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A B S T R A C T

In this paper, a semi-passive nonlinear piezoelectric shunt absorber is presented, aiming at
attenuating the vibration of a resonant elastic structure under external excitation. This is done
by connecting the elastic structure to a nonlinear shunt circuit via a piezoelectric patch. The
nonlinear shunt circuit consists of resonant circuit that includes a quadratic non-linearity. A
particular tuning of the natural frequency of the shunt enables to create a two to one internal
resonance. This generates a strong coupling between the mechanical mode and the electrical
mode, leading to replace the mechanical resonance with a nonlinear antiresonance associated
with an amplitude saturation, thus leading to an efficient vibration reduction. In this paper,
we first propose a theoretical model that is expanded onto a suitable electromechanical modal
basis and reduced to the two modes of interest, nonlinearly coupled by quadratic terms. Then,
analytical solutions are obtained by the multiple scale method and compared to a reference
numerical solutions stemming from the harmonic balance method. This enables to investigate
the performance of the system in term of vibration absorption as well as giving design rules to
tune the nonlinear shunt and to choose the free parameters of the system.

1. Introduction

Vibration reduction is an important research field in many engineering applications, especially in the industrial machine design
and in the sectors where lightweight structures can be used. One of the efficient strategies that took a wide range of interest the
past 20 years is the electrical shunt damping family of techniques, due to its efficient vibration attenuation properties and to its ease
of set and control. It consists in using an electromechanical transducer to convert the vibratory energy of the host structure into
electrical energy in a dedicated electronic circuit, designed to dissipate it and/or to counteract the structure’s vibrations. Depending
on the physics of the transducer, piezoelectric or electromagnetic, shunts have been proposed in the pioneering works [1,2] and
have been addressed in a huge number of contribution since (see [3,4] and reference therein). Contrary to active control for which
independent sensors and actuator are connected in closed loop, the shunt principle consists in using a single transducer, that serves
as sensor and actuator at the same time when connected to a suitable electronic circuit. In most shunt architectures, the system is
unconditionally stable, contrary to active control strategies.

A large majority of shunts are linear, the simplest architecture being the electromechanical analogs of mechanical dynamical
dampers such as Frahm (also called dynamic vibration absorber, DVA) or Lanchester dampers [5,6], also called respectively resonant
and resistive shunts [7]. In the case of a piezoelectric transducer, equivalent to a capacitor 𝐶, the resonant shunt consists in using a
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simple inductor 𝐿 as electronic circuit (and eventually an additional resistor 𝑅) to obtain a resonant 𝑅𝐶 (𝑅𝐿𝐶) circuit coupled to
a given mode of the primary mechanical structure [7,8]. More complex architectures can include a negative impedance to improve
the performances [9] or be based on periodic piezoelectric transducers architectures for multimode damping [10].

However, it might be interesting to benefit from special dynamical phenomenon related to nonlinearities, examples of which are
given in the recent reviews [11,12]. In the field of nonlinear absorbers, several families of strategies have been proposed in the past,
firstly using mechanical devices and then being sometimes transposed to electromechanical analogs. The first family of absorbers,
currently known as ‘‘nonlinear energy sinks’’ (NES) and using the so-called principle of ‘‘targeted energy transfer’’, was originally
proposed in 2001 [13]. In the original concept, it consisted in attaching to a primary linear structure an essentially nonlinear
oscillator into which the vibratory energy is transferred and localized. Because of the essentially nonlinear properties of the absorber,
its free oscillation frequency strongly depends on the amplitude of the motion and there is always an amplitude for which the two
oscillators lock in frequency, leading to an irreversible energy transfer (precisely through a one to one internal resonance). Since
then, a huge amount of works emerged (more than one hundred selected publication are mentioned in the recent review [14]).
We cite here some of them, relevant to us because they explain the design rules and propose several types of nonlinearities: [15]
for cubic spring smooth stiffness, [16] for polynomial magnetic stiffness, [17] for a bistable stiffness and [18] for vibro-impact
nonlinearities. The extension of the mechanical NES to piezoelectric devices has been theoretically proposed in [19] and recently
realized, for the first time, with an analog circuitry (using multipliers) in [20]. It was also recently proposed in [21] in an active
control philosophy, using force feedback.

