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a b s t r a c t 

One way to enhance the performance of vibration control with piezoelectric shunt is to

use a negative capacitance in the shunt circuit. This component is very effective and pro- 

vides good results in terms of attenuation improvement without significantly increasing

the complexity of the shunt network. However, negative capacitances are built using oper- 

ational amplifiers and, in some applications, the risk of saturation of the outputs of the

operational amplifier exists. This constitutes a non-negligible aspect since it leads to a

non-proper functioning of the control system which significantly deteriorates the control

performance or even triggers instability phenomena. In light of this limitation, this paper

proposes strategies to decrease the outputs of the operational amplifier in order to reduce

the risk of saturation acting just on the values of the circuit components, without worsen- 

ing the attenuation performance. However, when the achievable reduction is not sufficient,

it is also possible to act on other components accepting a deterioration of the attenuation

performance. Guidelines are provided for properly choosing the best shunt circuit configu- 

ration accounting for both the extent of the operational amplifier outputs and the control

performance. The paper also evidences that the mechanical part of the system cannot be

neglected in the analysis when assessing the operational amplifier outputs. Furthermore,

two different circuit types used to build the negative capacitance are compared in terms

of output requirements. This analysis shows that there is no circuit always less demanding

than the other and that the choice of the circuit is not always straightforward. Therefore, a

multi-degree of freedom model is presented, which is essential to understand which con- 

figuration of the negative capacitance has to be used in a given engineering application.

All the presented outcomes are validated through an experimental campaign.

1. Introduction

The use of piezoelectric shunt for attenuating vibrations in light structures is a well-known technique where piezoelectric 

transducers act at the same time as both sensors and actuators, and which has been extensively studied and employed in 
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engineering applications (e.g. hard-disk vibrations [1] , vibrations of turbine blades [ 2 , 3 ]). Piezoelectric shunt usually consists 

in the electrical connection between a piezoelectric transducer bonded to the vibrating structure and a properly designed 

passive electrical network [4–8] . According to the layout of the electrical network, it is possible to perform mono-modal con- 

trol (e.g. [9–14] ) or multi-mode control with either single (e.g. [15–19] ) or multiple piezoelectric transducers (e.g. [ 20 , 21 ]). 

Hence, in the classical approach, the piezoelectric shunt damping is a passive technique and does not imply the use of ei- 

ther expensive electronic devices or real-time controllers. On the one hand, this represents an advantage making the control 

system inexpensive, stable and easy to be implemented. On the other hand, the power involved is limited and the control 

performances are lower if compared to the traditional active control strategies [22] . 

An effective approach for improving the control performance of the piezoelectric shunt is the addition of synthetic cir- 

cuits in the shunt impedance (e.g. [23–29] ), even in a context of periodic structures (e.g. [ 30 , 31 ]). This is a technique often 

employed also in other smart control approaches like, as an example, electro-magnetic shunt (e.g. [32–34] ). In all these 

cases, the use of synthetic circuits showed to provide significant improvement in terms of vibration attenuation perfor- 

mance (e.g. [35] ). However, in these cases, due to the presence in the circuit of components which have to be supplied, the 

approach becomes semi-active. 

Among the approaches which rely on additional synthetic circuits in piezoelectric shunt, the use of negative capacitances 

(NC) has been shown to be reliable and effective. The addition of NCs proved to be able to artificially increase the modal 

electro-mechanical coupling factor for all the modes of a system. This coupling factor is one of the main parameters affect- 

ing the control performance since it is representative of the efficiency of the conversion between mechanical and electrical 

energy (i.e. the increase of the absolute value of the modal electro-mechanical coupling factor related to the i th mode, k i , in- 

creases the achievable attenuation level on the corresponding mode) [ 6 , 36 ]. For this reason, NCs can be successfully applied 

to improve the effectiveness of any type of passive shunt circuit. In this scenario, their use becomes attractive especially 

when they are coupled to simple shunt impedances, allowing for both good attenuation levels and easy-to-implement sys- 

tems at the same time. Even if the NCs can be coupled to any passive shunt impedance, many works in the literature have 

focused on the coupling of NCs to resistive (e.g. [ 22 , 37–41 ]) and resonant shunt impedances (e.g. [ 22 , 42–44 ]). A resistive 

impedance is made from a single resistance, while a resonant impedance is made from either the parallel or the series of 

an inductance and a resistance. When no NCs are used, the tuned resonant shunt offers attenuation levels much higher 

than the resistive shunt, but, when NCs are added in the shunt circuit, the attenuation provided by the resistive shunt be- 

comes closer and closer to that of the resonant shunt [45] . Former studies already proved that resonant shunt shows low 

robustness to system changes and uncertainties (e.g. [ 12 , 46–48 ]). Conversely, the resistive shunt coupled to NCs shows to be 

highly robust [45] and able to damp more than one mode at the same time [ 38 , 45 , 49 ]. 

Considering the aforementioned reasons, the piezoelectric shunt based on resistive impedances coupled to NCs is a very 

effective, reliable, inexpensive and easy-to-implement approach to damp vibrations. The main issue of this approach is re- 

lated to possible dynamic instabilities of the electro-mechanical system (composed by the vibrating structure, the piezo- 

electric actuator and the shunt impedance) due to the active nature of the NCs. Indeed, since NCs do not exist in nature, 

they are implemented by using operational amplifiers (OP-AMP) [50] and this makes the control approach semi-active, as 

mentioned. This problem has been widely studied in the literature and different works provide the limits on the NC value 

to avoid instability (e.g. [ 22 , 42 , 49 ]). Nevertheless, there is also another important problem: the OP-AMPs can undergo to 

saturation of their outputs, thus leading to a non-proper functioning of the control system, and sometimes triggering in- 

stability phenomena [ 49 , 51 ]. This problem is not deepened in the literature but it is very important because it limits the 

applicability and the reliability of the piezoelectric shunt based on NCs. 

The most intuitive approach to overcome the aforementioned problem is to use high power amplifiers, but this increases 

significantly the cost of the control system and, in case of an increase of the disturbance forces acting on the mechanical 

system, saturation can still occur. Another possibility is to use more complex circuits simulating NCs (e.g. [26] ); even if the 

approach is effective, the complexity of the shunt circuit increases significantly. Therefore, different researchers have studied 

whether it is possible to decrease the output of the OP-AMP without changing the traditional layout of the NC circuit. Beck 

et al. [51] described how the different electric elements (i.e. resistances and capacitances) present in the NC circuit are able 

to change (i.e. increase/decrease) the OP-AMP voltage and power output as a function of the frequency in the case of an NC 

connected in series to the shunt resistance and the piezoelectric actuator. Qureshi et al. [52] proposed a similar study, but 

considering a resonant shunt coupled to an NC. Other related works are those of Václavíc et al., who studied the energy 

flow in applications related to vibration isolation using NCs connected in series to the shunt resistance and the piezoelectric 

actuator [53] and proposed the use of switching amplifers to decrease the electric power consumption of the shunt control 

[54] . Even if the referenced works provided a significant insight of the problem, there are still open points to be addressed. 

Under a general point of view, the main target of most of the referenced works is to study the dependence of the OP- 

AMP output s on the values of the components of the NC circuit (i.e. resistances and capacitances) and the shunt impedance. 

On the one hand, this approach shows whether it is possible to act on the circuit parameters to reduce the OP-AMP outputs 

but, on the other hand, it loses sight of the main target of the piezoelectric shunt damping, that is the vibration attenuation. 

These studies, indeed, do not evidence either how a reduction of the OP-AMP output, achieved by changing the values of the 

circuit parameters, affects the control effectiveness or whether it is possible to achieve the reduction of the OP-AMP output 

mantaining a given control performance. Furthermore, the main focus of the analyses in the literature is on the effect of the 

electrical part of the electro-mechanical system on the OP-AMP outputs, while the effect of the dynamics of the mechanical 

system is not deepened. 



In this scenario, this paper aims to fill some of these gaps in order to provide a more general overview of the problem. 

Particularly: (i) the electro-mechanical system will be considered not just under the electrical point of view but also the me- 

chanical part will be taken into account in the analysis, showing how the dynamics of a multi-degree-of-freedom (MDOF) 

mechanical system is able to influence the OP-AMP output; (ii) an analysis aiming at investigating whether and how it is 

possible to decrease the demand on the OP-AMP outputs given a certain level of vibration reduction will be presented. It 

will be shown that some electric parameters can be tuned in order to decrease the OP-AMP outputs without changing the 

attenuation performance provided by the shunt. Furthermore, this analysis will be shown to be general and not dependent 

on the type of passive shunt impedance coupled to the NC. This analysis will also evidence that it is possible to act sepa- 

rately on the voltage and current outputs of the OP-AMP, with the consequent possibility to lower the power consumption 

of the NC circuit; (iii) without the constraint of maintaining constant the level of vibration attenuation, a further analysis 

will be performed to evidence the effect of the circuit parameters on both the OP-AMP outputs and the attenuation perfor- 

mance; (iv) it is well-known that there are different ways to connect the piezoelectric actuator to the NC and the resistance 

(the classical series and parallel connections will be taken into account here) and there are also different circuits to build 

NCs. The paper will analyse all these different cases, providing a detailed description of the OP-AMP outputs in the differ- 

ent configurations. This will allow for direct comparisons among the different solutions and will provide useful information 

about which configuration must be preferred in given practical cases; (v) based on the above points, the paper provides 

general guidelines on how to build an NC according to given targets in terms of both OP-AMP outputs and attenuation 

performance. 

The paper is structured as follows: Section 2 will present the model of the electro-mechanical system used in this paper 

and the circuits adopted for building the NCs. Section 3 will explain how the OP-AMP outputs can be changed without 

changing the attenuation performance, and will discuss the different possible layouts of the shunt impedance. Section 4 will 

show how the mechanical behaviour of the electro-mechanical system influences the OP-AMP outputs. The results of this 

section will also allow to show the effects of the parameters able to change at the same time the OP-AMP outputs and the 

attenuation performance. Section 5 proposes an MDOF model of the electro-mechanical system, that is needed for assessing 

which NC layout should be preferred in a given specific engineering application. Section 6 provides guidelines on how to 

build the shunt impedance according to given targets in terms of both OP-AMP outputs and attenuation performance. Finally, 

Section 7 will present the experiments carried out to validate the previous theoretical results. 

2. The model of the electro-mechanical system and the implementation of the NC

2.1. The model of the electro-mechanical system 

The model used in this paper was originally developed by Thomas et al. [ 6 , 55 ] and Ducarne et al. [56] , and then refined 

by Berardengo et al. [49] . Here, the model is briefly recalled for the sake of clarity in order to provide the basics needed for 

the comprehension of this work. The interested reader can find more details in the referenced articles. 

