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Abstract: A fluid-structure interactions effects on the dynamics of a hydrofoil immersed in a fluid1

flow of non-homogeneous density is presented and analyzed. A linearized model is applied to2

solve the fluid-structure coupled problem. A fluid density variations along the hydrofoil upper3

surface, based on the sinusoidal cavity oscillations, is used. It is shown that for the steady cavity4

case, the value of cavity length Lp does not affect the amplitude of the hydrofoil displacements.5

However, the natural frequency of the structure increases according to Lp. In the unsteady cavity6

case, the variations of the added mass and added damping (induced by the fluid density rate7

of change) generate frequency and amplitude modulations in the hydrofoil dynamics. In order8

to analyse this phenomena, the empirical mode decomposition, a well established data-driven9

method to handle such modulations, is used.10

Keywords: fluid-structure interaction; added mass; added damping; frequency modulation;11

amplitude modulation ; non-homogeneous fluid density; cavity oscillations; empirical mode12

decomposition; intrinsic mode functions13

1. Introduction14

Fluid structure interaction (FSI) problems occur when the fluid loading greatly15

affects the structure’s dynamics and the structure displacement locally affects the fluid16

flow. Initially studied with simplified models, the simulation of complex coupled17

problems has developed considerably in recent years. The state-of-the-art in this field is18

now very mature and several papers with different fields of application domains can be19

found in literature [1–3].20

The new challenge of FSI problem analysis consists in taking into account complex21

phenomena, observed both in fluid and solid mechanics, especially in the field of fluids22

where the dynamics are subjected to many physical quantities such as velocity, pressure,23

density or temperature. This work focuses on FSI effects in a non-homogeneous density24

flow. Recent work has pointed out that two-phase flow has an impact on the fluid25

structure interaction for various devices, such as propeller blades or hydrofoils [4–9].26

However, very few published works address the problem of estimating this impact on the27

structure dynamics. This work is strongly motivated by recent advances in experimental28

and modeling studies carried out by the authors. It is shown that modal response of the29

structure could be modified in the presence of cavitation [10]. This modification can be30

attributed to the presence in the flow of a non stationary liquid-vapor mixture with a31

strong variation in density at the fluid structure interface. Previous works proposed the32

decomposition of the fluid variables into two components: the first component is related33
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to the fluid flow around the non-vibrating structure while the second one describes34

the fluid flow induced by the structure vibrations [11]. This approach can be used to35

compute the added mass and the added damping operators for complex geometries and36

complex fluid flow behaviour. Here, the fluid flow is characterized by oscillating cavity37

on the fluid-structure interface. Unlike to homogeneous fluid case, it is shown that the38

added mass operator is not symmetrical and depends on the flow through fluid density39

variations at the fluid-structure interface. Also, it is evidenced that variation rate of the40

fluid density induces an added damping operator. This suggest to a possible variation41

of the natural frequency of the structure related to the variation of added mass. It is42

reported in [11] that the fluid density variations on the fluid-structure interface have43

an effect on the added mass operator and the variation rate of this density induces an44

added damping operator.45

The aim of this paper is to study the effect of these variations on the structure46

dynamics. First, the modeling of the structure dynamics is carried out. A rigid section of47

a hydrofoil immersed in a 2D fluid flow and supported by a linear spring, is considered.48

Equations of the hydrofoil motion are thus provided. Second, a model of the fluid49

flow generated by the displacements of the structure is considered to determine the50

hydrodynamic loads. This is given by the solution of a Laplace equation, with the space51

variations of the fluid density taken into account. Applied to the structure dynamics, the52

hydrodynamic loads act as an added mass and an added damping. A simplified model53

of an unsteady cavity, based on a sheet cavitation oscillation, is used to take into account54

the time and space variations of the fluid density on the fluid-structure interface. The55

empirical mode decomposition (EMD) [12] is used to analyze the structure displacement.56

The displacement signal is decomposed by EMD into intrinsic mode functions (IMFs),57

followed by the instantaneous frequencies estimation of these sifted IMFs that evidence58

the frequencies modulations.59

2. Fluid loads acting on the immersed structure60

A 2D rigid section of hydrofoil type NACA0012 (ΩS), immersed in a 2D fluid flow61

