickness (0.1 and 0.3 mm), filament printing speed (30, 40, and 50 mm/s), and deposition angle (0, 45, 
and 90°) on mechanical properties such as ultimate tensile strength (UTS) and elasticity module (E) of PLA/Coconut 
wood parts. The results were analyzed using ANOM and ANOVA methods. The raster deposition angle has the most 
significant effect on responses, and the zero-oriented filament has greater UTS and E values (80.1% on UTS and 92.6% 
on E). The layer thickness is a significant parameter; although it is highly dependent on the interlaminar bonding 
state, the effect of this parameter was insignificant in this research. Also, they understood the mechanical behavior 
in various layer thicknesses is different by changing the printing speed. In our previous research24, the effect of four 
parameters, including thickness (5, 10, and 15 mm), infill pattern (Hexagonal, Rectangular, Triangular), number of 
walls (2, 3, and 4), and Layer height (1, 1.125 and 2 mm) were analyzed on geometrical accuracy of cylindrical PA6 
parts using Taguchi method. It was understood the effect of thickness and Layer height is more significant. The best 
process parameters for minimum geometrical error were the hexagonal infill pattern, a thickness of 5 mm, a wall 
layer of 2, and a layer height of 1.125 mm. According to N. Vidakis et al.25 nozzle temperature and layer height values 
affect ultimate tensile strength, elastic modulus, average, and the max-min differences ultimate tensile strength and 
elastic modulus (Δσb and ΔE) were observed using the general full factorial method. After it was revealed that in the 
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nozzle temperature of 270 °C and a layer height of 0.2 mm, all the responses were optimized (maximizes the ultimate 
tensile strength and elastic modulus and minimizes the Δσb and ΔE).

In the studies mentioned in the literature, the effects of different parameters in FFF on mechanical properties 
and shape accuracy on different materials were investigated. However, no research in the literature was not reported 
where the influence of four parameters, such as the chamber temperature, Printing temperature, layer thickness, and 
print speed, on the mechanical strength and shape accuracy of the PA6 simultaneously. Therefore, this work is an 
experimental investigation of how these four FFF parameters, including Chamber temperature (30, 45, and 60 °C), 
Printing temperature (260, 270, and 280 °C), layer thickness (0.1, 0.2, and 0.3 mm), and print speed (600, 1800 and 
3000 mm/min), on the mechanical properties and geometrical accuracy of cylindrical parts made of PA6, produced 
by the FFF process. The results were analyzed using the GRA method and presented using S/N analysis, ANOVA 
analysis, interaction plots, counter and surface plots, and a regression model. Finally, a confirmation test was per-
formed to validate the results. In the final part of this work, the results obtained were discussed.

Materials and methods
Experimental setup.  In this study, the PA6 samples were fabricated by a German RepRap X500® 3D printer, 
which uses fused filament fabrication (FFF) technology. This machine has a high degree of design freedom and 
allows designers to experiment with completely new design and functionality concepts. Some of the technical speci-
fications of the German RepRap X500® 3D printer are shown in Table 1. Nylon white or PA6 is one of the most widely 
used polyamides. Also, it is a commercial material with high surface quality and excellent mechanical properties, so 
we chose this material in this research26–28. A hollow cylindrical part with the dimensions of inner diameter 16 mm 
and outer diameter 20 mm with a height of 40 mm was designed (Fig. 1) using CATIA-V5™ software and exported as 
an STL file. After slicing the parts with Simplify 3D software used to set FFF parameters, they will be manufactured 
using a German RepRap X500® 3D printer. Figure 2 shows a schematic of these steps.

Design of experiment (DOE).  Design of Experiments (DOE) is a systematic approach for determining the 
effect of input process parameters on a single or set of output responses in the setting of process parameter optimiza-
tion. Several DOE approaches have been utilized to optimize the process parameters of the FFF system, including the 
Taguchi method, analysis of variance (ANOVA), complete factorial designs, bacterial foraging technique, which was 
recently created and has received a lot of attention due to its efficiency in solving real-world optimization problems, 
is a nature-inspired optimization algorithm based on Escherichia coli bacteria foraging behavior, and fuzzy logic 
because many parameters might impact the printing process, the default configuration of printing process param-
eters provided by manufacturers cannot guarantee the quality of printed products29,30. Extensive research is being 
conducted to determine the impact of various FFF process parameters on the different responses31–34. The Taguchi 

Table 1.   Technical specifications for German RepRap X500®printer.