A generic structure is excited by an external forcing F and a piezoelectric actuator, bonded to the structure, is shunted 

with an electric impedance Z sh (see Fig. 1 ). Q is the charge in one electrode (- Q in the other electrode), and V is the 

voltage between the electrodes. The displacement W of any point x of the structure at time t can be expressed as a modal 

summation [6] , relying on the modal coordinates q i (with i = 1 , . . . , N where N is the number of modes considered and 

theoretically N → ∞ ), and the eigenmodes �i (scaled to the unit modal mass) of the structure with the piezoelectric patch 

in short-circuit, thus with V = 0. The modal coordinates are the solutions of the following problem: 

q̈ i + 2 ξi ω i ˙ q i + ω 

2 
i q i − χi V = F i ∀ i ∈ { 1 , . . . , N } (1) 

C ∞ 

V − Q + 

N ∑ 

i =1

χi q i = 0 (2) 

Fig. 1. A generic forced structure with a piezoelectric patch shunted with an electric impedance Z sh .



Fig. 2. Parallel (a) and series (b) connection of the shunt impedance made from an NC and a resistance.

where ω i is the i th eigenfrequency of the electro-mechanical system short-circuited, ξ i is the associated non-dimensional 

damping ratio, and F i is the modal force. Moreover, χ i is a modal coupling coefficient that describes the energy transfer 

between the piezoelectric patch and the i th mode. Eq. (1) describes the equations of motion of the system. The term χi 

couples these N equations of motion to Eq. (2) which models the electric behaviour of the electro-mechanical system. The 

symbols q̈ i and ˙ q i represent the second and first derivative of q i with respect to the time, respectively. Finally, C ∞ 

is the elec- 

trical capacitance of the piezoelectric patch with blocked structure, which also corresponds to the value of the capacitance 

at infinite frequency. Moreover, V and 

˙ Q (i.e. the derivative of Q with respect to the time, which is a current) are linked 

through Z sh (see Fig. 1 ) and, thus, this relation depends on the shunt circuit type. This link constitutes a further equation in 

addition to Eqs. (1) and (2) . 

The charge produced by the deflection of the piezoelectric actuator 
∑ N 

i =1 χi q i in Eq. (2) will be indicated as Q cs (i.e. 

Q cs = 

∑ N 
i =1 χi q i ) for the sake of conciseness. 

When Z sh is made from an NC and a resistance R , two layouts can be used for the electric connection: parallel and series 

(see Fig. 2 , where V sh and Q sh are the voltage and charge seen by the resistance R , respectively. Here, - C 1 denotes the NC in 

the parallel layout, while - C 2 indicates the NC in the series layout). The series layout is usually used to mitigate low-order 

modes, while the parallel connection is employed to control high-order modes [49] . More details about this point will be 

given further in this section. 

If a single-degree-of-freedom (SDOF) approximation is considered (which is valid in case of low modal density), the 

equations describing the electro-mechanical system for � � ω i (where � is the angular frequency) have to be modified as 

explained in [49] in order to take into account the electrical contribution of the neglected modes. Particularly, the SDOF 

approximation requires to define a new capacitance value C p i for the piezoelectric actuator. This new capacitance value is 

the sum of C ∞ 

and a capacitive term ( C i 
′ ) which describes the residual contribution of the modes higher than the i th (which 

are now not considered in the modal sum of Eq. (2) ) in the frequency range of the i th mode (see [49] for more details). 

Thus, the term C ∞ 

of Eq. (2) must be replaced with C p i = C ∞ 

+ C i 
′ when a reduced order model is considered. The influence 

of the lower modes is not considered because it is usually negligible (e.g. [ 15 , 57 ]). 

The term C p i , referred to as modal capacitance, can be found by measuring the value of the capacitance of the piezoelec- 

tric actuator midway between ω i and ω i +1 . More details about its accurate estimation can be found in [ 42 , 58 ]. 

Furthermore, for the SDOF approximation around the i th mode, the charge produced by the deflection of the piezoelectric 

actuator Q cs is equal to χi q i because a single mode is taken into account and the contribution of the higher modes is 

represented by the contribution C i 
′ in the C p i term. 

It is worth recalling that the previously mentioned modal electro-mechanical coupling factor k i (see Section 1 ) is a nor- 

malized version of the term χi in Eq. (2) (i.e. k i = χi / (ω i 

√ 

C p i ) , see [49] ) and it can be also estimated by means of the values 

of the open- and short-circuit eigenfrequencies of the electro-mechanical system because it is close to the i th effective cou- 

pling factor k eff [6] (see [49] or Section 7.1 ). 

According to the schematics of Fig. 2 , it is possible to write the relation between the current and the voltage seen by the 

shunt resistance R : 

V sh = −R 

˙ Q sh (3) 

Relying on the normalized parameters V sh and Q sh , it is possible to write the equations describing the dynamics of the 

SDOF system [49] : 

q̈ i + 2 ξi ω i ˙ q i + 

(
ω 

oc 
i 

)2 
q i − ω i ̃

 k i Q sh = F i (4) 

V sh − Q sh + ω i ̃
 k i q i = 0 (5) 

where V sh = V sh 

√ 

C eq and Q sh = Q sh / 
√ 

C eq . 

The parameter C eq is an equivalent capacitance that includes the effect of the NC and whose expression depends on 

the NC layout (parallel or series, see Fig. 2 ), on the value of the NC and on C p i (see Table 1 ). The symbol ω 

oc 
i 

represents 



Table 1

Definition of C eq , ω 

sc 
i 

, ω 

oc 
i 

and ˜ k i [49] . 

NC in parallel NC in series

C eq = C p i - C 1
C 2 C pi

C 2 − C p i 

ω 

sc 
i 

= ωi ωi

√ 

1 − (C p i /C 2 ) k 
2 
i 

1 − (C p i /C 2 ) 

ω 

oc 
i 

= ωi

√ 

1 + 

k 2
i

1 − (C 1 /C p i ) 
ωi

√ 

1 + k 2 
i 

˜ k i = 

ki√ 

1 − (C 1 /C p i ) 

ki√ 

1 − (C p i /C 2 ) 

the eigenfrequency of the electro-mechanical system when R is an open-circuit (i.e. Q sh = 0). It is also possible to define ω 

sc 
i 

(which is used further in the paper) that is the eigenfrequency of the electro-mechanical system when R is a short-circuit 

(i.e. V sh = 0). Also the expressions of these eigenfrequencies can be found in Table 1 and they are functions of k i . 

Finally, the term 

˜ k i in Eqs. (4) and (5) is the enhanced modal electro-mechanical coupling factor and it assumes the 

expressions gathered in Table 1 . The analytical expression of ˜ k i depends on the value of k i of the system (without NCs), 

and on the layout used to connect the NCs, whose effect is to increase the initial value of | k i | . As mentioned, when no NCs

are used, the level of vibration reduction depends on the value of | k i | that is a parameter indicating the efficiency of the

electro-mechanical energy conversion. The higher | k i | is, the higher the maximum achievable attenuation performance is

[6] . | ̃ k i | expresses the increase of | k i | thanks to the use of NCs (i.e. | ̃ k i | ≥ | k i | ) and, therefore, this increase turns into higher

attenuation levels provided by the piezoelectric shunt [49] . 

The model described by Eqs. (1) to (5) is a modal model. Therefore, it is of general validity, regardless the type of 

structure considered and can be applied to both simple and complex structures. Moreover, Eqs. (1) –(5) are general and valid 

for both the NC connections shown in Fig. 2 . However, the values of the NC must respect specific stability conditions. Indeed, 

since the NC has an active nature, instability can arise. According to [49] , the stability conditions are C 1 < C ∞ 

for the NC in 

parallel connection and C 2 > C 0 for the NC in series connection, where C 0 is the value of the capacitance of the piezoelectric 

actuator bonded to the structure at the null frequency. In all the analyses, examples and experiments discussed further in 

this paper, the value of the NC is always chosen such that the previous stability conditions are fulfilled. 

A last remark is related to a point already evidenced in this section: the series NC is usually used to mitigate low- 

order modes, while the parallel connection is employed to control high-order modes. It was demonstrated in [49] that the 

attenuation improvement on a given mode accomplished by means of an NC increases when the value of either C 1 or C 2 
approaches the C p i value of the mode considered. According to the stability limits and to the fact that C 0 > C p i > C p(i +1) > C ∞ 

[49] , C 2 (NC in series), being greater than C 0 , can be closer to C p i than C 1 (that is lower than C ∞ 

) (NC in parallel) for low 

order modes. Conversely, for high-order modes, C 1 (NC in parallel) can be closer to C p i than C 2 (NC in series). This is the 

reason why NCs in series are used to control low-order modes and NCs in parallel for high-order modes. Depending on the 

system considered, the mode number for which an NC in series can become advantageous compared to an NC in parallel 

can change according to the values of C p i for the different modes and the stability thresholds C 0 and C ∞ 

. Generally speaking, 

it is possible to roughly conclude that NCs in series are usually used for modes up to few kilohertz, while NCs in parallel 

are used at higher frequency values. 

The model expressed by Eqs. (1) and (2) is of general validity. Conversely, Eqs. (4) and (5) are related to an SDOF approx- 

imation of the system. In this paper, the authors will first use the general model Eqs. (1) and ( (2) ). However, in Section 4.1 , 

they will also employ the SDOF model to derive conclusions which will be then extended to MDOF systems in Section 4.2 . 

Indeed, it will be shown that the use of an SDOF approximation easily allows to express normalized parameters and im- 

proves the clarity of the whole discussion without leading to any loss of generality. 

2.2. NC electrical circuits 

As mentioned previously, NCs are built using circuits based on OP-AMPs. In this work, an ideal behavior of the OP-AMP 

will be considered [50] . Depending on the connection between the piezoelectric transducer and the NC, different circuits 

can be used. When the NC is connected in parallel (see Fig. 2 a), two schematics can be employed, named type A and B, 

which differ from each other for the capacitance position in the circuit. They are shown in Fig. 3 a (named layout PA, where 

P indicates the parallel connection) and Fig. 3 b (named layout PB). Both the layouts provide an equivalent circuit which is a 

pure NC, - C 1 , whose value can be calculated as: 

C 1 = 

R 2 

R 1 

ˆ C (6) 

Since the obtained equivalent circuit is the same for both the layouts (i.e. - C 1 ), also the attenuation performance provided 

by the two layouts will be the same. 

When the NC is connected in series (see Fig. 2 b), there are again two different possible layouts that can be used and 

they are the type A and B of Fig. 3 a and b with the OP-AMP pins exchanged. However, often, problems are encountered with 



Fig. 3. Physical implementation of NCs: type PA (a), type PB (b), type SA (c) and type SB (d).

these layouts [59] , caused for example by bias currents, and thus different layouts are used in practical applications: layouts 

SA (see Fig. 3 c) and SB (see Fig. 3 d). It is worth noticing that in this case there are two additional elements compared to 

the parallel layouts: the resistances R s and 

ˆ R . The resistance ˆ R is added to avoid electrical problems [59] but its presence 

also causes a destabilizing effect [60] , which is limited by the addition of R s [49] . The circuits SA and SB can be seen as the 

parallel between an NC, - C 2 , and a resistance R eq , where: 

C 2 = 

R 2 

R 1 

ˆ C (7) 

R eq = 

R s 
R 1 
R 2 

ˆ R 

R 1 
R 2 

ˆ R − R s 

(8) 

The value of R s is usually chosen in order to make R eq tend to −∞ (e.g. −75 M �). This allows to make the SA and SB 

layouts behave similarly to pure NCs (with the exception of the low frequency range, e.g. below 10 Hz, which is usually 

not interesting for piezoelectric shunt applications). Therefore, these layouts will be considered as ideal from here on (i.e. 

considering just R 1 , R 2 and 

ˆ C to model the electrical behaviour of the NC and neglecting R s and 

ˆ R ). 