(ΩF) and animated by a heave motion, is considered (Figure 1). The fluid domain bound-62

aries are respectively the flow inlet ΓI , the flow outlet ΓO, the fixed boundary (wall)63

ΓW and the fluid-structure interface (moving boundary) ΓFS = ΩF ∩ΩS. n denotes the64

outward normal unit vector at ∂ΩF = ΓI ∪ ΓO ∪ ΓW ∪ ΓFS.
−→
U∞ is the uniform velocity65

field of the fluid upstream of the hydrofoil. Parameter θ corresponds to the angle of66

incidence of the hydrofoil.67

68
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Figure 1. Fluid and Structure domains
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In this study, a non-homogeneous inviscid fluid flow is considered. The corresponding
conservation equations are given by:

∂ρ
∂t +∇ · (ρu) = 0 on ΩF (a)

∂(ρu)
∂t +∇ · (ρu⊗ u) = −∇p on ΓFS (b)

(1)

where u, p and ρ are respectively the time and space-dependent fluid velocity, fluid
pressure and two-phase fluid density. Density ρ can change from liquid, ρL, to vapor ρV
(or vice versa). The boundary conditions are given by:

u = u∞ on ΓI (c)

−p n = 0 on ΓO (d)

u · n = 0 on ΓW (e)

u · n = ξ̇y ny on ΓFS ( f )

(2)

where ny and ξ̇y are respectively the j components of the normal unit vector n and the69

velocity ξ̇ of a point A(x,y) on the interface ΓFS given by Equation (12).70

71

Let us assume the following decomposition:

u = ũ + u′, and p = p̃ + p′ (3)

Assuming that u′ is small and uncorrelated to ũ, the problem described by the system of
Equations (1) can be subdivided into two separate problems [11]: the first problem is
related to the fluid flow equation around a non-vibrating structure and the second one is
about the fluid flow equation induced by the structure vibrations. The later is described
by the following system:

∆p′ = 0 on Ω f (a)

∇p′ · n = −ρ ξ̈y ny − ∂ρ
∂t ξ̇y ny on ΓFS (b)

p′ = 0 on ∂Ω f \ ΓFS (c)

(4)

where ξ̈y is the j component of the acceleration at the point A(x, y) on the interface
ΓFS. It is given by Equation (12). This formulation is used for cambered hydrofoil and
for other geometries [13]. Equations system (4) is coupled to the structure dynamic’s
equation through the boundary condition (4b), defined on the fluid-structure interface
ΓFS. It follows that the structure loading due to the pressure field p′ is given by:

F(t) =
∫

ΓFS
p′ n ds (5)

In this paper, we are particularly interested in the effect of F(t) on the dynamic of the72

hydrofoil. Therefore, the main goal is to perform the coupling of the Equation (4) and73

the structure dynamics equation (Equation (12)).74
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2.1. Added mass and added damping75

Due to the linearity of Equation (4), superposition principle holds and the solution
can be expressed as p′ = p1 + p2, where p1 and p2 are respectively the solutions of the
following systems: 

∆p1 = 0 on ΩF (a)

∇p1 · n = −ρ ξ̈y ny on ΓFS (b)

p1 = 0 on ∂ΩF\ ΓFS (c)

(6)

and 
∆p2 = 0 on ΩF (a)

∇p2 · n = − ∂ρ
∂t ξ̇y ny on ΓFS (b)

p2 = 0 on ∂ΩF\ ΓFS (c)

(7)

Solution p1 of Equation (6) represents the inertial effect of the fluid on the structure as76

it is proportional to the acceleration ξ̈y of the structure. Solution of Equation (7) shows77

that the fluid density rate of change induces a fluid load acting as an added damping78

on the structure, as it is proportional to the velocity ξ̇y of the latter (cf. Equation (17)).79