Specifications

Extruder Dual extruder with dual lift extruder system

Software setup Simplify3D slicer software

Build volume 500 × 400 × 450 mm

Print speed 600–9000 mm/min

Extruder temperature (Max) 400 °C

Chamber temperature 80 °C

Figure 1.   Hollow cylindrical dimensions.
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design method provides a practical approach to lower cost, higher quality, and performance optimization. In the 
Taguchi design technique, many parameters may be analyzed at once, and the best optimal configuration can be 
found with fewer resources than in the traditional DOE approach.

The L9 Orthogonal Array used in this study and the effect of four critical parameters of the FFF process, includ-
ing layer thickness (mm), print speed (mm/min), chamber temperature (°C), and print temperature (°C) in three 
different levels investigated on cylindricity and circularity as geometric accuracy. Also, Young’s modulus, strength, 
and deformation as mechanical properties were analyzed on these samples.

Process parameters in three different levels are shown in Table 2. The chamber controlled the environment tem-
perature, and the chamber temperature was set at 30, 40, and 60 °C. Layer thickness refers to the thickness of each 
deposited layer and is based on the dimensions of the cylinders, and it was selected in the range of 0.1, 0.2, and 0.3 
mm. The print speed was set low to high at 600, 1800, and 3000 mm/min. Because the print temperature of nylon 
is usually 270 °C35, the selected temperature was slightly higher and lower than 270 °C to investigate the responses 
(250, 260 and, 270 °C). Table 3 shows the Taguchi orthogonal array that controls the parameter combinations for 
each experiment. Also, to increase the repeatability, each part has been printed five times, and 45 pieces have been 
fabricated.

Measurement of responses.  First, all 3D printed parts were scanned using a 3D laser scanner (Solutionix 
D500) to measure geometrical error values. With an accuracy of 0.01 mm and a resolution of 0.055 mm. The advan-
tage of this scanner is the high speed of scanning processing. The process consisted of using the blue light reflected 
from the object’s surface to the camera lens from a blue light source projected onto the surface of the parts. Then it 

Figure 2.   Schematic of 3D printing steps. (a) Creating a digital model, (b) converting the digital model to STL, 
(c) slicing and choosing the presses parameters, (d) printing the parts by German Rep Rap 3d printer, (e) 3d 
printed cylindrical parts.

Table 2.   The process parameters and their levels.

Level Chamber temperature (°C) Printing temperature (°C) Layer thickness (mm) Print speed (mm/min)

1 30 260 0.1 600

2 45 270 0.2 1800

3 60 280 0.3 3000
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is reflected from the object’s surface to the camera lens. Point-by-point coordinates are displayed in Solutionix ezS-
can software, which controls Solutionix D500, and the geometry of the part Obtained. This data was then extracted 
in STL format from Solutionix ezScan. In the next step, the initial CAD model was compared with the STL files 
extracted from Solutionix ezScan by Geomagic® Control X software and aligned by component alignment. Finally, 
the circularity and cylindricity errors were obtained based on the ASME Y14.5M standard. The measured values of 
cylindricity and circularity are shown in Table 4, and the schematic of the steps is shown in Fig. 3.

The mechanical properties of parts were measured by compression test (INSTRON 5881 compressive and tensile 
testing machine), all the samples were compressed using a loading cell of 50 KN and loading speed of 5 mm/min. 
The special jaws were designed to perform the compression tests, and the tubes were positioned between two jaws 
as sketched, as shown in Fig. 4. Then a stress-strain curve was obtained (Fig. 5). Strength, Young’s modulus, and 
elongation are shown in Table 4, and the steps are shown in Fig. 5 a flowchart shows the steps of the optimization 
process (Fig. 6).