Once recalled the electro-mechanical system model and the NC schematics and layouts, it is possible to approach the 

problem of OP-AMP outputs, which is the main focus of this work. 

2.3. The outputs of the OP-AMP 

In this subsection the general model described by Eqs. (1) and (2) is employed to derive the model describing the be- 

haviour of the OP-AMP in terms of its output voltage and current. Particularly, the frequency response functions (FRFs) G (j�) 

(j is the imaginary unit) between the charge Q cs produced by the deflection of the piezoelectric actuator ( Q cs = 

∑ N 
i =1 χi q i , 

see Eq. (2) ) and either the voltage V o or the current I o at the output of the OP-AMP (see Fig. 3 ) are derived. These FRFs will 

constitute the basis for all the subsequent analyses and, since they are based on Eq. (2) , they are of general validity. 

According to Eq.(2), Figs. 2 and 3 , and the link between V and 

˙ Q through Z sh (see Fig. 1 ), it is possible to derive the FRFs 

G (j �): 

G 

vo 
pa ( j�) = 

V o 

Q cs 
( j�) = 

1 + j�C 1 R 1 

( C 1 − C ∞ 

) − 1 / ( j�R ) 
, G 

io 
pa ( j�) = 

I o

Q cs 
( j�) = 

j�C 1 [ 1 + ( R 1 /R 2 ) ]

( C 1 − C ∞ 

) − 1 / ( j�R ) 
(9) 

G 

vo 
pb ( j�) = 

V o 

Q cs 
( j�) = 

1 + ( R 2 /R 1 ) 

( C 1 − C ∞ 

) − 1 / ( j�R ) 
, G 

io 
pb ( j�) = 

I o 

Q cs 
( j�) = 

j�C 1 + ( 1 /R 1 ) 

( C 1 − C ∞ 

) − 1 / ( j�R ) 
(10) 

G 

vo 
sa ( j�) = 

V o 

Q cs 
( j�) = 

1 + j�C 2 R 1 

( C 2 − C ∞ 

) + j�RC 2 C ∞ 

, G 

io 
sa ( j�) = 

I o

Q cs 
( j�) = 

j�C 2 [ 1 + ( R 1 /R 2 ) ]

( C 2 − C ∞ 

) + j�RC 2 C ∞ 

(11) 

G 

vo 
sb ( j�) = 

V o 

Q cs 
( j�) = 

1 + ( R 2 /R 1 ) 

( C 2 − C ∞ 

) + j�RC 2 C ∞ 

, G 

io 
sb ( j�) = 

I o 

Q cs 
( j�) = 

j�C 2 + ( 1 /R 1 ) 

( C 2 − C ∞ 

) + j�RC 2 C ∞ 

(12) 



Table 2

Effect of R 1 and R 1 / R 2 on the OP-AMP outputs for an NC in either parallel or series connection.

Type A Type B

M 

vo
a M 

io
a M 

vo
b 

M 

io
b

If R 1 increases and R 1 / R 2 does not change increases no change no change decreases

If R 1 / R 2 increases and R 1 does not change no change increases decreases no change

The superscripts vo and io indicate voltage and current OP-AMP outputs, respectively. The subscript, instead, indicates 

the configuration used (i.e. p for parallel and s for series, and a for type A and b for type B). 

From these FRFs, their corresponding absolute values M(�) can be derived: 

M 

vo 
pa ( �) = 

∣∣G 

vo 
pa ( j�) 

∣∣ =
√

1 + ( �C 1 R 1 ) 
2 

P M 

, M 

io 
pa ( �) = 

∣∣G 

io 
pa ( j�) 

∣∣ = 

�C 1 [ 1 + ( R 1 /R 2 ) ]

P M 

(13) 

M 

vo 
pb ( �) = 

∣∣G 

vo 
pb ( j�) 

∣∣ = 

1 + ( R 2 /R 1 ) 

P M 

, M 

io 
pb ( �) = 

∣∣G 

io 
pb ( j�) 

∣∣ =
√

( �C 1 ) 
2 + ( 1 /R 1 ) 

2 

P M 

(14) 

M 

vo 
sa ( �) = | G 

vo 
sa ( j�) | =

√
1 + ( �C 2 R 1 ) 

2 

S M 

, M 

io 
sa ( �) = 

∣∣G 

io 
sa ( j�) 

∣∣ = 

�C 2 [ 1 + ( R 1 /R 2 ) ]

S M 

(15) 

M 

vo 
sb ( �) = 

∣∣G 

vo 
sb ( j�) 

∣∣ = 

1 + ( R 2 /R 1 ) 

S M 

, M 

io 
sb ( �) = 

∣∣G 

io 
sb ( j�) 

∣∣ =
√

( �C 2 ) 
2 + ( 1 /R 1 ) 

2 

S M 

(16) 

where: 

P M 

= 

√
( C 1 − C ∞ 

) 
2 + 1 / ( �R ) 

2 
, S M 

= 

√
( C 2 − C ∞ 

) 
2 + ( �RC 2 C ∞ 

) 
2 (17) 

In the next section, the formulations in Eqs. (9) –(17) will be used to show that it is possible to decrease the OP-AMP 

output without changing the attenuation performance, as well as to compare NC circuits A and B. Considering the series and 

parallel connections of the NCs, as mentioned in Section 2.1 , the series layout is used to damp low-order modes, while the 

parallel connection is employed to control high-order modes. Therefore, no comparisons will be addressed between series 

and parallel connections because of their different use. 

3. The change of the OP-AMP outputs without changing the attenuation performance

According to Berardengo et al. [49] , the attenuation performance is fixed as soon as the value of the NC (i.e. −C 1 or −C 2 )

and the value of the shunt resistance R are set. Therefore, in order to see whether it is possible to change the OP-AMP 

outputs without changing the performance of the control, the trend of the M 

vo and M 

io functions must be analysed keeping 

fixed the values of C 1 , C 2 and R , which are thus treated as constants in this analysis. 

In this case, a change of the OP-AMP outputs can be thus obtained by changing either R 1 or R 1 / R 2 , which are the only 

free parameters. Obviously, any change of R 1 and R 1 / R 2 must be compensated in Eqs. (6) and (7) in order to maintain the 

value of the NC constant. As an example, if M 

io 
pa is considered ( Eq. (13) ), when R 1 / R 2 is changed, the value of ˆ C (see Eq. (6) ) 

must be changed accordingly in order to maintain the value of - C 1 constant. 

Table 2 indicates the effect of R 1 and R 1 / R 2 on V o and I o for the different circuit configurations of the NC (type A and 

B) and is valid for an NC in both parallel and series connection. As an example, if the configuration SA is used, and the

aim is to decrease the value of V o , the value of R 1 must be decreased (see Eq. (15) ). From Table 2 , it is evident that inverse 

behaviours characterise type A and B NCs: high values of R 1 and R 1 / R 2 are favorable for type B, while low values are fine for 

type A. However, it must be underlined that the values of R 1 and R 1 / R 2 cannot be indefinitely decreased/increased because 

this could cause problems to the electrical part of the electro-mechanical system. The limit values for R 1 and R 1 / R 2 must be 

looked for case by case because they depend on the non-ideal behavior of the OP-AMP. 

Even if most of the times the OP-AMP saturation is related to the output voltage, also the behaviour in terms of current 

output has been included in this analysis. It is worth noticing that, for each configuration, it is possible to act separately 

on V o and I o because, when one depends on R 1 , the other one depends on R 1 / R 2 . This is an important outcome because 

it evidences that it is possible to decrease the electrical power required by the OP-AMP. If applications where there is a 

limited availability of electrical power are considered, this aspect can become fundamental for the practical application of 

the NC. 

Fig. 4 provides some quantitative examples of the relations among M 

vo , M 

io and either R 1 or R 1 / R 2 expressed in 

Table 2 (obviously, where there is no dependence between two quantities, the plot is not shown, e.g. the trend of M 

vo 
a (�) 

as a function of R 1 / R 2 is not shown because it is not a function of R 1 / R 2 ). This figure shows the amount of change of V o and 



Fig. 4. Trend of M 

vo and M 

io as a function of R 1 and R 1 / R 2 (valid for both series and parallel NC). The values on the vertical axes are normalized (as 

indicated by the word ‘norm’ in the superscript) in order to have a value equal to 1 for the highest value of each curve. M 

vo , norm 
a (a), M 

vo , norm 
b 

(b), M 

io , norm 
b 

(c) and M 

io , norm 
a (d). The absolute value of the NC is 40 nF. 

I o (considering the amplitudes M , see Eqs. (13) –(16) ) that can be obtained changing the values of R 1 and R 1 / R 2 . The results 

of Fig. 4 are valid for NCs in both parallel and series connection. The values on the vertical axes of Fig. 4 are normalized (as 

indicated by the word ‘norm’ in the superscript) in order to have a value equal to 1 for the highest value of each curve and 

a straightforward percentage comparison. The plots show that a significant decrease of the output current and voltage can 

be achieved acting on the circuit parameters for both type A and B NCs. As an example, Fig. 4 a shows that, once the value 

of the NC is set, a decrease of R 1 from 25 k � to 6 k � allows to decrease the output voltage for type A of about 15% or 

much more (this result is a function of the frequency value considered; Fig. 4 a shows the curves for three different values 

of �) (see Eqs. (13) and (15) ). In Fig. 4 b, it is shown that the output voltage for type B can be decreased of about a half 

increasing the value of R 1 / R 2 from 0.5 to 1.5 and this result is not dependent on the frequency (see Eqs. (14) and (16) ). 

Looking at Eq. (17) , it is interesting to notice that the changes of R 1 and R 1 / R 2 do not affect the denominator of the M

functions (see Eqs. (13) –(16) ). Moreover, the denominator of these functions is always the same for a given NC connection 

(series or parallel). This peculiarity allows for a straightforward comparison of the A and B circuits in terms of both voltage 

and current output, by calculating the ratios D : 

D 

vo 
p ( �) = 

M 

vo 
pa ( �) 

M 

vo 
pb ( �) 

= D 

vo 
s ( �) = 

M 

vo 
sa ( �) 

M 

vo 
sb ( �) 

= 

√
1 + ( �C neg R 1 ) 

2 

1 + ( R 2 /R 1 ) 
(18) 

D 

io 
p ( �) =

M 

io 
pa ( �) 

M 

io 
pb ( �) 

= D 

io 
s ( �) = 

M 

io 
sa ( �) 

M 

io 
sb ( �) 

= 

�C neg [ 1 + ( R 1 /R 2 ) ] √ 

( �C neg ) 
2 + ( 1 /R 1 ) 

2 
(19) 

where C neg = C 1 for an NC in parallel and C neg = C 2 for an NC in series. 