A second family is the one of the so-called ‘‘nonlinear tuned vibration absorbers’’ (NLTVA), introduced in [22], that are a
generalization of the classical DVA adapted for primary structures which have nonlinearities. Indeed, those nonlinearities, in most
cases, lead to a dependence of the characteristic frequencies (free oscillations, resonance, antiresonance. . . ) upon the amplitude of
the motion. Consequently, a DVA, which has to be tuned to a particular fixed frequency, will correctly work on a limited range of
amplitude. In contrary, the NLTVA is designed to present nonlinearities similar to those of the primary system. It is then naturally
able to adapt itself to the dynamics of the primary structure for a large amplitude range. Since the pioneering work [22], the principle
has been investigated in several studies using mechanical absorbers (see [23] and reference therein). The extension of NLTVA to
piezoelectric shunts has been theoretically proposed in [24] and experimentally demonstrated in [25] with passive only electronic
components and in [26] with a digital signal processor connected to the piezoelectric patches by analog electronic interfaces made
of operational amplifiers.

The third family of nonlinear absorbers is composed of the synchronized switch damping (SSD) strategies. They consist in
switching the electromechanical transducer on two distinct shunt impedances, synchronously with the oscillations of the host
structure. This idea was initially proposed in [27,28] for piezoelectric transduction and developed in numerous contributions since
then (see [29] for a recent review). Those SSD techniques are adaptive, intrinsically stable, require low power but their effect can be
viewed as a resonance peak reduction, proportional to the excitation amplitude, similarly to traditional resistive or resonant shunts,
with higher performance for one degree of freedom host structure [30].

The fourth family of nonlinear absorbers is based on the use of internal resonances. In a nonlinear system, if the ratio of two
modal frequencies 𝜔𝑖 and 𝜔𝑗 is a rational number, namely 𝑞𝜔𝑖 ≃ 𝑝𝜔𝑗 with 𝑝, 𝑞 ∈ N∗, a strong coupling between the two corresponding
modes can occur, leading to particular exchanges of energy between the modes. This is called a 𝑝:𝑞 internal resonance and (𝜔𝑖, 𝜔𝑗)
can be the (linear) natural frequencies of the modes as well as there nonlinear extension (the frequencies of the nonlinear modes,
that depend on the amplitude of the motion). On the first case, the internal resonance is observed at low amplitude and is often
a consequence of a particular geometry, obtained with symmetries (1:1 internal resonance are encountered in beams/strings of
symmetric cross section [31], in circular/square plates [32,33], in cylindrical shells [34] and spherical caps [35]) or by intentional
tuning, in musical instruments (1:2, 1:2:4 and 1:2:2:4:4:8 internal resonances are encountered in gongs and steel-pans [36,37]) or
in micro-systems applications [38–40]. In the second case of an internal resonance with the nonlinear free oscillation frequencies,
the coupling appear at larger amplitude, when the change of frequencies due to the amplitude of the motion is compatible with the
frequency relationship (see e.g. [41,42]).

