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The Cauer Ladder Network (CLN) method enables to construct a reduced based circuit model of analytical or numerical models, e.g. 
Finite Element (FE) model, under quasistatic approximation. This paper proposes an estimator which provides guaranteed upper bounds 
of the truncation error due to the CLN method. The error estimator is tested on an analytical model and a Finite Element model to 
validate the approach.  

Index Terms— Cauer ladder network (CLN), error estimation, Maxwell’s equations, model order reduction (MOR). 

I. INTRODUCTION 

odel order reduction has been gaining attention because it 
can drastically reduce the number of unknowns of a 

problem with little loss of accuracy. Recently, the Cauer Ladder 
Network (CLN) method [1] has been proposed by Kameari, et 
al. Using the CLN method, an equivalent electrical circuit can 
be extracted from analytical or numerical models, e.g. Finite 
Element (FE) model, under quasistatic approximation. A new 
entry of basis is calculated at each iteration, and the reduced 
solution is sought in the basis. The truncation error, i.e. error 
between the reduced and the exact solution of the problem, 
decreases with the iteration number. In most cases, however, 
we do not know a priori the iteration number leading to an 
accurate reduced solution versus the exact solution. The issue 
is then to find the trade-off between limiting the iteration 
number while controlling the truncation error.  

In this study, we propose an estimator of the truncation error 
introduced by the CLN method in the case of magnetoharmonic 
problem. Like in numerical error estimation theory [2], the error 
estimator is based on a relationship between the solution of the 
reduced model and the exact solution. The error estimator is 
tested on an analytical model and an FE model to validate the 
approach. 

II. METHODOLOGY

A. Introduction of the error estimator 

Let us consider a magnetoharmonic problem on a domain Ω 
governed by the following equations: 

curl𝑬 = −𝑗𝜔𝜇𝑯, (1) 
curl𝑯 = 𝜎𝑬, (2) 

with 𝑯  the magnetic field, 𝑬  the electric field, 𝜎 the 
conductivity, 𝜇  the permeability, 𝑗 the imaginary unit, and 𝜔 
the angular frequency. 𝑬 and 𝑯 have also to satisfy boundary 
conditions on 𝜕Ω. If we consider a triplet (𝑯, 𝑯 , 𝑬) such that 
(𝑯, 𝑬)  and (𝑯 , 𝑬)  satisfy (1) and (2), respectively, we can 
show that (see Appendix A): 

𝜖 = ‖𝑯 − 𝑯‖ = ‖𝑯 − 𝑯 ‖ + ‖𝑯 − 𝑯‖ , (3) 

with ‖𝑿‖ = ∫ 𝑿∗ ⋅ 𝜇𝑿𝑑Ω  the energy norm where ∗  is the 

conjugate operator, and 𝑯  the exact solution of the 
magnetoharmonic problem, which means Pythagorean’s 
theorem holds for the two residual vectors 𝑯 − 𝑯  and 𝑯 −
𝑯. Similarly, if we consider a triplet (𝑯, 𝑬, 𝑬′) such that (𝑯, 𝑬) 
and (𝑯, 𝑬 ) satisfy (2) and (1), respectively, we can show that: 

𝜖 = ‖𝑬 − 𝑬‖ = ‖𝑬 − 𝑬 ‖ + ‖𝑬 − 𝑬‖ , (4) 

with ‖𝑿‖ = ∫ 𝑿∗ ⋅ 𝜎𝑿𝑑Ω the energy norm and 𝑬  the exact 

solution of the magnetoharmonic problem. Based on this 
property, we propose to construct an error estimator for the 
CLN approximation. 