Equation (6-b) and Equation (7-b) show that both solutions p1 and p2 depend on space80

and time variations of the fluid density throughout the fluid-structure interface. It is81

easy to see that solution p2 is zero for the homogeneous case.82

In the other hand, it can be shown that the fluid load Fa(t) =
(

Fa1

Fa2

)
, defined by the

integral

Fa(t) =
∫

ΓFS

p1 n ds, (8)

is proportional to the structure acceleration. It can be expressed as

Fa1(t) = −m11
a Ẍ1 −m12

a Ẍ2
Fa2(t) = −m21

a Ẍ1 −m22
a Ẍ2

(9)

where, for A ∈ ΓFS, Ẍ1(t) = ξ̈x(A, t) and Ẍ2(t) = ξ̈y(A, t) are the accelerations accord-

ing to the 2d-coordinates axis and (mij
a )i,j=1,2 are the added mass coefficients. The matrix

Ma such that
Fa(t) = −MaẌ = (mij

a Ẍj)i=1,2 (10)

is the added mass matrix.83

By following the same analysis as before, we can define the added damping operator84

(induced by the fluid density rate of change) from Equation (7). The fluid load Fd(t) =85 (
Fd1
Fd2

)
is proportional to the velocity of ΓFS.86

The same approach used for Equations ((8) and (9)) leads to the added damping matrix87

Da, given by the following relation:88

Fd(t) = −DaẊ = (dij
a Ẋj)i=1,2 (11)

where Ẋ1(t) = ξ̇x(A, t) and Ẋ2(t) = ξ̇y(A, t) are the velocity and (dij
a )i,j=1,2 are the89

added damping coefficients (induced by the fluid density rate of change).90

3. Structure dynamics modeling91

Hydrofoil motion can be defined by its interface displacement ξ = ξ(t) where
ξ = ξxi + ξyj. A linear spring with mass m and stiffness ky is applied in order to model
the heave motion ξy of the hydrofoil in j direction (Figure 2). The angle of attack θ
is assumed to be fixed at 8 degrees. The dynamic of the hydrofoil in heave motion is
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Figure 2. Modeling of the hydrofoil in heave motion with a spring mass system.

governed by the following equation:

m ξ̈y + ky ξy = Fy (12)

with the following initial conditions:92 {
ξ̇(0) = ξ̇0 (a)

ξ(0) = ξ0 (b)
(13)

where Fy is the second component of the force vector F (Equation (5)), induced by the
fluid flow around the vibrating hydrofoil. Moreover, due to linearity, the solution of
Equations (6) and (7) can be expressed as p1 = −ξ̈y p′1 and p2 = −ξ̇y p′2, where p′1 and
p′2 are respectively the solutions of the following systems:

∆p′1 = 0 on ΩF (a)

∇p′1 · n = ρ ny on ΓFS (b)

p′1 = 0 on ∂ΩF\ ΓFS (c)

(14)

and 
∆p′2 = 0 on ΩF (a)

∇p′2 · n = ∂ρ
∂t ny on ΓFS (b)

p′2 = 0 on ∂ΩF\ ΓFS (c)

(15)

It follows that the Lift force Fy is given by

Fy = −ξ̈y

∫
ΓFS

p′1ny ds − ξ̇y

∫
ΓFS

p′2ny ds (16)

and Equation (12) can be rewritten as:

(m + ma)ξ̈y + da ξ̇y + kyξy = 0 (17)

where ma and da are respectively the added mass and added damping,

ma =
∫

ΓFS

p′1ny ds and da =
∫

ΓFS

p′2ny ds

The resolution of the coupled problem can be summarized by the resolution of Equations93

(14),(15) and (17). On the one hand, Equations (14) and (15) give the added mass and94

added damping (fluid load on the structure). On the other hand, Equation (17) provides95

the structure dynamics (structure displacement, velocity and acceleration). Note that,96

for fixed angle of attack (8◦ for our case), ny has a fixed value and the variation of the97

solutions p′1 and p′2 depend only on the density ρ and its variation rate ( ∂ρ
∂t ).98
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Figure 3. Modeling of sheet cavitation. M oscillation belongs to [Lpmin , Lpmax ].