Table 3.   L9 orthogonal array.

No. of trial Chamber temperature (°C) Printing temperature (°C) Layer thickness (mm) Print speed (mm/min)

1 30 260 0.1 600

2 30 270 0.2 1800

3 30 280 0.3 3000

4 45 260 0.2 3000

5 45 270 0.3 600

6 45 280 0.1 1800

7 60 260 0.3 1800

8 60 270 0.1 3000

9 60 280 0.2 600

Table 4.   Measured values of responses.

No. of trial Young’s modulus (MPa) Strength (MPa) Deformation Cylindricity (mm) Circularity (mm)

1 1564.98 ± 50.86 62.50 ± 0.39 0.0556 ± 0.00045 0.177 ± 0.01108 0.136 ± 0.0118

2 1327.24 ± 36.49 52.12 ± 0.47 0.1164 ± 0.000741 0.258 ± 0.00242 0.194 ± 0.01439

3 1346.30 ± 12.27 51.21 ± 0.217 0.0883 ± 0.00171 0.219 ± 0.01605 0.154 ± 0.01315

4 1401.54 ± 6.572 51.42 ± 0.225 0.0635 ± 0.000497 0.206 ± 0.00695 0.151 ± 0.0060

5 1594.29 ± 25.106 59.48 ± 0.370 0.1256 ± 0.000064 0.243 ± 0.01715 0.245 ± 0.01187

6 1592.60 ± 3.878 64.48 ± 0.253 0.056 ± 0.000427 0.236 ± 0.02378 0.203 ± 0.02284

7 1313.97 ± 6.673 47.73 ± 0.202 0.062 ± 0.000682 0.261 ± 0.008515 0.169 ± 0.00090

8 1685.25 ± 7.168 63.36 ± 0.349 0.0539 ± 0.00022 0.180 ± 0.01212 0.146 ± 0.0046

9 1730.69 ± 5.575 65.54 ± 0.825 0.0595 ± 0.000679 0.243 ± 0.0174 0.174 ± 0.01277

Figure 3.   Schematic of scanning process to find the cylindricity and circularity error. (a) Scaning the parts 
by Solutionx D500, (b) Solutionx Ezscan software, (c) Geomagic Control X, (d) Measuring the geometrical 
accuracy.
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Results and discussion
Experiments’ data were investigated one by one by analysis of variance (ANOVA) and Signal-to-noise ratio (S/N). 
MINITAB® 19.0 was used to analyze all of the data. Taguchi method is used to investigate the effect of a large number 
of parameters on a certain response with a fewer number of experiments.

Multi‑response optimization.  The GRA method was simultaneously used to optimize multi-response 
parameters, a statistical method. This method simultaneously reduces the cylindricity and circularity and increases 
the strength, elongation, and young’s modulus by calculating the optimal process parameters. GRA is applied in the 
following steps.

Normalization of experimental data.  The first step is to normalize the experimental data. According to the expected 
quality characteristics of different responses, this value can be divided into three criteria for optimization in GRA: 
“larger-is-better,” “smaller-is-better,” and “normal-is-better” are shown in Eqs. (1, 2 and 3) 36.

Larger-is-better:

Smaller-is-better:

(1)X∗(p) =
Xi(p)−Min(Xi(p))

Max(Xi(p))−Min(Xi(p))

Figure 4.   Steps to find the strength, Young’s modulus, and elongation.

Figure 5.   Stress–strain curves of all trials.
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Normal-is-better:

where X* (p) is the GRG value, i shows the number of trials, Xi(p) represents the response value of the target 
experiment, Max(Xi(p)) is the maximum value of Xi(p), Min(Xi(p)) demonstrates the minimum value of Xi(p) 
and OB is the target value. In this study, the “smaller-is-better” is chosen to normalize the cylindricity and cir-
cularity, and “larger-is-better” is chosen for strength, Young’s modulus, and deformation the normalized values 
are shown in Table 5.

Deviation sequence.  The next step is to calculate the deviation sequence from Eq. (4).