In order to show a comparison between the two types of NC circuits (A and B), Fig. 5 shows the trend of D 

vo and D 

io as a 

function of the frequency for a system chosen as an example, where the values of R 1 and R 1 / R 2 have been set to values that 

are common in practical cases (low value of R 1 , i.e. 6 k �, which is fine for type A and high value of R 1 / R 2 , i.e. 1.5, which 

is fine for type B). The plots of Fig. 5 are valid for an NC in both parallel and series connection. Fig. 5 and Eqs. (18) and 

(19) show that these ratios are function of the angular frequency �. This means that, depending on the frequency band 

considered (and also on the value of NC used), type A NC can be either better or worse (in terms of level of output) than 

type B. As an example, Fig. 5 a shows that a frequency value exists over which D 

vo becomes higher than 1, which means that 

type B becomes less demanding than type A. This threshold frequency value depends on the value of the NC used. It is also 

noticed that the ratios D do not depend on the value of R . In the case presented in Fig. 5 a with an NC equal to 40 nF, type 



Fig. 5. Trend of D vo (a) and D io (b) (valid for both series and parallel NC connections) as a function of the frequency for an NC absolute value equal to 40

nF (solid line) and 200 nF (dashed line), R 1 = 6 k� and R 1 / R 2 = 1 . 5 . 

A must be preferred if the response of the structure is concentrated below about 1 kHz, while type B must be preferred if 

it is concentrated over approximately 1 kHz. In case the response is not concentrated in one of these two frequency bands, 

a multi-mode approach becomes essential to choose the right configuration between types A and B. 

Therefore, for a given engineering application, an MDOF model must be used in order to understand which is the most 

convenient NC circuit (A or B). This problem will be addressed in detail in Sections 5 and 6 . 

The analysis presented in this section has shown that it is possible to decrease the OP-AMP output without changing 

the attenuation performance by properly tuning the values of R 1 and R 1 / R 2 . Furthermore, nor type A circuit neither type B 

circuit can be considered better than the other because of the relation between the OP-AMP outputs and the frequency, that 

makes one type more/less demanding than the other according to the frequency range considered. 

In case a generic passive impedance Z is used in place of a simple resistance R in Fig. 2 , the FRFs of Eqs. (9) to (12) can 

be changed by simply replacing the value of R at the denominator with the expression of the generic passive impedance 

Z . Being Z always at the denominator of the FRFs, the results of this section can be readily shown to be valid for any type 

of passive impedance (moreover, it must be noticed that Eqs. (18) and (19) do not change). Particularly, the trends of the 

current and the voltage at the OP-AMP output do not change and the conclusions outlined in Table 2 , Figs. 4 and 5 become 

of general validity, regardless the type of passive impedance used in Fig. 2 in place of the resistance R . 

4. The effect of the NC and R values on the OP-AMP outputs

In section 3 , attention was focused on how to change the OP-AMP outputs, given a certain attenuation performance. 

However, it is worth analysing also what occurs if this constraint is removed and, thus, studying the effect of the values of 

the NC and R on the OP-AMP voltage and current outputs. Indeed, this will allow to understand also how the vibration level 

of the electro-mechanical system affects the OP-AMP outputs. 

As an example, suppose to change the value of R . On the one hand, this change causes a change of the OP-AMP out- 

put due to the electric behavior of the shunt impedance, as can be noticed looking at Eqs. (13) –(16) which link the 

value of R to the OP-AMP outputs. However, a second effect occurs because the change of R also changes the vibration 

of the electro-mechanical system [49] . If the vibration increases/decreases, the value of Q cs ( Q cs = 

∑ N 
i =1 χi q i , see Eq. (2) ) 

increases/decreases and, therefore, a change of the OP-AMP output occurs. 

The aforementioned facts suggest that, for a detailed analysis of the effect of the NC and R values on the OP-AMP outputs, 

it is not enough to consider just the electrical part of the electro-mechanical system. Therefore, this paper considers the 

whole electro-mechanical system (i.e. also the mechanical part). 

This paper proposes to address the mentioned points by deriving the FRFs between the external forcing term F and the 

OP-AMP outputs. In this section, this is accomplished by considering at first ( Section 4.1 ) the SDOF approximation of the 

whole system described in Section 2.1 because it offers a clear view of the phenomena involved in the problem, without any 

loss of generality. The results of the discussion related to the SDOF system are then generalized to a generic MDOF system 

in Section 4.2 . 



4.1. SDOF system 

To the purpose of this section, it is convenient to use the non-dimensional parameters k i , ˜ k i and τ in place of the physical 

parameters (i.e. −C 1 , −C 2 and R ) to express Eqs. (9) –(12) which describe the FRFs G (j �) between the charge Q cs ( Q cs = χi q i 
for the SDOF approximation, see Section 2.1 ) produced by the deflection of the piezoelectric transducer and either the 

voltage V o or the current I o at the output of the OP-AMP. The parameter τ is defined as: 

τ = C eq R (20) 

The use of the parameters k i , ˜ k i and τ in the FRFs G (j �) allows to readily link the electrical behavior of the electro- 

mechanical system to the mechanical one. Indeed, the values of ˜ k i , k i and τ are directly related to the vibration attenuation 

provided by the piezoelectric shunt and, thus, allow to study the OP-AMP outputs as functions also of the control perfor- 

mance. 

According to Eq. (20) and to the expressions of C eq and 

˜ k i given Table 1 , the FRFs of Eqs. (9) –(12) can be expressed for 

an SDOF system as: 

G 

vo 
i, pa ( j�) = 

V o 

Q cs 
( j�) = 

˜ k 2 
i 

+ j�C p i 
(

˜ k 2 
i 

− k 2 
i 

)
R 1 

P i ̃  k 2 
i 

, G 

io 
i, pa ( j�) = 

I o 

Q cs 
( j�) = 

j�C p i 
(

˜ k 2 
i 

− k 2 
i 

)
[ 1 + ( R 1 /R 2 ) ] 

P i ̃  k 2 
i 

(21) 

G 

vo 
i, pb ( j�) = 

V o

Q cs 
( j�) = 

1 + ( R 2 /R 1 ) 

P i 
, G 

io 
i, pb ( j�) = 

I o 

Q cs 
( j�) = 

j�C p i 
(

˜ k 2 
i 

− k 2 
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)
+ ̃

 k 2 
i ( 1 /R 1 ) 

P i ̃  k 2 
i 

(22) 

G 

vo 
i, sa ( j�) = 

V o 

Q cs 
( j�) = 

(
˜ k 2 

i 
− k 2 

i 

)
+ j�C p i ̃  k 2 

i 
R 1 

S i 
(

˜ k 2 
i 

− k 2 
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) , G 

io 
i, sa ( j�) = 
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Q cs 
( j�) = 

j�C p i ̃  k 2 
i [ 1 + ( R 1 /R 2 ) ] 

S i 
(

˜ k 2 
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− k 2 
i 

) (23) 

G 

vo 
i, sb ( j�) = 

V o

Q cs 
( j�) = 

1 + ( R 2 /R 1 ) 

S i 
, G 

io 
i, sb ( j�) = 

I o 

Q cs 
( j�) = 

j�C p i ̃  k 2 
i 

+ ( 1 /R 1 ) 
(

˜ k 2 
i 

− k 2 
i 

)
S i 
(
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) (24) 

where the subscript i is added to G to indicate the mode considered, and: 

P i = −C p i 
( 1 + j�τ ) k 2 i 

j�τ ˜ k 2 
i 

, S i = C p i ( 1 + j�τ ) 
k 2 

i 

˜ k 2 
i 

− k 2 
i 

(25) 

Furthermore, according to [49] , the FRF H i between the modal force F i and the modal coordinate q i is: 

H i ( j�) = 

q i 
F i 

( j�) = 

1 + j�τ(
ω 

sc 
i 

)2 − ( 1 + 2 ξi ω i τ ) �2 + j�
[
τ
(
ω 

oc 
i 

)2 + 2 ξi ω i − τ�2 

] (26) 

Therefore, using Eqs. (21) –(24) , together with Eq. (26) , the FRFs T vo 
i 

, between the external force F and V o , and T io 
i 

, between 

the external force F and I o , can be derived for an SDOF system: 

T vo 
i ( j�) = 

V o 

F 
( j�) = 

V o 

Q cs 
χi �i ( x f ) 

q i 
F i 

= χi �i ( x f ) G 

vo 
i ( j�) H i ( j�) (27) 

T io i ( j�) = 

I o 

F 
( j�) = 

I o 

Q cs 
χi �i ( x f ) 

q i 
F i 

= χi �i ( x f ) G 

io 
i ( j�) H i ( j�) (28) 

where x f is the point where F acts on the mechanical structure. 

If the amplitudes of the FRFs T vo 
i 

and T io 
i 

are considered, it is easy to notice that their peaks are at frequency values 

corresponding to (or very close to) the peak value of the amplitude of the FRF H i . 

Fig. 6 shows, for two electro-mechanical systems chosen as examples, the trend of the peaks for the FRF amplitudes of 

T vo 
i 

, named T pk , and of H i , named H 

pk , as functions of the value of τ (the value of τ is expressed in Fig. 6 as normalised over 

its optimal value τ opt , i.e. the value which maximises the vibration attenuation [49] for the mode considered). The value of 

τ is changed on the horizontal axis of the plot by changing the value of R , keeping always the same value for the NC and, 

thus, for the C eq involved in the definition of τ (see Eq. (20) and Table 1 ). Moreover, the figure also shows the values of the 

G 

vo 
i 

amplitude at the frequency value where the FRFs T vo 
i 

have their amplitude peaks, named G 

pk . 

The trends of T pk , H 

pk , and G 

pk as functions of the value of τ/τ opt are shown in Fig. 6 as normalized (as indicated by 

the superscript ‘norm’) in order to have 1 as the maximum value for each curve, for a straightforward comparison of the 

trends. This representation allows to highlight the contribution to the output voltage (for a given value of the input force) 

of the electrical part of the system (represented by G 

pk ) and the mechanical one (represented by H 

pk ). 

Fig. 6 shows that when the value of τ is much higher than τ opt ( τ/τ opt ≥ 50 ), the behavior of T pk , norm is close to the be- 

havior of G 

pk , norm , thus highly influenced by the electrical part of the whole system. Conversely, for τ/τ opt ≤ 5 , the behavior 

of T pk , norm is significantly different from that of G 

pk , norm , while it stays close to that of H 

pk , norm . As an example, for τ/τ opt 

from 0.01 to 0.1, the trend of G 

pk , norm is almost constant. Conversely, T pk , norm decreases, following the behaviour of H 

pk , norm 



Fig. 6. Trend of T pk , H pk and G pk for OP-AMP output voltage with NC in series (Type A) for two different systems: | k i | = 0 . 1 and C 2 = (10 / 3) C p i (thus, 

| ̃ k i | / | k i | = 

√ 

10 / 7 ) (a) and | k i | = 0 . 1 and C 2 = (10 / 7) C p i (thus, | ̃ k i | / | k i | = 

√ 

10 / 3 ) (b). All the curves are normalized (as indicated by the superscript ‘norm’)

in order to have 1 as the maximum value in each plot for a straightforward comparison of the trends. ξi = 10 −3 , ω i / ( 2 π) = 30 Hz, C p i = 30 nF, R 1 = 6 k�

( R 1 / R 2 has no effect here).

that decreases due to the reduction of the vibration provided by the shunt. The percentage decrease of T pk , norm in the range 

of τ/τ opt from 0.01 to 0.1 is significant (i.e. about 60% for plot (a) of Fig. 6 , and about 70% for plot (b)), evidencing that 

the behavior of the mechanical part of the electro-mechanical system has a significant influence on the OP-AMP outputs. 