4. Non-homogeneous density model99

Modeling of the density variation is made in order to approximate the sheet cavi-
tation behavior on the hydrofoil, as described in the literature [10,14,15] and shown in
Figure 17. Sheet cavitation is characterized by unsteady behavior of cavity length Lp at
the hydrofoil upper surface (Figure 3). Attached at the leading edge, the cavity extends
on the upper surface and oscillates between the minimum length cavity (Lpmin ) to the
maximum length (Lpmax ). Inside the cavity, the vapor density ρv is equal to 1kg/m3.
Outside the cavity, the hydrofoil is surrounded by liquid (water) with the density ρl
equal to 1000Kg/m3. At the interface ΓFS, the density ρ is given by

ρ(x, y, t) =

 ρv = 1 kg/m 3 i f 0 ≤ x < Lp(t) (a)

ρl = 1000 kg/m 3 i f Lp(t) ≤ x < Lpmax (b)
(18)

and the variation rate of the density is given by
∂ρ
∂t = (ρv − ρl) δ(x− Lp(t))

∂Lp(t)
∂t ,

0 ≤ x ≤ c, (x, y) ∈ ΓFS and Lpmin ≤ Lp(t) ≤ Lpmax

(19)

where δ is a Dirac function.100

There are different development phases of sheet cavitation. Firstly, the closing point M101

(Figure 3) has a small variation and the cavity could be considered as a steady. Secondly,102

the cavity length Lp increases and the closing point oscillates between Lpmin and Lpmax .103

The cavitation development phases may continue to the destabilization of the cavity,104

followed by a vapor cloud detachment [16,17]. In this paper we focus on the first two105

phases. During the second phase, the cavity length follows a periodic variation [14,18].106

Let us consider the following simplified model of unsteady cavity

Lp(t) = Lpmin +
Lpmax − Lpmin

2
(1− cos(2π fct)) (20)

where fc is the oscillation frequency of the closing point M. The variation rate of cavity
length is given by

d Lp

d t
= (Lpmax − Lpmin)π fc sin(2π fct) (21)

5. Numerical resolution107

A Stainless Hydrofoil (NACA0012) with mass m equal to 14.505Kg.m−1 is consid-108

ered. Its natural frequency fN in the air is 58.52Hz and the chord length c is equal to109

0.15m. The stiffness is deduced from the previous values.110
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Newmark scheme [19,20] presented in Equation (22) is used to discretize the structure
dynamics Equation (17). The latter is given by : ξn

y = ξn−1
y + ∆t ξ̇y

n−1
+ ∆t2

4 (ξ̈y
n−1

+ ξ̈y
n
) (a)

ξ̇y
n
= ξ̇y

n−1
+ ∆t

2 (ξ̈y
n−1

+ ξ̈y
n
) (b)

(22)

where ∆t is the time step and ξn
y is the value of the displacement ξy at time tn = n∆t.111

In this study, the time step is taken equal to 10−3s, which is a good time sampling of112

both the hydrofoil harmonic displacements (with a period of about 17 · 10−3s) and the113

harmonic variations of the cavity (with a period of about 44 · 10−3s).114

The problem (fluid and structure) is solved by using the finite elements code CASTEM115

[21]. Triangular quadratic elements are used. The computational domain is subdivided116

to 34360 elements, which is corresponding to 131720 nodes. As shown in Figure 4, the117

mesh of the subdomain around the hydrofoil is refined in order to improve the accuracy118

of the numerical results.119

120

Figure 4. Computational domain and mesh : 131720 elements and 34360 nodes (left). Mesh
subdomain around the hydrofoil (right)

The same mesh sensitivity study performed in [11] is used here. The Figure 5 show the121

mesh dependence of the numerical added mass value obtained by solving the equation122

14. The chosen mesh corresponds to a relative error of about 1.56%, compared to the123

analytical value of the added mass obtained for a rectangle of the same dimensions as124

the used hydrofoil [11].125

Figure 5. Mesh sensitivity [11]

5.1. Steady cavity length126

Steady cavity length is firstly studied in order to understand the effect of cavity127

length Lp on the structure dynamics. In this case, the cavity length Lp is considered as128

constant. Hence, the fluid density is only space dependent and its variation rate is zero.129
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Hence, ∂ρ
∂t and p′2 are equal to zero. It follows that the added mass ma is constant and the130

added damping da is zero.131

132

The simulation is performed for one value of steady Lp equal to 0.4c. Only Equations (133