(2)X∗(p) =
Min(Xi(p))−Xi(p)

Max(Xi(p))−Min(Xi(p))

(3)X∗(p) = 1−
|Xi(p)− OB|

Max[Max(Xi(p))− OB,OB−Min(Xi(p))]

Figure 6.   Flowchart of implementing the steps.
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where ∆oi (p) represents the deviation sequence and X0(p) is the reference sequence which is equal to one. Values 
of deviation sequence for each response are given in Table 636.

Grey relational coefficients.  The relationship between ideal and real normal experimental results is expressed by 
the Gray Relational Coefficient (GRC). The Grey relationship coefficient is calculated using Eq. (5)36 for each of the 
normalized values.

where ζi (p) is Gray Relation Coefficient, ∆oi (p) represents the deviation sequence, ζ is the identification coeffi-
cient and has a value between 0 and 1; this coefficient is usually considered 0.5. Also, ∆min and ∆max are minimum 
and maximum values of ∆oi (p), respectively. The values are given in Table 7.

Gray relational grade.  In general, the Gray Relational Grade (GRG) is used to evaluate the multi-response proper-
ties. On the other hand, GRG is the average sum of the GRC, and Eq. (6) is used to determine it36.

where n is the number of prosses parameters. As a result, a larger GRG implies that the process parameter com-
bination is closer to the ideal. After that, all experimental experiments were ranked based on GRG values from 1 
to 9, the highest GRG value representing the Optimum run, and it is considered 1st rank. So, the 8th test, which 
has the highest GRG value, so the 8th experiment has the best characteristics among the other trials.

Analysis of GRG data.  Analysis using ANOVA and S/N ratio.  Signal-to-noise (S/N) ratio is used to optimize 
process parameters and examine each parameter’s impact on response. In the S/N ratio, the "signal" indicates the 
desired effect, while the "noise" indicates the undesirable effect for the responses. Therefore, if the S/N ratio is higher, 
it indicates the optimal conditions. According to the expected quality characteristics of different responses, there are 
different types of S/N ratios, including larger-is-better, smaller-is-better, and normal-is-better. Where η represents 
the S/N ratio, yi represents the response value of the target experiment in the orthogonal array, yn shows the variance, 
and n is the number of experiments

Larger-is-better:

Smaller-is-better:

Normal-is-better:

(4)�oi

(

p
)

= ||X0

(

p
)
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(

p
)

||
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)
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)
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]
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1

n
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(
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]

Table 5.   Normalized values.

No. of trial Young’s modulus (MPa) Strength (MPa) Deformation Cylindricity (mm) Circularity (mm)

1 0.602 0.829 0.024 1.000 1.000

2 0.032 0.246 0.872 0.042 0.472

3 0.078 0.195 0.480 0.502 0.834

4 0.210 0.207 0.134 0.658 0.868

5 0.673 0.660 1.000 0.213 0.000

6 0.669 0.940 0.029 0.302 0.383

7 0.000 0.000 0.113 0.000 0.695

8 0.891 0.878 0.000 0.956 0.907

9 1.000 1.000 0.078 0.222 0.655
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Analysis of variance (ANOVA) and signal-to-noise ratio (S/N) were used to analyze the data obtained from GRG 
using MINITAB®19.0. To examine the effect of each parameter on GRG, the Taguchi technique was utilized. Due to 
the higher the GRG value, the desired responses improve, so “larger-is-better” was used to maximize the GRG to 
optimize the process parameters. The S/N ratios and response table of means for GRG are shown in Tables 8 and 9, 
respectively. These tables show the significance of parameters by utilizing rank, and delta represents the difference 
between the highest and lowest average. According to the results, it can be said that the print speed and printing 
temperature have the most significant impact compared to the chamber temperature and layer thickness on GRG.

The S/N diagram was used to analyze the data and determine optimal parameters using average S/N ratios for 
responses. As minimization of the output, parameters are required for geometrical accuracy (cylindricity and cir-
cularity), the “smaller-is-better,” and to maximization of the output parameters are required for mechanical proper-
ties (Young’s modulus, deformation, and strength), the “larger is better” was selected to maximize mathematical 

Table 6.   Deviation sequence of GRA.