B. Error estimator for CLN 

We approximate the solution of the magnetoharmonic 
problem coupled with an external circuit by a N-stage Cauer 
circuit with a resistive termination (see Fig.1). We obtain then 
an equivalent circuit approximating the response of the system. 
This equivalent circuit is obtained after N iterations of the CLN 
method as well as the approximations of  𝑬  and 𝑯  given by 
[1]: 

𝑬 = 𝑣 𝑬 , 𝑯 = 𝑖 𝑯 , (5) 

with the voltages 𝑣 , 𝑣 , … , 𝑣  and the currents 𝑖 , 𝑖 , … , 𝑖  
obtained after solving the circuit equations (see Fig.1) and the 
basis 𝑬 , 𝑬 , … , 𝑬 , 𝑯 , 𝑯 , … , 𝑯  obtained by the CLN 
method. The fields 𝑬  and 𝑯  tend to the exact solutions 𝑬  
and 𝑯  of the magnetoharmonic problem when N tends to 
infinity. The issue is then to choose the size N of the expansion, 
which enables to get the desired accuracy of the approximation 
given by (5) in terms of the energy norm ‖⋅‖ . In order to 
estimate the error, we define an additional field 𝑯 : 

𝑯 = 𝑯 + 𝑖 𝑯 , (6) 

where 𝑖 is the current flowing through the termination 
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resistor of the Cauer circuit and given by 𝑖 =  (Fig.1). 

We can show that the couples (𝑯 , 𝑬 ) and (𝑯 , 𝑬 ) satisfy 
(1) and (2), respectively (see Appendix B). Thus, we obtain the 
error estimator 𝜖   by applying (3): 

𝜖 = ‖𝑯 − 𝑯 ‖

= ‖𝑖 𝑯 ‖  

= 𝐿 |𝑖 |  
= ‖𝑯 − 𝑯 ‖ + ‖𝑯 − 𝑯 ‖

≥ ‖𝑯 − 𝑯 ‖ . 

(7) 

The term 𝜖  is an upper bound of the distance between the field 
𝑯  given by the CLN method and the exact solution 𝑯  so it 
can be considered as an error estimator of the truncation error. 
We can see also that this term can be easily calculated from the 
current 𝑖  and the inductance 𝐿 which are determined at 
the stage N of the CLN construction. Similarly, we can obtain 
couples (𝑯 , 𝑬 )  and (𝑯 , 𝑬 )  satisfying respectively (2) 
and (1) for the Cauer circuit with an inductive termination, and 
the error estimator is given by: 

𝜖 = ‖𝑬 − 𝑬 ‖

= ‖𝑬 − 𝑬 ‖ + ‖𝑬 − 𝑬 ‖

= |𝑣 | 𝑅⁄ ≥ ‖𝑬 − 𝑬 ‖ , 
(8) 

with 𝑬 = 𝑬 + 𝑣 𝑬 , and 𝑣 = 𝑗𝜔𝐿 𝑖 . 
The error estimator 𝜖  gives an upper bound of the term 
‖𝑬 − 𝑬 ‖ . 

C. Upper and lower bounds of energy 

Using the triangular inequality, we obtain: 

‖𝑯 ‖ −
𝑯 + 𝑯

2
≤ 𝑯 −

𝑯 + 𝑯

2
. (9) 

Based on the property shown in the appendix A, we can show 
that: 

𝑯 −
𝑯 + 𝑯

2
=

1

4
‖(𝑯 − 𝑯 ) + (𝑯 − 𝑯)‖

=
1

4
‖𝑯 − 𝑯 ‖ + ‖𝑯 − 𝑯‖

+
1

4
(𝑯 − 𝑯 ) ⋅ 𝜇(𝑯 − 𝑯)∗𝑑Ω

+
1

4
(𝑯 − 𝑯) ⋅ 𝜇(𝑯 − 𝑯 )∗𝑑Ω

=
1

4
‖𝑯 − 𝑯 ‖ + ‖𝑯 − 𝑯‖ =

𝜖

4
. 

(10) 

Combining (9) and (10) results in 

‖𝑯 ‖ −
𝑯 + 𝑯

2
≤

𝜖

2
, (11) 

which gives the upper and lower bounds of the exact magnetic 
energy. When the magnetic fields 𝑯, 𝑯′  are obtained by the 

CLN method, we can evaluate the term 
𝑯 𝑯

 as follows:

𝑯 + 𝑯

2
= 𝑯 +

1

2
𝑖 𝑯

= ‖𝑯 ‖ +
1

2
𝑖 𝑯

+ 𝑯 ⋅ 𝜇
1

2
𝑖 𝑯

∗

𝑑Ω 

+
1

2
𝑖 𝑯 ⋅ 𝜇𝑯

∗
𝑑Ω

= ‖𝑯 ‖ +
1

4
𝐿 |𝑖 |

= ‖𝑯 ‖ +
𝜖

2
. 