When two modes of a system with quadratic nonlinearities fulfills a 1:2 internal resonance (𝜔2 ≃ 2𝜔1), the modal coupling
leads to energy exchanges that occur at different frequencies (if the energy is injected to the second mode resonance near 𝜔2, it is
transferred to the first mode at half the driving frequency. On the contrary if the first mode is resonantly driven near 𝜔1, the energy
is transferred to the second mode at twice the driving frequency, near 𝜔2 ≃ 2𝜔1. To signify the energy transfer, those two cases
a sometimes called 2:1 and 1:2 internal resonances, respectively) and that leads to a significant reduction of the amplitude of the
driven mode. Moreover, a saturation phenomenon is theoretically predicted in the first case, for which the amplitude of the driven
mode becomes independent of the forcing amplitude above a threshold, whereas in the second case, a quasi-periodic regime is
obtained at resonance [43]. This leads to the idea of intentionally designing a resonant absorber with quadratic nonlinearities tuned
to half the frequency of one mode of the primary structure, to beneficiate of the saturation phenomenon. In mechanical systems,
this leads to the concept of autoparametric vibration absorbers, firstly proposed in [44] and addressed in many contributions since
then (see [45,46] and references therein). The use of a 2:1 internal resonance to design an electromechanical control system has
been proposed in many works. A first family of works proposes the vibration reduction of an elastic beam by the active control of
the rotation of a direct current (DC) motor (see [47,48] in which the controller is an analog electronic circuit made of multipliers).
Then, this technique has been extended to piezoelectric actuators in [49] with also an analog circuit with multipliers. Then, the
same concept has been applied with a real time digital controller to several structures (a beam and a truss in [50] and a triangular
panel in [51]), with design guidelines exposed in [52]. The same authors also tried a 1:2:4 internal resonance in [53].



Fig. 1. Nonlinear shunt circuit.

All the above internal resonance based contributions can be related to active control. Indeed, they rely on the use of separate
sensor and actuator linked with a controller (analog or digital), in which the nonlinearities and the additional degree of freedom
are implemented and tuned. To our knowledge, no attempt on implementing a 2:1 internal resonance with a piezoelectric shunt
has been published and this article aims at filling this gap. It is worth citing that other internal resonances have been tested: a
1:1 internal resonance in [54] as well as in the already considered NES contribution [20]. A 1:3 internal resonance between two
modes of a PZT cantilever beam has been investigated in [55]. It is also worth citing [56,57], which propose strategies to implement
electrical circuits analog to particular nonlinear oscillators, using multipliers.

In this paper, we propose a new semi-passive vibration attenuation approach based on a nonlinear piezoelectric shunt. Indeed,
we test the simple idea of connecting, thanks to a piezoelectric transducer, a linear vibrating structure to a resonant electronic
circuit in which a quadratic nonlinearity is intentionally introduced. We then add a new vibration mode in the system, that can be
tuned to obtain a 2:1 internal resonance. We target creating a nonlinear antiresonance in place of the resonance of the mechanical
mode as well as a saturation phenomenon. We also test two type of quadratic nonlinearities: one which is equivalent to a nonlinear
capacitor, for which the electric charge is proportional to the square of the voltage, and a second one which is simply a voltage
source proportional to the square of the voltage at the terminals of the piezoelectric element. In this paper, we restrict ourselves to
the theory, the experimental proof of concept being postponed to an incoming article.

The outline of this paper follows. In Section 2, a model of the mechanical structure coupled to the nonlinear electric circuit is
proposed, leading to a reduced model composed of two electromechanical modes coupled by quadratic terms. In Section 3, closed
form approximated expressions for the amplitude and the phases of the two modes are obtained with the method of multiple scales
(MMS) and the effect of several design parameters is studied. In Section 4, those results are compared to a reference solution obtained
by a numerical continuation method to analyze the effect of the non-resonant nonlinear terms of the system. In Section 5, the results
are applied to design a test case of a nonlinear piezoelectric absorber coupled to the first bending mode of a cantilever beam with
piezoelectric patches. Some general guidelines are given in the last two sections.

2. Governing equations

We consider an arbitrary elastic structure subjected to a mechanical harmonic excitation and connected to a nonlinear resonant
shunt circuit through a piezoelectric element, as shown in Fig. 1. If we discretize the displacement field of the elastic structure in
a finite-element context, the equations of motions can be written [58]:

𝑴�̈� +𝑲𝒖 +𝑲𝑐𝑉 = 𝑭 cos𝛺𝑡, (1a)

𝐶p𝑉 −𝑄 −𝑲T
𝑐 𝒖 = 0, (1b)