No. of trial Young’s modulus (MPa) Strength (MPa) Deformation Cylindricity (mm) Circularity (mm)

1 0.398 0.171 0.976 0.000 0.000

2 0.968 0.754 0.128 0.958 0.528

3 0.922 0.805 0.520 0.498 0.166

4 0.790 0.793 0.866 0.342 0.132

5 0.327 0.340 0.000 0.787 1.000

6 0.331 0.060 0.971 0.698 0.617

7 1.000 1.000 0.887 1.000 0.305

8 0.109 0.122 1.000 0.044 0.093

9 0.000 0.000 0.922 0.778 0.345

Table 7.   Grey relation coefficient.

No. of trial Young’s modulus (MPa) Strength (MPa) Deformation Cylindricity (mm) Circularity (mm) GRG​ Rank

1 0.557 0.746 0.339 1.000 1.000 0.728 2

2 0.341 0.399 0.796 0.343 0.486 0.473 8

3 0.352 0.383 0.490 0.501 0.750 0.495 7

4 0.388 0.387 0.366 0.594 0.791 0.505 6

5 0.604 0.595 1.000 0.389 0.333 0.584 4

6 0.601 0.894 0.340 0.417 0.488 0.540 5

7 0.333 0.333 0.360 0.333 0.621 0.396 9

8 0.821 0.803 0.333 0.920 0.843 0.744 1

9 1.000 1.000 0.352 0.391 0.592 0.667 3

Table 8.   Response table for signal to noise ratios of GRG.

Level Chamber temperature (°C) Printing temperature (°C) Layer thickness (mm) Print speed (mm/min)

1 − 5.123 − 5.579 − 3.559 − 3.649

2 − 5.319 − 4.581 − 5.318 − 6.634

3 − 4.711 − 4.993 − 6.275 − 4.870

Delta 0.609 0.998 2.716 2.985

Rank 4 3 2 1

Table 9.   Response table for means of GRG.

Level Chamber temperature (°C) Printing temperature (°C) Layer thickness (mm) Print speed (mm/min)

1 0.5653 0.5430 0.6707 0.6597

2 0.5430 0.6003 0.5483 0.4697

3 0.6023 0.5673 0.4917 0.5813

Delta 0.0593 0.0377 0.2934 0.1900

Rank 3 4 2 1
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expression for the S/N ratio. The best condition is shown by the highest point in the S/N ratio graphic. A B, C, and 
D represent the chamber temperature, 3D Printing temperature, layer thickness, and print speed in Figs. 9 and 10, 
respectively. The various levels for each parameter are represented on the horizontal axis, and the vertical axis is the 
mean S/N ratio. According to the Main Effects Plot for S/N ratio (Fig. 7) and Main Effects Plot for mean diagrams 
(Fig. 8), it can be seen that chamber temperature is 60 °C, printing temperature 270 °C, layer thickness 0.1 mm, and 
print speed 600 mm/min is the optimum combination of processes parameters for achieving the maximum GRG.

The impact of each process parameter on the response variables was determined using the ANOVA approach. 
The results of ANOVA are shown in Table 10. The adjusted sum of squares (Adj SS) was calculated using Eq. (10).

(10)sT =

n
∑

i=1

(

ηi − ηj
)2

Figure 7.   Main Effects Plot for S/N ratios GRG.

Figure 8.   Main Effects Plot for means GRG.



11

Vol.:(0123456789)

Scientific Reports |        (2022) 12:13142  | https://doi.org/10.1038/s41598-022-17302-z

www.nature.com/scientificreports/

where ηi represent the mean S/N ratio, ηj is the overall mean S/N ratio, and n shows the total number of experi-
ments. DF stands for the degree of freedom, and Contribution is Percentage of contribution of process param-
eters, the adjusted mean sum of squares is Adj MS, while the variance of the group means and the probability 
value is F-Value and P-Value, respectively. By investigating the F-value mentioned in Table 10 and considering 
that the higher the value, the greater the effect of the related parameter, it was determined that print speed, layer 
thickness, Chamber temperature, and Printing temperature have the most significant effect on the amount of 
GRG respectively. Contribution Percentages also confirms these results.