(12) 

Therefore, we can bound the exact value of ‖𝑯 ‖  as follows: 

𝑑 −
𝜖

2
≤ ‖𝑯 ‖ ≤ 𝑑 +

𝜖

2
, (13) 

with 𝑑 = ‖𝑯 ‖ + (𝜖 2⁄ ) . Likewise, we can show that: 

𝑑 −
𝜖

2
≤ ‖𝑬 ‖ ≤ 𝑑 +

𝜖

2
, (14) 

with 𝑑 = ‖𝑬 ‖ + (𝜖 2⁄ ) . It is convenient to consider the 
geometrical relationships of the equations given above. The 
relationship of the approximations obtained by the CLN method 
is illustrated in Fig. 2. 

III. NUMERICAL RESULTS

A. Analytical copper foil model 

Let us consider an infinitely long copper foil of thickness 2𝑑, 
to which a uniform sinusoidal electric field of magnitude 𝐸 =
1  V/m is applied. We fix 𝜎 = 10   [S/m], 𝜇 = 4𝜋 × 10  
[H/m] and 𝑑 = 0.01  [m]. The Cartesian coordinate system 
(𝑥, 𝑦, 𝑧) is introduced so that the foil has infinite dimensions 
along y- and z-axes and the source term 𝐸  is parallel to z-axis. 
The non-null components of 𝑬  and 𝑯  along the z and y 
axes respectively, are given by [3]: 

𝐸 (𝑥) =
cos(𝑘𝑥)

cos(𝑘𝑑)
, 𝐻 =

𝑘

𝑗𝜔𝜇

sin(𝑘𝑥)

cos(𝑘𝑑)
, (15) 

with 𝑘 = −𝑗𝜔𝜎𝜇. Using the CLN method, we can obtain an 
analytical expression for the resistance 𝑅  and the inductance 
𝐿  of the Cauer circuit (see Fig.1) as well as the components 
of the fields 𝑬  and 𝑯  for 𝑛 = 0,1, … , 𝑁: 



𝐸 (𝑥) = 𝑃
𝑥

𝑑
,

1

𝑅
=

2𝜎𝑑

(4𝑛 + 1)
, (16a) 

𝐻 (𝑥) =
1

2
𝑃

𝑥

𝑑
, 𝐿 =

𝜇𝑑

2(4𝑛 + 3)
, (16b) 

where 𝑃  (𝑥) is the i-th Legendre polynomial defined in the 
interval [−1,1] . The electromagnetic fields 𝑬  and 𝑯  are 
calculated using (5) and (16). 

To validate the proposed method and to check (7), we 
compute the estimator value 𝜖 =𝐿 |𝑖 |  and the term 
𝑒 = ‖𝑯 − 𝑯 ‖ + ‖𝑯 − 𝑯 ‖  calculated from the 
analytical expressions of 𝑯 in (see (15)) and the analytical 
expression of 𝑯  and 𝑯  given by (5) and (16b). In Fig. 3, the 
evolutions of 𝜖  and 𝑒  as a function of the frequency are 
presented for different values of N in Fig. 3 (left). We can see 
first that the error estimator decreases in function of N and also 
that the relationship (7) is satisfied. We can see also in Fig. 3 
(right) that the error estimator is an upper bound of the 
truncation errors, i.e. the distance between the exact solution 
𝑯  and the magnetic fields 𝑯  or 𝑯  obtained with the CLN 
method. 

We also compute the estimator value for the electric fields to 
check (8) for the Cauer circuit with an inductive termination. 
We can see in Fig. 4 (left) that the relationship (8) is also 
satisfied. We can see also in Fig.4 (right) the exact value of 
‖𝑬 ‖  belongs to the interval defined by (14).  