𝑉 + 𝐿�̈� + 𝑅�̇� + 𝑉nl = 0, (1c)

where 𝒖(𝑡) is the mechanical displacement vector of size 𝑁 ∈ N at time 𝑡, 𝑉 (𝑡) is the voltage at the terminals of the piezoelectric
element, 𝑄(𝑡) is the charge in one of its electrodes, 𝑴 and 𝑲 are the mass and stiffness matrices, of size 𝑁 × 𝑁 , 𝑲𝑐 is the
electromechanical coupling vector, of size 𝑁 , 𝑭 is the external excitation vector, of size 𝑁 , 𝛺 is the driving frequency, 𝐶p is the
blocked capacitance of the piezoelectric patch, 𝐿 and 𝑅 are the inductance and the resistance in the shunt circuit and 𝑉nl(𝑡) represents
the nonlinear voltage added to the shunt circuit.

We propose in this text to investigate the following two choices for 𝑉nl:
{

𝛽1𝑄2, (a)
𝛽2𝑉 2, (b)

(2)

where 𝛽𝑖 (𝑖 = 1, 2) are constant parameters. The first case, Eq. (2)a, can be viewed as a nonlinear capacitor for which the inverse of
its capacitance 𝐶nl depends linearly on the amplitude of the charge: 𝑉nl = 𝑄∕𝐶nl with 𝐶nl = 1∕(𝛽1𝑄). The unit of 𝛽1 is V∕C2. This
choice is driven by the mechanical nonlinear absorbers, for which their stiffness is nonlinear. The second case, Eq. (2)b, is simply
a voltage source that is proportional to the square of the voltage 𝑉 (𝑡) at the terminals of the piezoelectric patch, since in practice
this voltage is easily monitored. The units of 𝛽2 is V−1. Those kind of nonlinearities can be obtained in practice by analog circuits
with multipliers [20] or with a digital real time controller [26]. In the following, to simplify the mathematical expressions, 𝛽 will
be written with no index when not necessary.



2.1. Modal expansion

We consider the natural modes (�̆�𝑖,𝜱𝑖), 𝑖 = 1,… , 𝑁 , of the mechanical structure with the piezoelectric element in short circuit
(𝑉 = 0), solutions of:

(

𝑲 − �̆�2
𝑖𝑴

)

𝜱𝑖 = 𝟎. (3)

We expand the mechanical displacement vector on this modal basis, truncated to the 𝑖th mode only:

𝒖(𝑡) = 𝜱𝑖𝑞𝑖(𝑡), (4)

where 𝑞𝑖(𝑡) is the 𝑖th modal coordinate. This one mode assumption is valid as long as the other modes natural frequencies are far
enough from �̆�𝑖 and from internal resonance relations with �̆�𝑖. The initial problem (1)a,b is then equivalent to, for all 𝑖 = 1,… , 𝑁 :

𝑞𝑖 + �̆�2
𝑖 𝑞𝑖 +

𝜃𝑖
𝑚𝑖

𝑉 =
𝐹𝑖
𝑚𝑖

cos𝛺𝑡, (5a)

𝐶p𝑖𝑉 −𝑄 − 𝜃𝑖𝑞𝑖 = 0 (5b)

where 𝑚𝑖 = 𝜱T
𝑖 𝑴𝜱𝑖 is the 𝑖th modal mass, 𝐹𝑖 = 𝜱T

𝑖 𝑭 is the 𝑖th modal forcing and 𝜃𝑖 = 𝜱T
𝑖 𝑲𝑐 is the 𝑖th modal piezoelectric coupling

coefficient. As explained in [59], 𝐶p𝑖 is the effective capacitance of the piezoelectric patch in the vicinity of the 𝑖th resonance, which
takes into account the static effect of all the other modes than the 𝑖th one. The above one degree of freedom model is then valid
for a resonant motion of the system around its 𝑖th mode, namely by forcing around its natural frequency (𝛺 ≃ 𝜔𝑖).