Figure 9, shows the interaction between process parameters and GRG values. In an interaction plot, parallel lines 
imply no interaction. So according to the figure, in all other diagrams except speed, there are no parallel trend lines 
and the directions are mixed. As a result of this strong evidence that the linear regression model is useless for GRG 
predictions, the response surface method’s linear-interaction model is used. Using a linear-interaction model of RSM, 
a multi-objective function for GRG was constructed and nominal terms have been removed from the equation37,38.

Regression modeling of GRG​.  Response surface regression examines the correlation between variables, which deter-
mines the relationship between GRG and process parameters. Also, the best responses can be achieved by finding the 
best correlation between factors and the best levels of parameters linear-interaction model of the response surface 
method is used. The regression model is shown in Eq. (11).

The chamber temperature, printing temperature, layer thickness, and print speed are represented by A, B, C, and 
D, respectively. The correlation coefficient, often known as R-squared, is a statistical tool that represents the propor-
tion of variation in a dependent variable and ranges from 0 to 100 percent. MINITAB 19.0® software calculates the 
R-squared value, and the value of this coefficient is 99.20 percent, which indicates a high correlation.

(11)GRG = 3.38+0.1082A−0.01211B−28.76C−0.000098D−0.00033A∗B−0.071A∗C+0.1141B∗C

Table 10.   Response of variable parameters of GRG.

Source DF Adj SS Adj MS F-Value P-Value Contribution (%)

A 2 0.005388 0.002694 1.08 0.480 4.7

B 2 0.004968 0.002484 – – –

C 2 0.050218 0.025109 9.32 0.097 43.6

D 2 0.054706 0.02735 10.15 0.09 47.4

Pulled error 2 0.004968 0.002484 – 0.520 4.3

Total 8 0.115280 – – 100.0

Figure 9.   Interaction plots for GRG.
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Figures 10 and 11 refer to surface diagrams and contour diagrams, respectively, which are graphical images of the 
regression equation. They show the interactions between two different process parameters on GRG and are made by 
MINITAB 19.0 software. As can be seen from these graphs, the highest value of GRG is obtained at the lowest values 
of layer thickness and print speed and the highest values of chamber temperature. Also, as is observed in Fig. 12, by 
Comparing the GRG values obtained by the experiments and the GRGs calculated by the regression equation, it is 
determined that the maximum error rate is 3%, indicating that the model is validated.

In the last step, a confirmation experiment was performed using optimum levels of process parameters (Chamber 
temperature 60 °C, Printing temperature 270 °C, layer thickness 0.1 mm, and print speed 600 mm/min) to verify 
this parameter obtained from the GRA and also to evaluate the improvement in responses. To ensure repeatability 
of the results, five hollow cylindrical parts with optimal parameters were fabricated by the FFF 3D printer. And the 
predicted Grey relational grade value or Ypredicted is compared to the mean value of the grey relational grade obtained 
from the confirmation test. Equation (12) is used to calculate the predicted GRG value for optimal parameters.

(12)YPredicted = ym +

n
∑

i=1

(

yi − ym
)

(13)Error(%) =

[

GRGPredicted − GRGExperimental

GRGExperimental

]

∗ 100

Figure 10.   GRG Surface plots. (a) chamber temperature and printing temperature, (b) chamber temperature 
and layer thickness, (c) chamber temperature and print speed, (d) printing temperature and layer thickness, (e) 
printing temperature and print speed, (f) layer thickness and print speed, on GRG.
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Figure 11.   GRG contour plots. The effect of; (a) chamber temperature and printing temperature, (b) chamber 
temperature and layer thickness, (c) chamber temperature and print speed, (d) printing temperature and layer 
thickness, (e) printing temperature and print speed, (f) layer thickness and print speed, on GRG.