14) and (17) are solved for the coupled problem. It follows that the induced movement134

ξy of the hydrofoil is periodic. Thus, it can be defined by the induced frequency f I and135

the corresponding amplitude. The induced frequency f I of the structure oscillations into136

the fluid flow can be obtained by Fast Fourier Transform (FFT).
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Figure 6. (a) Spectrum of hydrofoil movement ξy for different values of Lp. (b) Frequency of ξy

versus Lp
137

The same study was reproduced for different values of Lp (Lp = 0 to Lp = c). The
induced frequencies versus cavity length are presented in Figure 6. It can be shown that
the value of Lp does not affect the amplitude of the hydrofoil displacement (Figure 6-a).
However, the frequency increases according to the cavity length (Figure 6-b). This is
expected because the surface covered by vapor expands as Lp increases. Furthermore,
the added damping da is zero because of the steady cavity length. So the induced
frequency f I can be deduced from Equation (17) as following :

f I =
1

2π

√
ky

m + ma
(23)

The frequency f I can be approximated by using the formula (24) given in [22]

f I
fN

=
1

(1 + ma
m )

1
2

(24)

5.2. Unsteady cavity length138

The simulation of the coupled problem is now performed with unsteady cav-139

ity length. The same values of mass, natural frequency ( fN) and chord length used140

previously are applied. Equation (20) is applied for cavity length oscillation; where141

Lpmax = 0.4c, Lpmin = 0 and fc = 22.5Hz. The value of fc is chosen to be close to the142

experimental observation [10].143

144

Solutions p′1 of Equation (14) in a fluid domain at three different moments, corresponding145

respectively to Lp ≈ Lpmin, Lp ≈ Lpmax
2 and Lp ≈ Lpmax, are shown in figure 7 (left). It is146

easy to see that the values of p′1 at the upper surface are smaller than those of the lower147

surface. Indeed, p′1 is proportional to the fluid density and the hydrofoil is surrounded148

by the vapor at the upper surface.149
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( Kg / m² )
      kg / (m².s)

Figure 7. Solutions p′1 (left) and p′2 (right) for three times corresponding respectively to Lp ≈
Lpmin, Lp ≈ Lpmax

2 and Lp ≈ Lpmax.

Values of p′2 at the same three moments, corresponding to the three values of Lp, are150

shown in Figure 7 (right). High values match with the closure points M where the151

density changes. Indeed, p′2 is proportional to the variations rate of the density as152

shown in Equations (15) and (19), and that formulation includes Dirac function. So,153

the variations of Lp can be observed within the solution p′2. It follows that the added
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Figure 8. (a) Added mass variation versus time. (b) Added damping variation versus time
154

mass ma is time dependent. Its variation are shown in Figure 8-a. It oscillates between155

13.92 Kg.m−1 and 17.04 Kg.m−1. These values correspond respectively to values of Lpmax156

and Lpmin . The maximum value corresponds to that obtained in the homogeneous fluid157

case. Hence, it is assumed that the added mass variations is periodic and has the same158

frequency as the cavity length variation. It can be conclude that a frequency modulation159

of the structure is expected in this case.160

The added damping variation is shown in Figure 8-b. It is periodic with frequency equal161

to fc and it can take negative values. It may cause structure instabilities or amplitude162

modulation.163

164

Hydrofoil motions in both homogeneous and non-homogeneous cases are shown in165

Figure 9-a. The dynamics of the structure are modified by the cavity length oscillation166

and the phase shift between the two motions increases over time. The spectrum analysis167

obtained by FFT shows one fundamental frequency centered between two harmonics168

(Figure 9-b). These harmonics specifically characterize an amplitude modulation. The169

study is reproduced for different values of maximum cavity length (Lpmax ). It is shown170
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Figure 9. (a) Comparison of hydrofoil displacements in homogeneous and non-homogeneous
cases. (b) Frequency of hydrofoil displacements in non-homogeneous case.