Using Eq. (5)b to eliminate the piezoelectric voltage 𝑉 in Eqs. (5)a and (1)c, one obtains a problem in term of (𝑞𝑖, 𝑄) as unknowns:

𝑞𝑖 + 2𝜉𝑖�̂�𝑖�̇�𝑖 + �̂�2
𝑖 𝑞𝑖 +

𝜃𝑖
𝑚𝑖𝐶p𝑖

𝑄 =
𝐹𝑖
𝑚𝑖

cos𝛺𝑡, (6a)

�̈� + 2𝜉𝑒𝜔𝑒�̇� + 𝜔2
𝑒𝑄 +

𝜃𝑖
𝐿𝐶p𝑖

𝑞𝑖 +
𝑉𝑛𝑙
𝐿

= 0, (6b)

where �̂�2
𝑖 = 𝜔2

𝑖 + 𝜃2𝑖 ∕(𝐶p𝑖𝑚𝑖) is an approximation (because of the one mode expansion) of the 𝑖th open circuit natural frequency.
A mechanical modal viscous damping term of factor 𝜉𝑖 has been added. In addition, the electrical natural frequency and damping
factor are defined by:

𝜔𝑒 =
1

√

𝐿𝐶p𝑖
, 𝜉𝑒 =

𝑅
2

√

𝐶p𝑖

𝐿
(7)

We also define the dimensionless electromechanical modal coupling factor (EMMCF) of the 𝑖th mode as:

𝑘2𝑖 =
�̂�2
𝑖 − �̆�2

𝑖

�̂�2
𝑖

=
𝜃2𝑖

�̂�2
𝑖 𝐶p𝑖𝑚𝑖

. (8)

Notice that its denominator is the open circuit natural frequency, following the IEEE standard [60] and because it simplifies the
upcoming calculations. This is a different choice than in [58], where the short-circuit natural frequency was chosen, which gives a
slightly different value of the EMMCF.

To simplify the writing of the governing equations (6)a,b, we define the following parameters:

𝜏 = �̂�𝑖𝑡, 𝑞𝑖 =
√

𝑚𝑖𝑞𝑖, �̄� =
√

𝐿𝑄, 𝑟𝑖 =
𝜔𝑒
�̂�𝑖

, (9a)

𝐹𝑖 =
𝐹𝑖

�̂�2
𝑖
√

𝑚𝑖
𝑉nl =

𝑉nl

�̂�2
𝑖

√

𝐿
�̄� = 𝛺

�̂�𝑖
(9b)

in order to obtain:

̈̄𝑞𝑖 + 2𝜉𝑖 ̇̄𝑞𝑖 + 𝑞𝑖 + 𝑘𝑖𝑟𝑖�̄� = 𝐹𝑖 cos �̄�𝜏, (10a)
̈̄𝑄 + 2𝜉𝑒𝑟𝑖 ̇̄𝑄 + 𝑟2𝑖 �̄� + 𝑘𝑖𝑟𝑖𝑞𝑖 + 𝑉nl = 0, (10b)

where the derivatives in Eq. (10) are with respect to the dimensionless time 𝜏. The time has been rescaled by the open circuit
natural frequency �̂�𝑖 and we use a special scaling of the unknowns, so that (𝑞𝑖, �̄�) share the same dimension (mkg1∕2), to obtain the
same coupling parameter 𝑘𝑖𝑟𝑖 in both equations, with 𝑟𝑖 the ratio of the electrical and mechanical natural frequencies. To prove that
(𝑞𝑖, �̄�) share the same dimension, remember that energy units can be equivalently J, Nm or CV. Since the time 𝜏 is dimensionless,
the units of 𝐹𝑖 and 𝑉𝑛𝑙 are the same as (𝑞𝑖, �̄�): mkg1∕2.