This in turn demonstrates that it possible to decrease the OP-AMP outputs at resonance, when the value of the resistance R 

is optimized, thanks to the decrease of the electro-mechanical system vibration. Therefore, it is not possible to analyse the 

effect of the value of R on the OP-AMP outputs taking into account just the electric part of the electro-mechanical system. 

It is worth noticing that, although Fig. 6 is related to voltage output for type A circuit (NC in series), similar curve trends 

can be obtained when type B circuit and/or current output are considered. 

Something similar occurs if the behaviour of the OP-AMP outputs is studied as a function of the NC value. When the 

values of either C 1 or C 2 get closer and closer to the value of C p i , the attenuation performance increases because | ̃ k i | in- 

creases (see Table 1 ). This in turn implies that the mechanical vibrations decrease, leading to a decrease of the peak of | H i | ,
thus with a favorable effect on the peak of | T i | . Indeed, the comparison of Fig. 6 a and b shows that when the value of | ̃ k i |
increases (from plot (a) to plot (b)), the influence of | H i | on | T i | around τ = τ opt becomes higher and higher; this is due to

the higher and higher attenuation levels achieved. It must be pointed out that this does not mean that the global voltage 

output decreases from Fig. 6 a to b (indeed, Fig. 6 is normalised with respect to the largest values of the curves) but that 

the influence of the mechanical part on the output voltage becomes increasingly relevant as the NC value approaches the 

stability limit. 

Fig. 6 and its outcomes are related to NCs in series. For NCs in parallel, similar outcomes are found. The only difference 

is that the curves for NCs in parallel show an opposite trend as a function of τ/τ opt compared to those shown in Fig. 6 . This 

means that, as an example, the curve of G 

pk , norm is close to 1 for τ/τ opt � 1 and close to 0 for τ/τ opt � 1 . 

4.2. MDOF system 

This subsection generalises the discussion presented in Section 4.1 to the case of an MDOF system. 

For an MDOF system, each mode contributes to the OP-AMP output in a way that depends on the ratio between the 

used shunt resistance R (and, thus, the actual value of τ ) and the optimal resistance for that mode (and, thus, its τ opt 

value) (see Fig. 6 ). Supposing, as an example, to control a low-order mode of an MDOF system with an NC in series, in this 

configuration (i.e. resistive shunt with an NC in series) the value of τ opt decreases with increasing the eigenfrequency of the 

target mode [49] . Therefore, if the τ value is set to control a low frequency mode, most of the other modes of the system 

will be characterised by a ratio τ/τ opt higher than 1. It is possible to observe from Fig. 6 that the value of T pk decreases 

when τ/τ opt increases for an NC in series, which is positive because this reduces the contribution to the OP-AMP outputs 

of the modes higher than the targeted one. 

In light of this, in order to tune the circuit parameters in case of MDOF systems, the optimal τ (and thus R ) value should 

be defined to control the target modes. Then, the NC parameters R 1 and R 1 / R 2 should be optimized in order to minimize 



Fig. 7. Iso-lines for the vibration attenuation calculated in decibel and for T pk (in decibel) for OP-AMP output voltage with NC in series (Type B) as

functions of the values of | ̃ k i | and τ/τ opt for an SDOF system chosen as example ( | k i | = 0.1, ξi = 3 × 10 −3 , ω i / ( 2 π) = 100 Hz, C p i = 30 nF, R 1 / R 2 = 1.5, R 1 
has no effect here). Considering T pk , 0 dB corresponds to the maximum value in the plot. The attenuation is calculated (in decibel) as the ratio between

the peak amplitude of the displacement/force FRF with the piezoelectric actuator in short-circuit and the peak amplitude of the displacement/force FRF

controlled by means of the shunt.

V o (or/and I o ) according to the results shown in Table 2 . Given this configuration, which is optimal for both the control 

performance and the OP-AMP outputs, it is possible to act on the R and NC values to further reduce the OP-AMP outputs if 

needed, knowing that this would lead to a decrease of the control performance. 

However, it is possible to notice that a moderate increase of the R value can lead to a significant reduction of the OP- 

AMP output s since it increases the value of τ/τ opt for all the modes, without considerably deteriorating the attenuation on 

the targeted mode. 

As an example, Fig. 6 a shows that, passing from τ/τ opt = 1 to τ/τ opt = 1.66 for the given mode, the value of T pk decreases 

of approximately 20%, at the cost of an increase of H 

pk of approximately 10%, thus leading to a reduction of the peak of the 

OP-AMP output which is, in percentage, twice than the loss of attenuation performance. This aspect can be easily under- 

stood by looking at Fig. 7 , which shows the vibration attenuation (of the peak of the amplitude of the displacement/force 

FRF) in decibel and T pk as functions of | ̃ k i | and τ/τ opt for a system chosen as an example. For a given value of | ̃ k i | , the atten- 

uation curves (red dotted lines) show a moderate slope around τ/τ opt = 1 and, therefore, a slight change of τ/τ opt around 

the optimal ratio (i.e. 1) does not imply a significant loss of performance. Conversely, the blue solid curves, representing 

T pk , are quite steep around τ/τ opt = 1 and, thus, the same change of τ leads to a non-negligible reduction of the OP-AMP 

output. 

Another important aspect, which can be noticed looking at the curves of Fig. 7 , is the following. As mentioned, in the 

area of τ/τ opt close to 1 the T pk curves are steep (almost vertical in some cases). This means that a decrease of the | ̃ k i |
value (or an increase as well) would just lead to a change of the control performance without significantly modifying the 

OP-AMP output. Nevertheless, if the desired reduction of T pk can be obtained only with a significant increase of τ (e.g. from 

τ/τ opt = 1 to τ/τ opt = 10), thus leading to a drastic decrease of the achievable vibration attenuation (see the right side of 

Fig. 7 ), it is convenient to modify the NC value (and thus decrease | ̃ k i | ), rather than increase τ (and, thus, R ). Of course, this

is an extreme situation which implies a significant loss of control performance and, thus, it would be better, if possible, to 

adopt a different OP-AMP with a higher output range. 

Similar considerations can be deduced for NCs in parallel: they are used to attenuate high-order modes which require 

low values of τ opt . Considering the modes at frequency lower than that for which τ/τ opt is equal to 1 (which are the 

majority of the system modes), their τ/τ opt values are lower than 1. According to Eqs. (21) , (22) , (27) and (28) , and the last 

part of Section 4.1 , low values of τ/τ opt lead to a decrease of T pk . Therefore, in this case, a slight decrease of R can provide 

significant benefits in terms of OP-AMP output with slight worsening of the attenuation performance for the mode which is 

the main target of the control. 

However, to know whether the risk of OP-AMP saturation is real in a given application, this discussion is not enough. 

Indeed, the risk of saturation is related to the number of modes for which the value of τ/τ opt is disadvantageous ( τ/τ opt � 1 

for an NC in series and τ/τ opt � 1 for an NC in parallel), to the value of the NC and to the power content of the disturbance 

as a function of frequency. Furthermore, another variable to be accounted for is the value of the eigenvectors of the modes 



for which the OP-AMP output is expected to be significant (see Eqs. (27) and (28) , where the value of the eigenvector 

components is shown to influence the OP-AMP output). Therefore, to answer the question (and also to understand whether 

Type A or B circuit must be used, see Section 3 ), an MDOF model of the electro-mechanical system is necessary. Such a 

model is described in Section 5 in order to provide the reader with a tool for choosing the best configuration to reach a 

given level of vibration attenuation and, at the same time, to prevent (or to reduce the risk of) OP-AMP saturation and 

reduce the circuit power consumption. 

To summarise, Sections 4 , 4.1 and 4.2 have shown that in order to choose the proper NC circuit for reducing the OP-AMP 

outputs: 

• the dynamics of the mechanical part of the electro-mechanical system must be taken into consideration;
• the value of R can be changed if necessary, because moderate changes can cause a significant decrease of the OP-AMP

outputs with a slight worsening of the attenuation performance;
• an MDOF model of the electro-mechanical system is needed.

5. The MDOF model

This subsection explains how to derive the mentioned MDOF model. The frequency range of the first n modes (with 

n < N) is taken into account. The n modes considered are those in the frequency range where the power of the disturbance 

F is significant. According to Section 2.1 , the equations of motion are described by limiting Eq. (1) to the modes of interest: 

q̈ i + 2 ξi ω i ˙ q i + ω 

2 
i q i − χi V = F i ∀ i ∈ { 1 , . . . , n } (29) 

Considering the electrical equation, it is not sufficient to limit the summation in Eq. (2) to the modes of interest but the 

contribution of the out-of-band modes must be taken into account in the C p n term, leading to: 

C p n V − Q + 

n ∑ 

i =1

χi q i = 0 (30) 

According to Eq. (29) (and applying the superimposition principle), it is possible to write the FRFs L f 
i 
(j�) between the exter- 

nal force F and the modal variables q i , and the FRFs L v 
i 
(j�) between the voltage between the electrodes of the piezoelectric 

actuator V and the modal variables q i : 

L f i ( j�) = 

q i 
F 

( j�) = 

�i ( x f ) 

−�2 + 2j ξi ω i � + ω 

2 
i 

∀ i ∈ { 1 , . . . , n } (31) 

L v i ( j�) = 

q i 
V 

( j�) = 

χi 

−�2 + 2j ξi ω i � + ω 

2 
i 

∀ i ∈ { 1 , . . . , n } (32) 

Rearranging Eq. (30) using Eqs. (31) and (32) and the link between V and 

˙ Q through Z sh (see Fig. 1 ), it is possible to write 

that: 

V 

F 
( j�) = 

−∑ n 
i =1 χi L 

f 
i (

C p n + 

1 
j�Z sh

+ 

∑ n 
i =1 χi L 

v 
i 

) (33) 

Noticing that for a type A NC in parallel: 

Z sh = 

R 

1 − j�RC 1 
, V o = V ( 1 + j�R 1 C 1 ) , I o = V j�C 1 

(
1 + 

R 1

R 2 

)
(34) 

for a type B NC in parallel: 

Z sh = 

R 

1 − j�RC 1 
, V o = V 

(
1 + 

R 2

R 1 

)
, I o = V 

(
1 

R 1 

+ j�C 1 

)
(35) 

for a type A NC in series: 

Z sh = R − 1

j�C 2 
, V o = 

V ( 1 + j�R 1 C 2 ) 

( 1 − j�RC 2 ) 
, I o = 

V 

( 1 − j�RC 2 ) 
j�C 2 

(
1 + 

R 1

R 2 

)
(36) 

for a type B NC in series: 