that the frequency spectrum are still composed by the fundamental frequency and the171

two harmonics (Table 1). It is noted that the fundamental frequency increases with172

the cavity length. Variation of the added damping from positive to negative sign and173

vice versa is observed. This can induce an amplitude modulation of the hydrofoil174

displacements.175

Table 1. Frequencies spectrum of the hydrofoil motion for different Lpmax

Lpmax 1st Harmonic (Hz) Fundamental (Hz) 2nd Harmonic (Hz)

0.2c 17.54 39.47 61.4
0.6c 19.37 41.16 62.95
0.8c 19.22 41.26 63.61

c 17.47 43.67 69.87

5.3. Frequency analysis176

In the previous section, the natural frequency fN in air, the cavity length Lpmax and177

the cavity length frequency fc were fixed to be close to the experimental observation.178

However, in this case the effects of variations in added mass and added damping on the179

hydrofoil dynamics are difficult to highlight. Indeed, for one period of the hydrofoil180

oscillation (ξy), the cavity length changes from 0 to ≈ Lpmax /2.6 and at the same time181

added mass and added damping vary with the same frequency as the cavity.182

183

So, in order to highlight theses effects, a smaller cavity length frequency fc = 11 Hz and184

a larger cavity length Lpmax = 0.8c are used. It consists of increasing the gap between185

fN and fc. The values of c, m, fN and Lpmin are the same as in previous section. The186

solution of the coupled problem (Equations (14), (15) and (17)) is shown in Figure 10-a.187

An extended analysis performed over a long period of time is reported in Figure 10-b.188

Upper and lower envelopes of the signal ξy is represented in black curve. This represents189

the amplitude modulation of the structure dynamics.190

191

In order to highlight the expected frequency modulation of the structure dynamics,192

a spectrogram analysis of the signal ξy is performed. However, an accuracy on the193

frequency induces automatically a less clearly observable frequency time variation, as194

shown by Figure 11. This corresponds tho the best spectrogram obtained, according to195

the characteristics presented in Table 2. Indeed, a frequency range is observed and it196

oscillates with a frequency close to the cavity length variations one. Thus, the classical197

frequency analysis methods can not take into account the frequency modulation phe-198

nomena. Hence, application of EMD method followed by the Hilbert spectral analysis199
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are used for the estimation of the instantaneous frequency (IF).200

201

Table 2. Spectrogram parameters.

Block Frequency Time lapse Sampling
length discretization between blocks frequency (Hz)

64 1024 8 1000
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Figure 10. (a) Heave displacement ξy of the hydrofoil, t ∈ [0, 0.2]. (b) Heave displacement ξy of
the hydrofoil over a long period time, t ∈ [0, 1].
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Figure 11. Spectrogram of ξy(t) in non-homogeneous case.

5.3.1. Empirical Mode Decomposition202

EMD, introduced by Huang et al., is an adaptive and data-driven decomposition well203

suited to decompose non-stationary signals derived or not from linear systems [12].204

More precisely, no a priori basis functions are required for the decomposition. The205

algorithm decomposes the multi-component signal into a linear combination of set of206

reduced number of additive oscillatory components termed as IMFs (Intrinsic Mode207
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Functions). Each extracted IMF, a mono-component signal, must satisfy the following208

conditions:209

(i) The number of local extrema and the number of zero-crossings must either equal210

or differ at most by one.211

(ii) The local trend value (mean) of the envelope defined by local maxima and the212

envelope defined by the local minima is zero213

This requirement ensures that the IMFs have no positive local minima and no negative
maxima [12]. Furthermore, these conditions allow us to obtain physically meaningful IF
estimates from the extracted IMFs. The core of the EMD is called the sifting process and
the resulting adaptive expansion can be seen as a type of wavelet decomposition, whose
sub-bands are built up as needed to separate the different components of the signal. To
be successfully decomposed into IMFs, a signal s(t) must have at least two extrema: one
minimum and one maximum [12],[23]. At the end of the sifting, the signal s(t) can be
expanded as the sum of mode time series IMFi(t) and a residual rK(t):

s(t) =
K

∑
i=1

IMFi(t) + rK(t) (25)

where K is the number of modes determined automatically. Based on a dyadic filter bank214

conjecture of the EMD algorithm, the number of sifted modes K is usually limited to215