2.2. Electro-mechanical modal expansion

The two degrees of freedom (𝑞𝑖, �̄�) of Eq. (10)a,b are linearly coupled because of the piezoelectric coupling 𝑘𝑖. It is then possible
to obtain a new system with diagonal linear part by expanding the unknowns onto the electromechanical modal basis (𝜔𝑘,𝜳 𝑘) of



Fig. 2. (left) Mode shape parameter 𝜀 (from Eq. (14)) and (right) electromechanical natural frequency ratio 𝜔1∕𝜔2 (from Eqs. (12)) as a function of the frequency
ratio 𝑟𝑖, for various values of the EMMCF 𝑘𝑖, as specified.

the problem, solution of:
(

�̄� − 𝜔2
𝑘𝑰

)

𝜳 𝑘 = 𝟎, 𝑘 = 1, 2, �̄� =
(

1 𝑘𝑖𝑟𝑖
𝑘𝑖𝑟𝑖 𝑟2𝑖

)

. (11)

Solving this eigenproblem, one obtains:

𝜔2
1 =

1 + 𝑟2𝑖 −
√

𝛥
2

, 𝜔2
2 =

1 + 𝑟2𝑖 +
√

𝛥
2

(12)

with 𝛥 = (1 − 𝑟2𝑖 )
2 + 4𝑘2𝑖 𝑟

2
𝑖 and

𝜳 1 =
(

−𝜀
1

)

, 𝜳 2 =
(

1
𝜀

)

, (13)

with

𝜀 =
2𝑘𝑖𝑟𝑖

1 − 𝑟2𝑖 +
√

𝛥
. (14)

Then, following the modal expansion:
(

𝑞𝑖(𝜏)
�̄�(𝜏)

)

=
2
∑

𝑘=1
𝜳 𝑘𝑥𝑘(𝜏), (15)

one obtains the following change of variables:

𝑞𝑖(𝜏) = −𝜀𝑥1(𝜏) + 𝑥2(𝜏), (16a)

�̄�(𝜏) = 𝑥1(𝜏) + 𝜀𝑥2(𝜏). (16b)

Since the coupling factor 𝑘𝑖 is small compared to 1, 𝜀 is also small compared to 1, which is illustrated in Fig. 2(left). For instance,
for 𝑟𝑖 = 0.5 and 𝑘𝑖 = 0.1, 𝜀 = 0.07. Eq. (16) then shows that the dominant effect of 𝑥1 and 𝑥2 will be respectively on �̄� and 𝑞. Based
on that, Ψ1 and Ψ2 will be designated as the electrical and mechanical modes respectively.

As for the frequencies, 𝜔1 is close to the dimensionless electrical frequency 𝜔𝑒∕�̂�𝑖 = 𝑟𝑖 and 𝜔2 is close to the dimensionless
mechanical frequency �̂�𝑖∕�̂�𝑖 = 1. In particular, if the EMMCF 𝑘𝑖 is zero, there is no electromechanical coupling, the system (10)a,b
is uncoupled and 𝜀 = 0, 𝜔1 = 𝑟𝑖 and 𝜔2 = 1. To quantify the effect of 𝑘𝑖 on the electromechanical eigenmodes shift with respect to
purely electrical and mechanical modes, Fig. 2(right) shows the natural frequency ratio 𝜔1∕𝜔2 as a function of 𝑟𝑖 for various values
of 𝑘𝑖. One can see that 𝑘𝑖 imposes a detuning between the electromechanical natural frequency ratio 𝜔1∕𝜔2 with respect to 𝑟𝑖. In
particular, to obtain a specified tuning 𝜔1∕𝜔2 (for instance 0.5 to obtain a 2:1 internal resonance), 𝑟𝑖 has to be slightly overtuned
(𝑟𝑖 > 𝜔1∕𝜔2).

Regarding the nonlinear voltage 𝑉𝑛𝑙, considering Eq. (5)b, we write it in the following form:

𝑉𝑛𝑙 = 𝛽(𝜅1𝑄 + 𝜅2𝑞𝑖)2, (17)

where (𝜅1, 𝜅2) = (1, 0) to verify Eq. (2)a and (𝜅1, 𝜅2) = (1, 𝜃𝑖)∕𝐶p𝑖 to verify Eq. (2)b.
By substituting Eq. (15) in Eqs. (10), multiplying by Ψ𝑇