Z sh = R − 1

j�C 2 
, V o = 

V 

( 1 − j�RC 2 ) 

(
1 + 

R 2

R 1 

)
, I o = 

V 

(
1 

R 1 
+ j�C 2 

)
( 1 − j�RC 2 ) 

(37) 

the FRFs between F and the OP-AMP outputs ( T vo and T io ) can be written as: 

T vo 
pa ( j�) = 

V o 

F 
( j�) = 

−j�R ( 1 + j�R 1 C 1 ) 
∑ n 

i =1 χi L 
f 
i 

ϑ 

, T io pa ( j�) = 

I o 

F 
( j�) = 

�2 RC 1 ( 1 + R 1 /R 2 ) 
∑ n 

i =1 χi L 
f 
i 

ϑ 

(38) 



T vo 
pb ( j�) = 

V o 

F 
( j�) = 

−j�R ( 1 + R 2 /R 1 ) 
∑ n 

i =1 χi L 
f 
i 

ϑ 

, T io pb ( j�) = 

I o 

F 
( j�) = 

−j�R [ ( 1 /R 1 ) + j�C 1 ] 
∑ n 

i =1 χi L 
f 
i 

ϑ 

(39) 

T vo 
sa ( j�) = 

V o 

F 
( j�) = 

−( 1 + j�R 1 C 2 ) 
∑ n 

i =1 χi L 
f 
i 

λ
, T io sa ( j�) = 

I o 

F 
( j�) = 

−j�C 2 ( 1 + R 1 /R 2 ) 
∑ n 

i =1 χi L 
f 
i 

λ
(40) 

T vo 
sb ( j�) = 

V o 

F 
( j�) = 

−( 1 + R 2 /R 1 ) 
∑ n 

i =1 χi L 
f 
i 

λ
, T io sb ( j�) = 

I o 

F 
( j�) = 

−[ ( 1 /R 1 ) + j�C 2 ] 
∑ n 

i =1 χi L 
f 
i 

λ
(41) 

with 

ϑ = j�R ( C p n − C 1 ) + 1 + j�R 

n ∑ 

i =1

χi L 
v 
i , λ = C p n − C 2 − j�RC p n C 2 + ( 1 − j�RC 2 )

n ∑ 

i =1

χi L 
v
i (42) 

These FRFs allow to carry out the multi-mode analysis and to study the OP-AMP output behaviour taking into consideration 

the effect of the electro-mechanical system modes in the frequency range of interest. If the power content of F as a function 

of the frequency can be estimated, it is possible to compare NC circuits A and B in terms of the OP-AMP outputs, for a 

given NC configuration (series or parallel according to the order of the modes to be damped; see previously in the paper), 

in order to find which is the less demanding circuit for the application considered. This is possible by calculating the power- 

spectrum [61] of the OP-AMP outputs. As an example, the power spectrum �vo 
sa of the OP-AMP voltage output for an NC in 

series, layout type A, is: 

�vo 
sa ( �) = | T vo 

sa ( j�) | 2 �F ( �) (43) 

where �F is the power-spectrum of the force F . 

Obviously, the summations in Eqs. (38) to (41) can be limited to the modes which are highly excited by the external 

force, avoiding to model those which are out of the main frequency band of the disturbance. 

It is worth noticing that the FRFs from Eqs. (38) to (41) allow to calculate also the electrical power ρ required from the 

OP-AMP. Therefore, it is possible to study how ρ changes as function of the values of τ and NC, and how the corresponding 

attenuation performance changes (see Eq. (26) ). This allows for a choice of the values taking into consideration both the 

power requirements for the OP-AMP and the obtained attenuation performance. 

This MDOF model, thus, allows to find which is the best configuration (i.e. type A or B, values of R 1 and R 1 / R 2 ) in terms 

of OP-AMP demands, which is in turn useful for choosing the NC configuration which can prevent saturations. Furthermore, 

the same model allows to estimate how much the OP-AMP outputs can be reduced when a variation of the attenuation 

performance (due to a change of either the NC or R , or both) is accepted. 

6. Guidelines

This section provides some guidelines about how to build a shunt circuit based on an NC coupled to a resistance taking 

into consideration both the vibration attenuation and the OP-AMP outputs. As mentioned, the OP-AMP outputs are functions 

of many different parameters such as, as examples, the frequency band of the external disturbance, the value of τ used that 

depends on the type of control strategy, the values of the eigenvector components for the modes in the frequency range of 

the disturbance. The same applies to the attenuation performance, which is strictly related to the type of control needed 

(e.g. minimization of frequency peaks, minimization of the root mean square (RMS) value of the response vibration signal). 

Therefore, a number of variables are involved in the relationship linking OP-AMP outputs and attenuation performance. To 

facilitate the design of the shunt circuit based on NCs, a procedure is proposed, that is based on the MDOF model presented 

previously. 

The first step is to define the value of the parameters that determine the control performance: the shunt resistance R 

and the NC. Then, the NC layout and the values of its components can be defined. In order to do this, the following steps 

can be followed for a generic MDOF system: 

1. The frequency band (and possibly the extent) of the external forcing in operating conditions has to be estimated. This

first step will allow to properly define the modal model of the electro-mechanical system and to have an idea about the

NC layout which is the most reliable for the given application (see point 4 of this list). Furthermore, the knowledge of

the external disturbances allows to estimate the OP-AMP output and, thus, to evaluate the risk of saturation (see point

5). 

2. Then, the system has to be characterized:
• The modal parameters ξi , ω i and �i of the system with the piezoelectric actuator short-circuited have to be identified

(e.g. using experimental modal analysis techniques). All the modes that are supposed to be significantly excited in

operational conditions have to be characterized and included in the model of the electro-mechanical system.
• The coupling factor k i ( or χi ) has to be determined (e.g. with a modal analysis with the piezoelectric actuator in

both short- and open-circuit, see Section 7 ) as well as the modal capacitance C p i (e.g. with either a fitting procedure

[ 42 , 58 ] or other methods [ 57 , 58 ]). Also these two parameters have to be estimated for all the modes for which the

external forcing is supposed to be significant.



3. Once the model of the electro-mechanical system is defined, it is possible to set the shunt resistance R and the NC in

order to obtain the desired control performance:
• The desired attenuation targets for the modes of interest have to be set as well as the minimum admissible perfor- 

mance.
• The choice of the NC connection depends on the control target: NC in series is suitable for low-order modes, while

NC in parallel has to be employed to control modes at high frequency. For modes in the middle area of the spectrum,

both the layouts can be used with similar performances, or it is possible to employ more complex circuits (e.g. [41] )

to further increase the attenuation levels.
• Then, the NC value can be defined. If the aim of the control is to maximise the attenuation, the NC must be set close

to the stability limits. Otherwise, its absolute value can be chosen as the maximum (for the series) or the minimum

(for the parallel) which allows to reach the control target [49] .
• Then, the value of τ (and, thus, of R ) can be set according to the desired target (e.g. maximization of the attenuation

on a given mode, minimization of the displacement/force FRF peak on a given frequency range, minimization of

the displacement RMS on a given frequency range). Different works in the literature already discuss criteria to set

the value of τ depending on the target required (e.g. [ 22 , 38 , 49 , 62 ]). More in detail, Berardengo et al. [49] proposed

a method for optimising the value of τ in case of mono-modal control depending on the value of the NC. When

broadband control is required, according to the different target of the control (e.g. H ∞ 

and H 2 control), different

strategies can be adopted (e.g. [ 49 , 62 ]). Usually, the optimal τ value for these cases is between the optimal τ values

for the mono-modal control of the lowest and highest modes considered.

4. Once the controller is tuned, the NC circuit and its parameters can be defined:
• Since it is not possible to define a priori which is the less demanding layout in terms of OP-AMP outputs, both A and

B types have to be considered at first. The R 1 and R 1 / R 2 values have to be set according to the results of Table 2: they

have to be kept as low as possible for type A and as high as possible for type B. The thresholds for low values in

type A and high values in type B, due to the non-ideal behaviour of the OP-AMP, must be checked experimentally

(the authors are currently studying this point).
• Afterwards, Eqs. (18) and (19) have to be used to compare the two layouts and to define the frequency ranges where

type A is less demanding than type B and vice versa. Three possible cases can be recognized: (a) in case the power

spectrum of the disturbance �F (�) is expected to be significant only in the frequency range where type A is less

demanding than type B, type A has to be chosen; (b) if �F (�) is expected to be significant only in the frequency

range where type B is less demanding than type A, type B must be used; (c) if, instead, �F (�) is significant in both

the frequency ranges, it is necessary to simulate the system using the MDOF model of Section 5 to define the best

NC layout (either A or B) for the given application.

5. At this point, if the amplitude of the forcing term is known, it is possible to simulate the system with the model of

Section 5 to estimate the OP-AMP outputs and evaluate the risk of saturation. Otherwise, it is possible to test the system

experimentally in working conditions.

6. In case critical values of OP-AMP outputs emerged at point 5 of this list, or the OP-AMP experienced saturations during

the test, an adjustment of the control parameters R and NC can be performed to decrease the OP-AMP outputs:
• the value of R (and, thus, of τ ) can be increased if an NC in series is used, or decreased if the NC is in parallel

(see Section 4.2 ). This allows to decrease the outputs of the OP-AMP. The worsening of the vibration attenuation is

either moderate or even negligible, depending on the case, if the increase/decrease of R is up to approximately 100

or 200% (actually, this threshold depends on the ratio | ̃ k i | / | k i | , see Fig. 7 ). A higher change of R is not suggested

because it could worsen a lot the attenuation performance without a strong decrease of the OP-AMP output (see

Section 4.2 ).
• In case the OP-AMP output is still too large after having changed R at the previous step (the OP-AMP output can

be estimated with the model presented in Section 5 ), the NC value must be made farther from the stability limit

(i.e. either increase of C 2 or decrease of C 1 , see Section 4.2 and Table 1 ). If the new NC value (together with the

corresponding optimal τ value) provides an attenuation performance which is still acceptable, the steps from 4 to 6

of this list must be repeated. This procedure can be repeated iteratively until satisfactory values of both attenuation

and OP-AMP outputs are achieved.
• If, finally, it is not possible to find NC and R values able to provide satisfactory attenuation performances and, at the

same time, OP-AMP outputs low enough, a new OP-AMP able to provide higher outputs must be used. Obviously, this

increases the cost of the whole set-up.

7. Obviously, this sixth point of the numbered list should be avoided if not necessary because it will lead to a decrease of

the attenuation level. It is underlined that in many practical cases the use of the MDOF model presented in Section 5 is

necessary because each different mode in the frequency range of the external disturbance will contribute to the OP-AMP

output, and its own weight will be dependent on the corresponding �i (x f ) value. It can also occur that a mode able

to provide a large contribution to the OP-AMP output is not the target of the control action provided by the shunt.

Therefore, in this case, since the OP-AMP output and the attenuation performance depend on different modes, only the

use of the MDOF model allows to solve the problem finding the best trade-off between attenuation performance and

OP-AMP outputs.



Fig. 8. The experimental set-up.

Table 3

Data of the test set-up identified experimentally.