B. Inductor FE model 

We apply the proposed method to the FE model of an 
inductor shown in Fig. 5 (left). We have chosen a mesh 
sufficiently fine to assume that the error of discretization 
introduced by the FE method is negligible compared to the 
truncation error. The FE solution 𝑬  is assumed to be equal to 
the exact solution 𝑬 . Now we consider a N-stage Cauer 
circuit with an inductive termination by applying the CLN 
method. The error estimator now is based on the calculation of 
the distance between 𝑬  and 𝑬 . We can compute 𝜖  by (12b) 
and compare it to the term 𝑒 = ‖𝑬 − 𝑬 ‖ + ‖𝑬 − 𝑬 ‖  
, the fields 𝑬 and 𝑬 are given by the expansion (5).The values 

𝜖  and 𝑒  are plotted as a function of the frequency for different 
values of N in Fig. 5 (right). We can see again in this example 
that the 𝜖  and 𝑒   are very close verifying that the quantity 𝜖  
is an upper bound of the truncation error. We can see also that 
the truncation error varies a lot with frequency and N so that the 
estimator can be useful to calibrate N. 

IV. CONCLUSION

In this paper, we have proposed an error estimator which 
provides guaranteed upper bounds and enables to control the 
size of the expansion introduced by the CLN method. 
Analytical and numerical examples have been discussed in 
order to illustrate the proposed approach. For future 
perspective, it is significant to consider the discretization error 
due to the FE approximation [4], error estimation in the time-

Fig. 1. Cauer circuit with a resistive termination of 1-D foil model. 

Fig. 2. Geometrical relationship of approximations. The exact solution 
exists on the circumscribed circle of diameter 𝜖 . 
 

Fig. 3. Comparison of the error estimator 𝜖   (dashed line) and the term 
𝑒 = ‖𝑯 𝑵 − 𝑯 ‖ + ‖𝑯 − 𝑯 ‖   (solid line) as a function of the 
frequency for different values of N (left). Comparison between the error 
estimator 𝜖  and the truncation errors ‖𝑯 𝑵 − 𝑯 ‖ , ‖𝑯 − 𝑯 ‖  for 
N=5 (right). 

Fig. 4. Comparison of the error estimator 𝜖  (dashed line) and the term 
𝑒 = ‖𝑬 𝑵 − 𝑬 ‖ + ‖𝑬 − 𝑬 ‖  (solid line) as a function of the 
frequency for different values of N (left). Comparison of the values 
‖𝑬 ‖ , ‖𝑬𝑵‖ , ‖𝑬 𝑵‖ for N=5 where the filled area corresponds to the 
interval given by (13) (right). 

Fig. 5. One-fourth inductor model (left). Comparison of the error estimator 
𝜖 = |𝑣 | 𝑅⁄  (dashed line) and the term 𝑒 = ‖𝑬 − 𝑬 ‖ +
‖𝑬 − 𝑬 ‖   (solid line) as a function of the frequency for different 
values of 𝑁 (right). 



domain analysis, and CLN with the single or multiple 
expansion points [5]. 

APPENDIX A 

Let us consider a triplet (𝑯, 𝑯 , 𝑬)  such that (𝑯, 𝑬)  and 
(𝑯 , 𝑬) satisfy (1) and (2), respectively, and the exact solution 
(𝑯 , 𝑬 ) to (1) and (2). Firstly, we consider the following 
equation: 

𝜖 = ‖𝑯 − 𝑯‖ = ‖(𝑯 − 𝑯 ) + (𝑯 − 𝑯)‖

= ‖𝑯 − 𝑯 ‖ + ‖𝑯 − 𝑯‖

+ (𝑯 − 𝑯 ) ⋅ 𝜇(𝑯 − 𝑯)∗𝑑Ω

+ (𝑯 − 𝑯) ⋅ 𝜇(𝑯 − 𝑯 )∗𝑑Ω. 