Figure 12.   Comparison of GRG values obtained from regression model and obtained from experimental.
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where ym represents the total mean of the GRG, yi refers to the average GRG at the optimal level, and n is the 
number of chosen process parameters. Then a compression test was applied to the parts to evaluate the strength, 
young’s modulus, and elongation of PA6 parts. Also, for measuring geometrical error values such as cylindric-
ity and circularity, 3D printed parts were scanned using Solutionix D500, and the measured value is shown in 
Table 11. Also, the stress-strain curve of optimum parameters and the 8th trial, which has the most GRG, are 
compared in Fig. 13e. As it turns out, the mechanical properties such as young’s modulus and strength of the 
printed part have been improved under optimal conditions. Then, using the values of the obtained responses, the 
GRG value for the 3D printed piece with optimal parameters was measured using Eqs. (1), (2), (4), (5), and (6). 
After calculating the experimental GRG, the next step is to calculate the percentage error between the predicted 
GRG and the experimental GRG. Then the improvement in GRG is evaluated. All the measured values of GRG are 
shown in Table 12, and by comparing the initial GRG and the GRG obtained from the experiment and using Eq. 
(13), it was found that the optimum GRG value has improved by 14%. So, the results show that the values of the 
optimal parameters obtained from the GRA method have improved all the intended responses. Also, by compar-
ing the predicted GRG and the GRG of the experiment (Eq. 14), it was found that the error rate is equal to 5%. 
Therefore, considering this amount of error, it can be said that there is a good correlation between these values.

Figure 13a–d shows the SEM observation of the samples manufactured in 8th and optimum conditions. More 
voids and delamination can be seen in the 8th (initial condition) sample compared to the optimum condition 3D 
printed part. Given the difference in printing speed for fabrication of these parts, the difference in print quality can 
be attributed to this parameter. One of the critical parameters affected by changing the printing speed is thermal 
gradient39. So, the effect of thermal gradient on delamination between the layers has been emphasized. By increas-
ing the nozzle speed cooling rate will be increased40. So optimum part which printed at a lower speed will be under 
a lower thermal gradient than the 8th. So, more delamination in 8th is justified. Furthermore, the weld interface 
between filaments plays a vital role in final mechanical properties41. As shown in the Fig. 13 weld interface in this 
figure, it has not been done well considering the presence of some delamination. Few mechanical properties were 
expected by reducing the weld interface between the two filaments. The compression test results show a decrease in 
the compressive strength of 8th printed part compared to the optimum part. Furthermore, the geometric accuracy 
is less due to more delamination in the 8th printed part compared to the condition 3D printed part42.

The results of this research enable the designer to produce high-quality parts. In the following, the results of this 
research and the optimal selection parameters, and its comparison with other articles expressed in the literature 
section are discussed. It was found that at 270 °C, the amount of GRG was optimum. The optimum 3D printing 
temperature depends on the type of material used, etc., but at low temperatures, the printed layer is almost solid. The 
decreased binding force between the layers will be reduced if the new layer is deposited. The adhesion will be very 
poor, so it causes lower mechanical properties and dimensional accuracy. On the other hand, if the temperature is 
high, the fluidity is too high, and due to the gravity force, the stability of the geometry decreases. It was found that 
the 60 °C chamber temperature, which was the highest value considered in this study, is the optimal GRG level. This 
is because the high chamber temperature is not too high to affect geometric stability. In the mentioned research in 
the literature, it was observed that the highest temperature followed the best dimensional accuracy in PLA parts with 
increasing temperature of 3D printing. Another study on PEEK components had similar results to the current work. 
This can be due to different materials used and different temperature ranges16,17. Also, in a study, the effect of chamber 
temperature on the strength of PEAK components was investigated. Similar results were observed19. According to 
the optimization results, it was found that the amount of GRG at low speeds is higher. Because at high speeds, the 
printed layers do not have enough time to solidify. The following layers are deposited on the previous layers, and the 
piece becomes deformed within a short time interval. Other PEEK and PC/ABS blend parts research indicated that 
higher printing speed values enhanced and optimized strain, strength, and stiffness. The difference in results might 
be due to limitations in the cylinder design, the type of material utilized, and the responses selected17,19. The effect 
of layer thickness as one of the most critical parameters in improving parts’ mechanical properties and accuracy 
was investigated. It was found that the amount of GRG is higher at lower layer thickness. A thicker layer thickness 
results in higher temperature gradients between the layers, which leads to more deformation. Also, as the number 
of deposited layers increases, more interfaces appear, and adhesion reduces. However, as indicated in the literature, 
different results and similar results were observed in articles with different materials. And the reason can be the dif-
ference in the desired responses and the difference in the selected material. Another reason could be other selected 
parameters because all parameters affect each other15,16,19,21.