Mode

Number

ω i / ( 2 π) [Hz] ξi [%] | k i | C p i [nF]

1 29.46 0.47 0.155 48.72

2 181.64 0.37 0.078 48.43

7. Experimental tests

This section aims at validating most of the theoretical results discussed in the previous sections of the paper. 

Section 7.1 describes the set-up used for the tests, while Sections 7.2 and 7.3 discuss the experimental results for the series 

and parallel NC connections, respectively. 

7.1. Set-up 

The test set-up was an aluminum cantilever beam (length 161 mm, width 25 mm and thickness 1.1 mm) with one piezo- 

electric patch (length 51 mm, width 25 mm and thickness 0.38 mm, material type: Quickpack TM ) bonded at the clamped 

end (see Fig. 8 ). The modes considered for the tests were the first two bending modes. The cantilever beam was excited 

by a contactless electro-magnetic actuator, composed by a coil (where current flows) and a magnet bonded to the beam. 

The force was estimated measuring the current flowing into the coil by means of a current clamp. Indeed, this current 

was assumed as proportional to the force exerted to the beam [63] . The excitation was of random nature between 20 and 

250 Hz. The vibrational response of the beam was measured by a laser velocimeter. The NC was built in each test using the 

schematics of Fig. 3 , using an OP-AMP Texas Instruments OPA445A. The OP-AMP was supplied with a constant voltage ±V pp 

(with V pp = 30 V). 

The OP-AMP output voltage was measured with a 24-bit acquisition module with anti-aliasing filter on board. The OP- 

AMP output current was measured adding a small resistance (i.e. 100 �) at the output of the OP-AMP and measuring the 

voltage drop between its terminals. 

The modal parameters of the two modes considered are provided in Table 3 and were identified by means of an experi- 

mental modal analysis. The value of | k i | was estimated as:

| k i | �
√

ˆ ω 

2 
i 

− ω 

2 
i 

ω 

2 
i 

= k eff (44) 

where ˆ ω i is the open-circuit eigenfrequency of the electro-mechanical system without the addition of any NCs. 

Moreover, Table 3 also presents the values of C p1 and C p2 obtained by measuring the capacitance of the piezoelec- 

tric transducer as a function of the frequency with an LCR meter [ 42 , 58 ]. The values of C 0 and C ∞ 

resulted equal to 

49.85 and 30.86 nF, respectively. 



Table 4

Tests performed with an NC in series.

Test

name

Tested NC

configurations

R

[k �]

R 1 [k �] R 1 /R 2 R 2
[k �]

Ĉ

[nF]

| ̃ k 1 | Vibration

attenuation on

mode 1

(num) [dB]

Vibration

attenuation on

mode 1

(exp) [dB]

Vibration

attenuation on

mode 2

(exp) [dB]

T1A A 22.59 6 0.56 10.71 33.92 0.346 17.10 16.78 3.95

T1B B 22.59 6 0.56 10.71 33.92 0.346 17.10 17.96 3.61

T2A A 22.59 6 1.62 3.70 98.70 0.346 17.10 18.55 3.82

T2B B 22.59 6 1.62 3.70 98.70 0.346 17.10 18.14 3.76

T3A A 22.59 25 0.56 44.64 33.92 0.346 17.10 17.25 3.84

T3B B 22.59 25 0.56 44.64 33.92 0.346 17.10 17.62 3.56

T4A A 22.59 25 1.62 15.43 98.70 0.346 17.10 18.62 3.81

T4B B 22.59 25 1.62 15.43 98.70 0.346 17.10 17.70 3.79

T5A A 22.59 6 0.56 10.71 56.60 0.219 8.83 8.26 3.24

T6B B 3.72 25 1.62 15.43 98.70 0.346 9.34 10.40 8.87

It is noticed that, since the experimental tests presented in the following were carried out during different days, slight 

changes of the values of the parameters in Table 3 occurred for the different tests. 

7.2. Tests with an NC in series 

In order to validate the outcomes related to the use of an NC in series, different tests were carried out and they are 

listed in Table 4 . The test labels are reported in the first column of the table and the last letter of the test name indicates 

which NC type is considered: either type A or B. 

When the value of the NC is set, the value of | ̃ k i | can be estimated by means of the values of ω 

oc 
i 

and ω 

sc 
i 

[49] :

| ̃ k i | �
√ (

ω 

oc 
i 

)2 −
(
ω 

sc 
i 

)2

ω 

2 
i 

(45) 

For most of the tests, the value of R was chosen in order to have τ = τ opt for the first mode of Table 3 (i.e. tests from 

T1 to T4). In addition, test T6B is related to R chosen in order to have τ = τ opt for the second mode. According to [49] , the 

value of τ opt for a given mode can be calculated as: 

τ opt � 

1

ω i 

√
2 

˜ k 2 
i 

+ 2 

(46) 

Once the value of C eq is derived by means of the expressions in Table 1 , the corresponding value of R is obtained using 

Eq. (20) . 

Tests T1 to T4 allow to evidence the effect of R 1 and R 1 / R 2 on the OP-AMP outputs, without changing the attenuation 

performance (the values of R and the NC are not changed among these tests). Moreover, the comparison between tests T1A 

and T5A shows how a change of the NC value (and thus of the attenuation performance) is able to influence the OP-AMP 

outputs. In the following, all these points are treated in detail. 

It is noticed that, for all the tests, the values of the different resistances of the shunt circuit were set using potentiome- 

ters. Each resistance value was measured with a multimeter before each test. Furthermore, the capacitance ˆ C was built with 

physical capacitors and, also in this case, its value was measured before each test. 

All the FRFs T vo 
s related to the OP-AMP voltage output shown in this subsection are reported in decibel and normalized 

over the same reference value. The value equal to 0 dB corresponds to the maximum value among all the FRFs from test 

T1A to T4B (i.e. the FRFs with the highest R and | ̃ k 1 | values). Therefore, all the FRFs related to the OP-AMP voltage output

can be compared among the different figures of this subsection. The same applies to the FRFs related to the OP-AMP current 

output. 

Fig. 9 shows the effect of R 1 and R 1 / R 2 on the outputs of a type A NC. Particularly, Fig. 9 a and b show the effect of R 1 
and R 1 / R 2 on the voltage output, respectively, while Fig. 9 c and d evidence the effect of R 1 and R 1 / R 2 on the current output, 

respectively. All the figures show the experimental FRFs and the corresponding numerical FRFs computed with the model 

presented in Section 5 . In all the cases, the match between the experimental and numerical curves is good and sometimes 

the curves cannot be distinguished in the plots. As expected from Section 3 , an increase of R 1 increases the voltage output 

(plot a) but has no effect on the current output (plot c, where all the curves are almost superimposed), while an increase 

of R 1 / R 2 increases the current output (plot d) but has no effect on the voltage output (plot b). 

Similar comparisons are provided for a type B NC in Fig. 10 . Again, the results are in accordance with those of Section 3 : 

an increase of R 1 decreases the current output (plot c) but has no effect on the voltage output (plot a), while an increase of 

R 1 / R 2 decreases the voltage output (plot b) but has no effect on the current output (plot d). 

In all the tests T1A to T4B, the attenuation performance is almost the same (see Table 4 ), as expected. 



Fig. 9. The effect of R 1 (plots a and c) and R 1 / R 2 (plots b and d) on the OP-AMP outputs for a type A NC; the test labels are those of Table 4 (NC in series).

Fig. 10. The effect of R 1 (plots a and c) and R 1 / R 2 (plots b and d) on the OP-AMP outputs for a type B NC; the test labels are those of Table 4 (NC in

series).



Fig. 11. Comparison between Type A and B NCs in terms of OP-AMP current output with favorable values R 1 / R 2 and R 1 for both the types (a) and compar- 

ison between tests T1A and T5A (type A NC), thus changing the value of the NC (b). The test labels are those of Table 4 (NC in series).

Fig. 11 a shows a comparison in terms of OP-AMP current output between NCs in type A (T1A) and B (T3B). For the NC 

type A, the value of R 1 / R 2 is the lowest used in the tests and this is favorable because, according to Table 2 , the OP-AMP 

current output is minimised. For the NC type B, the value of R 1 is the highest used and, again, this is favorable in terms of 

OP-AMP current output according to Table 2 . Fig. 11 a shows that at frequency values below approximately 80 Hz, type A is 

less demanding than type B in terms of current output, but at higher frequency values it becomes more demanding. This 

is again in agreement with Section 3 , where it was shown that a frequency value exists where the type A NC passes from 

being less demanding than type B to being more demanding. 

Fig. 11 b, instead, shows the effect of changing the NC value for a type A NC (tests T1A and T5A) in terms of current 

output. In test T5A, the value of | ̃ k 1 | is decreased by increasing the value of C 2 , and the value of R is maintained equal to

the one that is optimal for the case of test T1A where | ̃ k 1 | is higher. The electric equations of the electro-mechanical system

would indicate a decrease of the OP-AMP current output in test T5A due to an increase of C 2 (see Eq. (11) ). However, since 

the vibration level of the first mode increases in test T5A (compared to test T1A, see the attenuation values in Table 4 ), 

because | ̃ k 1 | is lower and the R value is not optimal, the peak of | T io sa | results higher in the case of test T5A. This proves the

influence of the mechanical part of the electro-mechanical system, confirming that the mechanical behaviour of the electro- 

mechanical system must be properly taken into account for determining the OP-AMP outputs, as explained in Sections 4 , 

4.1 and 4.2 . 

Another interesting analysis is related to Fig. 12 . Plots (a) and (b) show the OP-AMP output voltage normalized over the 

supply voltage V pp for test T1A (NC type A) and for test T4B (NC type B), respectively. A value close to 1 on the vertical axis 

means that saturation is close. In order to derive these figures, the disturbance force, that was equal for the two tests, was 

increased in order to have the most demanding configuration between the two of them close to saturation. In this case, the 

two configurations chosen were the best ones for both type A and B NCs: low value of R 1 for type A NC and high value 

of R 1 / R 2 for type B NC (see Table 2 and Table 4 ). According to Sections 3 and 4 , since the disturbance is focused at low 

frequency and | �1 (x f ) | � | �2 (x f ) | , type A NC is expected to be less demanding than type B NC (see, as an example, Fig. 5 ).

This is confirmed by the time histories shown in Fig. 12 a and b (i.e. the time-history for type A in plot (a) shows lower 

peaks compared to that of type B in plot (b)). 

Fig. 12 c and d show another comparison. In this case, plots (c) and (d) show the OP-AMP output voltage normalized over 

the supply voltage V pp for a type B NC for tests T3B and T4B, respectively. Passing from test T3B to T4B implies an increase 

of the value of R 1 / R 2 and, according to Table 2 , this makes the NC less demanding in terms of OP-AMP output voltage. 

Again, in order to derive these figures, the disturbance force, which was equal for the two tests, was increased in order to 

have the most demanding configuration between the two of them close to saturation. The time-histories confirm that the 

increase of R 1 / R 2 guarantees a significant decrease of the output voltage. 