(A1) 

If we consider now the two inner products in (A1), we have: 

(𝑯 − 𝑯 ) ⋅ 𝜇(𝑯 − 𝑯)∗𝑑Ω

= −
1

𝑗𝜔
(𝑯 − 𝑯 ) ⋅ curl(𝑬 − 𝑬)∗𝑑Ω

= −
1

𝑗𝜔
curl(𝑯 − 𝑯 ) ⋅ (𝑬 − 𝑬)∗𝑑Ω

+
1

𝑗𝜔
(𝑯 − 𝑯 ) × (𝑬 − 𝑬)∗ ⋅ 𝒏𝑑Γ

= −
1

𝑗𝜔
‖𝑬 − 𝑬‖ . 

(A2) 

The boundary integral term ∫ (𝑯 − 𝑯 ) × (𝑬 − 𝑬)∗ ⋅

𝒏𝑑Γ in (A2) vanishes due to the boundary conditions. In the 
same way, we can show that: 

(𝑯 − 𝑯) ⋅ 𝜇(𝑯 − 𝑯 )∗𝑑Ω =
1

𝑗𝜔
‖𝑬 − 𝑬‖ . (A3) 

Therefore, the two inner products are conjugate pure imaginary 
numbers and the sum is equal to zero leading to (3). Similarly, 
we obtain the error estimator (4) for the electric fields to 
consider a triplet (𝑯, 𝑬, 𝑬′) such that (𝑯, 𝑬) and (𝑯, 𝑬 ) satisfy 
(2) and (1), respectively. 

APPENDIX B 

Let us consider a N-stage Cauer circuit with a resistive 
termination, the voltages 𝑣 , 𝑣 , … , 𝑣  and the currents 
𝑖 , 𝑖 , … , 𝑖  satisfy the circuit equations as follows: 

𝑣 = 𝑗𝜔𝐿 𝑖 , 𝑛 = 1, ⋯ , 𝑁, (B1) 

𝑖 =
𝑣

𝑅
, 𝑛 = 0, ⋯ , 𝑁. (B2) 

In addition, the basis obtained by the CLN method satisfies the 
following relations: 

curl𝑬 = curl𝑬 −
𝜇

𝐿
𝑯  

= −
𝜇

𝐿
𝑯 , 𝑛 = 1, ⋯ , 𝑁, 

(B3) 

curl𝑯 = curl𝑯 + 𝑅 𝜎𝑬  

= 𝑅 𝑬 , 𝑛 = 0, ⋯ , 𝑁, 
(B4) 

with curl𝑬 = 𝟎  and 𝑯 = 𝟎 . We can show that (𝑯 , 𝑬 ) 
and (𝑯 , 𝑬 ) given by (5), (6) satisfy (1) and (2), respectively: 

curl𝑬 = 𝑣 curl𝑬 + 𝑣 curl𝑬

= 𝑣 −
𝜇

𝐿
𝑯  

= −
𝜇

𝐿
𝑯 𝑣  

= −
𝜇

𝐿
𝑯 (𝑗𝜔𝐿 𝑖 ) 

= −𝑗𝜔𝜇𝑯 , 

(B5) 

curl𝑯 = 𝑖 curl𝑯

= 𝑖 𝑅 𝜎𝑬  

= 𝑅 𝜎𝑬 𝑖  

= 𝑅 𝜎𝑬
𝑣

𝑅
= 𝜎𝑬 . 

(B6) 

The third lines in (B5), (B6) can be obtained by considering the 
order of the variables such as 0 ≤ 𝑖 < 𝑛 ≤ 𝑁. For a N-stage 
Cauer circuit with an inductive termination, we consider a 
triplet (𝑯 , 𝑬 , 𝑬 ) . We can show that (𝑯 , 𝑬 )  and 
(𝑯 , 𝑬 ) satisfy (2) and (1), respectively. The proof for (2) is 
the same as (B6). The voltages satisfy the equations as follows: 

𝑣 = 𝑗𝜔𝐿 𝑖 , 𝑛 = 1, ⋯ , 𝑁, (B7) 

with 𝑣 = 𝑗𝜔𝐿 𝑖 . Using (B7), we can show (1) for 
(𝑯 , 𝑬 )  in the same way as (B5). 
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