Conclusions
The present paper uses multi-response optimization utilizing the GRA method to analyze the variation of four input 
parameters, including chamber temperature, printing temperature, layer thickness, and print speed, to achieve the 
best mechanical properties and geometrical accuracy in the FFF process cylindrical parts made of PA6. The mechani-
cal properties and geometrical accuracy are characterized through cylindricity, circularity, strength, Young’s modulus, 
and deformation. These five output parameters represent the expected responses. For this purpose, it was to find the 

(14)Improvment(%) =
[

GRGExperimental − GRGIntitial

]

∗ 100

Table 11.   Measured values of responses.

Young’s modulus (MPa) Strength (MPa) Deformation Cylindricity (mm) Circularity (mm)

1890.22 ± 27.49 73.37 ± 0.19 0.0560 ± 0.00031 0.1528 ± 0.00781 0.10106 ± 0.0111
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Figure 13.   Scanning Electron Microscopy (SEM) images of the samples manufactured by FFF in (a,b) 8th, (c,d) 
and optimum condition, respectively. (e) Stress strain curve of initial GRG (8th) and the GRG obtained from the 
experiment.

Table 12.   Measured values of responses.

Initial setting Predicted Experimental

Chamber temperature (°C) 60 60

Printing temperature (°C) 270 270

Layer thickness (mm) 0.1 0.1

Print speed (mm/min) 3000 600

GRG​ 0.744 0.823 0.868
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optimum values of the processing parameters to improve all the responses simultaneously. It was determined that 
the highest GRG belongs to the 8th experiment. Then, to find the optimal parameters, GRG data were analyzed by 
ANOVA and S/N analysis, and it was determined that the optimal conditions for improving GRG would be obtained 
at Chamber temperature of 60 °C, Printing temperature of 270 °C, the layer thickness of 0.1 mm and print speed of 
600 mm/min. Finally, a verification test was performed according to the optimal parameters, and new components 
were examined. Finally, by comparing the initial GRG and the GRG obtained from the experiments, it was observed 
that the GRG value had improved 14%. Also, by comparing the predicted GRG and the GRG of the experiment, it 
was found that the error rate is equal to 5%. Therefore, considering this amount of error, it is proved that there is a 
good correlation between these values.

Finally, the results were discussed, and it is clear that:

1.	 The optimum GRG level was discovered at a chamber temperature of 60 °C, which may be because the tempera-
ture in the chamber is not too high to impact geometric stability.

2.	 The amount of GRG will be optimum at 270 °C printing temperature. However, the optimum 3D printing tem-
perature varies depending on the material used, etc. At low temperatures, the printed layer is almost solid, and 
if a new layer is deposited, the binding force between the layers will be reduced. Adhesion will be poor, resulting 
in lower mechanical properties and dimensional accuracy. On the other side, if the temperature is too high, the 
fluidity is too great, and the geometry’s stability is reduced owing to gravity.

3.	 According to the optimization results, the quantity of GRG was determined to be greater at low speeds. This can 
be explained by the fact that the printed layers do not have enough time to solidify at high speeds. The following 
layers are deposited on top of the previous layers, causing the piece to deform.

4.	 The influence of layer thickness was examined, and it was discovered that the amount of GRG is more significant 
at lower layer thickness. As the number of deposited layers increases, more surfaces appear, and adhesion will 
be decrease, a wider layer thickness resulting in higher temperature gradients between the layers, which leads to 
increased deformation.
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