Finally, tests T4B and T6B are compared in Fig. 13 . The only difference between the two test configurations is related 

to the value of the shunt resistance R . In T4B, it is optimal for the first mode of the beam, while in T6B it is optimal for 



Fig. 12. Time-histories of the OP-AMP output voltage normalized over the supply voltage V pp for test T1A (a), test T4B (b), test T3B (c) and test T4B (d).

The level of the disturbance force provided by the coil was different between tests T4B in plot b and T4B in plot d.

Fig. 13. Comparison in terms of OP-AMP outputs between T4B and T6B to evidence the effect of R (plots a and b), trend of T pk , norm (for OP-AMP output

voltage) for modes 1 and 2 as function of τ/τ opt (c), and experimental and numerical values of y tp (for OP-AMP output voltage) for the same modes (d). 

The test labels are those of Table 4 (NC in series).

the second mode. In T4B R is higher than in T6B. Plots (a) and (b) shows that an increase of R allows to reduce current 

and voltage output, respectively, in agreement with the results of Section 4.1 . A satisfactory match between experimental 

and numerical FRFs is found again. Fig. 13 c shows the trend of T pk , norm for OP-AMP output voltage for modes 1 and 2 as 

function of τ/τ opt (obtained using Eq. (27) ), quantifying the benefit in terms of peak reduction of the FRF between the 

input force and the OP-AMP output voltage. For each of the two modes considered, the change of T pk , norm when passing 

from their own optimal value of R to the optimal value for the other mode is quantified with the variable y tp ,i . More in 



Fig. 14. PSD profiles used for two repetitions of T1A and T4B (a), power spectrum of the vibration response of the structure for the two excitation profiles

(the power spectra are normalised over the maximum displayed value for a straightforward percentage comparison, thus resulting in non-dimensional

quantities; the two NC types provide similar response PSDs) (b) and PSDs of the OP-AMP current output for profile 1 (c) and 2 (d).

detail, y tp ,i is intended as the ratio T 
pk , norm 

i 
with τ  = τ opt over T 

pk , norm 

i 
with τ = τ opt . A value of y tp higher than 1 means 

that T pk , norm is increased passing from τ = τ opt to τ  = τ opt , while a value lower than 1 is related to a decrease of T pk , norm . 

As expected from the numerical simulations, mode 1 has a value of y tp higher than 1 considering the R (and, thus, τ ) values 

used in tests T4B and T6B, while mode 2 shows a value of y tp lower than 1 (see Fig. 13 d). The experimental results are in 

accordance with the theoretical expectations. 

Before ending this subsection, it is worth evidencing two different points. The first is that, even if the two modes consid- 

ered in the tests are in percentage far in frequency (i.e. 10 0( ω 2 / ω 1 ) > 60 0), the shunt control allows to significantly attenuate 

both of them (see Table 4 ). The same applies to the tests for the NC in parallel presented in the next subsection. The sec- 

ond point is related to the importance of using the MDOF model to correctly design the shunt circuit. To this purpose, the 

results of two experiments related to cases chosen as examples are discussed here. The first is related to Tests T1A and 

T4B (which show the same attenuation values for the two modes considered in the tests) which have been repeated two 

further times, exciting the system using two different power spectral density (PSD) profiles for the current provided to the 

exciting coil (see Fig. 14 a). Fig. 14 b shows that both the profiles are able to excite the first mode, on which the value of R 

is tuned, since the PSD of the vibration response of the structure shows in both cases a high peak in correspondence of the 

first eigenfrequency. However, profile 1 excites this mode more than profile 2. The two tests considered are designed to be 

favorable in terms of OP-AMP current output (i.e. low value of R 1 / R 2 for T1A and high value of R 1 for T4B). To compare NC 

types A and B, the PSD of the OP-AMP current output in the two cases is reported in Fig. 14 c and d for forcing profiles 1 

and 2, respectively. With profile 1, the RMS value of the OP-AMP current output signal in T1A is approximately half than in 

T4B, thus evidencing an advantage provided by the use of type A. Conversely, with profile 2, the RMS value of the OP-AMP 

current output signal in T1A is larger than in T4B (approximately 30% larger), thus implying an advantage in using type B. 

This example allows to evidence again that a large number of parameters must be considered when designing the shunt 

circuit. Among them, there is the frequency profile of the external disturbance. In this context, it is important to use the 

proposed MDOF model for a proper design of the shunt circuit. 

The second experimental example is related to a case in which the target is to attenuate the second mode and the 

external excitement profile is profile 2 in Fig. 14 a, where the first mode undergoes a lower excitation compared to the 

second. This excitement profile was used to repeat tests T4B and T6B. In this case, the forcing profile, the control target 

as well as the distance between the two modes would suggest to use an SDOF model for the electro-mechanical system. 

Fig. 15 a shows the vibration attenuation on the amplitude peak of the second mode as a function of the adopted R value 



Fig. 15. Numerical (lines) and experimental (asterisks) attenuation on the second mode of the beam as a function of the resistance R (a) and RMS value

of the OP-AMP voltage output with external excitement profile equal to profile 2 in Fig. 14 a (b). The experimental results are related to tests T4B and T6B

in Table 4 .

Table 5

Tests performed with an NC in parallel.

Test

name

Tested NC

configurations

R

[k �]

R 1 [k �] R 1 /R 2 R 2 [k �] ˆ C 

[nF]

| ̃ k 1 | Vibration

attenuation on

mode 1

(num) [dB]

Vibration

attenuation on

mode 1

(exp) [dB]

Vibration

attenuation on

mode 2

(exp) [dB]

T7A A 219.20 6 0.50 12.00 12.22 0.219 11.02 9.92 2.13

T7B B 219.20 6 0.50 12.00 12.22 0.219 11.02 9.67 1.90

T8A A 219.20 6 1.97 3.05 48.00 0.219 11.02 9.93 2.19

T8B B 219.20 6 1.97 3.05 48.00 0.219 11.02 9.72 2.10

T9A A 219.20 25 0.50 50.00 12.22 0.219 11.02 10.03 2.24

T9B B 219.20 25 0.50 50.00 12.22 0.219 11.02 9.85 2.12

T10A A 219.20 25 1.97 12.69 48.00 0.219 11.02 9.57 2.18

T10B B 219.20 25 1.97 12.69 48.00 0.219 11.02 9.92 2.12

T11A A 36.29 6 0.50 12.00 12.22 0.219 5.16 4.98 4.95

T11B B 36.29 6 0.50 12.00 12.22 0.219 5.16 4.85 4.63

(from 1 to 30 k �). The optimal value is 3.72 k � (see also test T6B in Table 4 ). Here, the numerical curve has been derived 

using the approach presented in [49] . Fig. 15 b shows the RMS value of the OP-AMP output voltage V o estimated with the 

MDOF model (accounting for the first two modes of the system) and the SDOF model (accounting only for the second mode 

of the system). The experimental results are shown for two different values of R : 3.72 k � (see test T6B) and 22.59 k � (i.e. 

the optimal value for the first mode, see test T4B). It is evident that the MDOF model is able to properly predict the RMS 

value, while the SDOF approach consistently underestimates the RMS value because it does not consider the fact that also 

the first mode of the structure contributes to the output. Moreover, it is interesting to notice that, if the RMS of the voltage 

output is too high with R equal to 3.72 k �, it is possible to increase the value of R in order to decrease that of the RMS 

and this new tuning of R can be properly driven only by looking at the MDOF curve. This is a further evidence of the need 

to use the proposed MDOF model for a proper design of the shunt circuit. 

7.3. Tests with an NC in parallel 

This subsection treats the tests performed for the parallel NC. Different tests were carried out to evaluate the effect of 

the various circuit parameters on the OP-AMP outputs and they are reported in Table 5 . 

Tests T7 to T10 allow to evidence the effect of R 1 and R 1 / R 2 on the OP-AMP outputs, without changing the attenuation 

performance. In tests from T7 to T10, the value of R was set in order to have τ = τ opt for the first mode of Table 3 . Instead, 

in T11, τ was chosen as optimal for the second mode of Table 3 . Tests T7A, T7B, T11A and T11B have been thus compared 

to show how a change of the value of R is able to influence the OP-AMP outputs. 

All the FRFs T vo 
p related to the OP-AMP voltage output shown in this subsection are reported in decibel and normalized 

over the same reference value. The value equal to 0 dB corresponds to the maximum value among all the FRFs from test 



Fig. 16. The effect of R 1 (plots a and c) and R 1 / R 2 (plots b and d) on the OP-AMP outputs; the test labels are those of Table 5 (NC in parallel).

Fig. 17. The effect of R on the OP-AMP voltage (a and b) and current (c) outputs.

T7A to T10B (i.e. the FRFs with the highest R value). Therefore, all the FRFs related to the OP-AMP voltage output can be 

compared among the different figures of this subsection. The same applies to the FRFs related to the OP-AMP current output. 

Fig. 16 shows some examples of the effects of R 1 and R 1 / R 2 on the OP-AMP outputs: an increase (slight in the low 

frequency range, in accordance with Fig. 4 a) of V o for type A is experienced when R 1 is increased (plot a), while V o for 

type B decreases when R 1 / R 2 is increased (plot b). Considering I o , it increases for type B when R 1 decreases (plot c), while 

it increases when R 1 / R 2 increases for type A (plot d). Again, a good match between experimental and theoretical results is 



achieved and the conclusions gathered in Table 2 are confirmed by the experimental results. It is also evidenced that the 

attenuation performance is almost the same in all these tests, as expected (see Table 5 ). 

Furthermore, the effect of the value of the shunt resistance R on the OP-AMP outputs is shown in Fig. 17 , where the 

tests T7A, T7B, T11A and T11B are compared. According to this figure, it is possible to notice that, in the parallel case, a 

decrease of the value of R leads to a decrease of the OP-AMP outputs, as expected from Section 4.2 . This is mainly due to 

the behavior of the electrical part of the electro-mechanical system. Indeed, the last part of Section 4.2 explains that the 

value of G 

pk for an NC in parallel decreases when τ/τ opt decreases (i.e. passing from test T7 to test T11). 

8. Conclusion

This paper has addressed the piezoelectric shunt damping improved by the use of NCs from the OP-AMP output point

of view. Indeed, NCs are built employing OP-AMPs and the paper has shown how it is possible to decrease their outputs 

by keeping the same level of vibration attenuation. Since it is possible to act separately on the OP-AMP voltage and current 

outputs, it is also possible to lower the power consumption of the NC circuit by properly tuning the values of the circuit 

elements. Furthermore, the paper has also analysed how to tune the shunt circuit components which also influence the 

attenuation provided by the control system. 

Another important outcome of the paper is that the mechanical part of the electro-mechanical system cannot be ne- 

glected when assessing the OP-AMP outputs at frequency values around resonances. 

Furthermore, two different possible circuits (A and B) used for building NCs have been compared, showing that there is 

no layout always less demanding than the other in terms of OP-AMP outputs. Therefore, an MDOF model of the electro- 

mechanical system is often required to understand which configuration of the NC has to be used in a given engineering 

application. Thus, the MDOF model has been developed and validated. 

All the theoretical results have been compared to the results of an experimental campaign on a cantilever beam with a 

piezoelectric patch bonded at its clamped end. This comparison showed a good match between theoretical expectations and 

experimental results. 
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