K ≤ log2(L), where L is the number of samples of the signal s(t) [24]. The signal rK(t),216

called residual, is a monotonic function that represents the trend within s(t).217

5.3.2. Hilbert spectral analysis218

With the extracted modes IMFi(t), Hilbert spectral analysis can be applied to each219

mode in order to estimate the associated IF fi(t). To compute the IF, the analytic signal220

(also called Gabor’s complex signal) associated to a real signal IMFi(t) is calculated, as221

follows222

zi(t) = IMFi(t) + jH[IMFi(t)]
= ai(t)ejφi(t) (26)

where ai(t) and φi(t) are the instantaneous amplitude and phase of IMFi(t). H[IMFi(t)]
is the Hilbert transform of IMFi(t) and it is given by

H[IMFi(t)] =
1
π
PV
∫ +∞

−∞

IMFi(τ)

t− τ
dτ (27)

where PV is the Cauchy principal value of the integral. Finally, the IF fi(t) of IMFi(t) is223

calculated as follows [25]:224

fi(t) =
1

2π

dφi(t)
dt

φi(t) = tan−1
(
H[IMFi(t)]
IMFi(t)

)
(28)

5.3.3. IMFs and IFs of the signal ξy225

EMD is applied to the signal given by the hydrofoil displacement ξy and ten IMFs
are extracted (Figures 12 and 13). Following EMD definition,

ξy(t) =
10

∑
i=1

IMFi(t) + r10(t) (29)

Here K is set to 10. In our case, two classes of IMFs can be defined: the high frequency226

class composed by the three first modes and the low frequency composed by the re-227
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maining modes. Note that the first mode, IMF1(t), corresponds to the highest frequency228

component of the signal. In our case, it has the highest amplitude for the high frequency229

class. Zoom of the signal is shown in Figure 14-a. Overall, the hydrofoil movement is230

mainly composed by IMF1(t) and the remaining low frequency mode.231
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Figure 12. High frequency class: IMF1, IMF2, IMF3 and low frequency class IMF4 extracted from ξy.
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Hilbert spectral analysis of the modes has been performed. The IF f1(t) of the first mode232

(IMF1(t)), is shown in Figure 14-b. The frequency modulation is explicitly shown. Theses233

oscillations are attributed to the variation of the cavity length. Both variations ( f1(t) and234

Lp) have the same frequency. The component f1(t) oscillates from 39.38 Hz to 44.98 Hz235

except at the beginning of the simulation.236

237

The IFs of the modes 2 and 3 are shown in Figure 15. They show many peaks (or spikes)238

which are similar to Dirac functions. If the peaks are omitted, complex oscillation of the239

IFs f2(t) and f3(t) are observed. For the low frequency class, the average of IF variations240

is in the order of 10−2 Hz (Figure 16). It can be concluded that the frequency modulations241

of the signal ξy come from the first three IMFs.242
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Figure 14. (a) IMF1(t) mode. (b) IF f1(t).

3 3.4 4
0

40

60

IF
   

 f 2
(H

z)

0 2 4 6 8
-200

0

400

600

IF
   

 f 2
(H

z)

1 1.4 2

Time (s)

-2

0

2

IF
   

 f 3
(H

z)

0 2 4 6 8

Time (s)

-100

-50

0

50

100

150

200

IF
   

 f 3
(H

z)

Figure 15. IFs f2(t) and f3(t) (left), zoom of IFs f2(t) and f3(t) (right).



Version March 16, 2021 submitted to Journal Not Specified 15 of 18

0

1

IF
 f 4

(H
z)

0

1

IF
 f 5

(H
z)

0.3

0.5

IF
 f 6

(H
z)

0

0.4

IF
 f 7

(H
z)

0.1

0.2

IF
 f 8

(H
z)

0.1

0.14

IF
 f 9

(H
z)

1 2 3 4 5 6
Time (s)

0.05

0.15

IF
 f 10

(H
z)

Figure 16. IFs from f4(t) to f10(t).

Some experimental evidence can be found in [15] from experiments conducted243

on cavitation induced vibration, performed on a hydrofoil in a hydrodynamic tunnel.244

Typical vibration spectra and the corresponding cavity snapshots on the suction side245

are shown on Figure 17 for various cavity lengths, according to the cavitation number246

σ obtained on a hydrofoil. The smaller σ, the larger the maximum cavity length. σ is247

defined as (Po − Pv)/(0.5ρU2
∞), where Po is the pressure in the test section and Pv is the248

vapor pressure [4,10,15,26].249

On Figure 17.a, σ = 2.42 corresponds to cavitation inception with small spots of250

vapor attached to the leading edge (bottom of the picture). The corresponding vibration251

spectrum exhibits a rather large peak corresponding to the structural bending mode. For252

σ = 2.08, a sheet cavitation was attached at the leading edge and oscillated periodically253

between about 30% and 40% of the chord length. This leads to an increase of the vibration254

level over several peaks ranging from about 25Hz slightly below the bending structural255

mode frequency at 32Hz up to the cavity frequency close to 65Hz. That is the sign of a256

complex response including frequency modulation probably. As the cavitation number257

decreases again (Figure 17.b, σ = 1.81), the maximum cavity length increases up to 60%258

of the chord length and oscillates at about 35Hz close to the structural frequency. By259

decreasing again the cavitation number (σ = 1.63), the cavity frequency and the bending260

frequency merge inducing a strong coupling resulting in a very high level resonant peak261

of vibration at the bending/cavity frequency and harmonics.262



Version March 16, 2021 submitted to Journal Not Specified 16 of 18

Figure 17. Vibration spectra in cavitating flow and corresponding cavity snapshots on a hydrofoil
for various cavitation number (θ = 8, U∞ = 6 m/s) [15].

6. Conclusions263

The effect of the fluid density variations, at the fluid-structure interface, on the264

structure dynamics is studied and analysed. A decomposition method is used to linearize265

the fluid-structure coupled problem, which is separated into two components. The first266

one describes the fluid flow around the fixed hydrofoil while the second one is related267

to the flow induced by the structure vibrations. A model of the fluid density variation268

along the upper interface of the hydrofoil, based on the sheet cavitation behaviour, is269

used. The governing equations are solved numerically using Finite Element Method. In270

this study, the hydrofoil is considered to be animated by a free heave motion. For steady271

cavity length, the added mass remains constant and the added damping (induced by272

the fluid density rate of change) is zero. The study was reproduced for different values273

of cavity length. It was highlighted that the frequency increases according to the cavity274

length. However, the amplitude of the displacement is kept at the same value.275

For unsteady cavity length, its oscillations along the fluid-structure interface in-276

duces variations in the added mass values. In addition, the fluid density rate of change277

generates a fluid load acting as an added damping on the structure dynamics, which278

can be negative and thus at the origin of instabilities of the structure. Although clas-279

sical methods, such as spectral analysis, make it possible to highlight both amplitude280

modulation (AM) and frequency modulation (FM) phenomena, in structural dynamics281

requires the use of suitable tools to handle such AM-FM signals. Thus, empirical mode282

decomposition (EMD) method, well suited to analyse AM-FM components, was applied283

to the signal obtained from the hydrofoil displacement. Such a decomposition makes it284

possible to obtain the instantaneous frequencies (IFs) of the signal from the extracted285

Intrinsic Mode Functions (IMFs). Therefore, FM is explicitly given through the time286

variations of the frequency, obtained from EMD method. It is shown that the IF derived287

from the first IMF, sifted by EMD decomposition of the hydrofoil displacement signal ξy,288

corresponds to the cavity frequency.289

This signal processing method allows us to highlight the FM phenomenon which290

occurs in the dynamics of a structure immersed in a fluid flow with unsteady non-291

homogeneous density. In this study, only the effects of the added mass and added292

damping (induced by the fluid density rate of change) on the structure dynamics are293

analysed. As future work, we plan to extend this study in order to investigate the294

potential of the EMD method in this case, by analysing the information and the related295

physics, which could be extracted from all the sifted IMFs and the associated IFs.296
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