𝑘 , using the orthogonality properties of the electromechanical eigenmodes
and the form of 𝑉𝑛𝑙 defined in Eq. (17), and by considering that the modal mass is 1 + 𝜀2 ≃ 1 because 𝜀 ≪ 1, the following can be
written:

𝑥1 + 2𝜇1�̇�1 + 2𝜇12�̇�2 + 𝜔2
1𝑥1 + 𝛬1𝑥

2
1 + 𝛬2𝑥1𝑥2 + 𝛬3𝑥

2
2 = 𝑓1 cos �̄�𝜏, (18a)



𝑥2 + 2𝜇12�̇�1 + 2𝜇2�̇�2 + 𝜔2
2𝑥2 + 𝛬4𝑥

2
1 + 𝛬5𝑥1𝑥2 + 𝛬6𝑥

2
2 = 𝑓2 cos �̄�𝜏.

 (18b)

In the above system, the new (dimensionless) damping terms are defined as:

𝜇1 = 𝜉𝑒𝑟𝑖 − 𝜉𝑖𝜀
2, 𝜇12 = (𝜉𝑒𝑟𝑖 − 𝜉𝑖)𝜀,

𝜇2 = 𝜉𝑖 + 𝜉𝑒𝑟𝑖𝜀
2 (19)

and the forcing terms are:

𝑓1 = −𝜀𝐹𝑖, 𝑓2 = 𝐹𝑖, (20)

with units mkg1∕2. The nonlinear coefficients of Eq. (18) write:

𝛬1 = 𝜆1 − 𝜆2𝜀 + 𝜆3𝜀
2

𝛬2 = 2𝜆1𝜀 + 𝜆2(1 − 𝜀2) − 2𝜆3𝜀

𝛬3 = 𝜆1𝜀
2 + 𝜆2𝜀 + 𝜆3

𝛬4 = 𝜀𝛬1

𝛬5 = 𝜀𝛬2

𝛬6 = 𝜀𝛬3

(21)

where

𝜆1 = 𝛽𝜅2
1 𝑟

3
𝑖 �̂�𝑖𝐶

3∕2
p𝑖 , 𝜆2 =

2𝛽𝜅1𝜅2𝑟2𝑖 𝐶p𝑖
√

𝑚𝑖
, (22a)

𝜆3 =
𝛽𝜅2

2 𝑟𝑖
√

𝐶p𝑖

𝑚𝑖�̂�𝑖
. (22b)

The common units of all those coefficients are m−1 kg−1∕2.
Then, for the choice of Eq. (2)a, (𝜅1, 𝜅2) = (1, 0) and the 𝜆𝑖 write:

𝜆1 = 𝛽1𝑟
3
𝑖 �̂�𝑖𝐶

3∕2
p𝑖 , 𝜆2 = 𝜆3 = 0. (23)

For the choice of Eq. (2)b, (𝜅1, 𝜅2) = (1, 𝜃𝑖)∕𝐶p𝑖 and:

(𝜆1, 𝜆2, 𝜆3) = (𝑟3𝑖 , 2𝑟
2
𝑖 𝑘𝑖, 𝑟𝑖𝑘

2
𝑖 )𝜆0, 𝜆0 =

𝛽2�̂�𝑖
√

𝐶p𝑖
. (24)

3. Analytical results

3.1. Multiple scale solution

In this section, closed form expressions governing the response of the electromechanical modal system of Eqs. (18)a,b is given.
This is done in order to study the performance of the vibration absorber and the effect of the design parameters, given later in this
section, that could be controlled to enhance the vibration absorber performance.

We restrict ourselves to the case of a 2:1 internal resonance with 𝜔2 ≃ 2𝜔1. This leads to neglect in Eqs. (18)a,b the effect of the
non-resonant terms of coefficients 𝛬1, 𝛬3, 𝛬5, and 𝛬6 on the dynamics. This is motivated by the normal form theory, which proves
that only the resonant terms (of coefficients 𝛬2 and 𝛬4) have an effect at first order (see [61,62]). We are also interested in the case
for which the energy is injected mainly to the mechanical (2nd. mode) and transferred to the electrical (1st. mode) because of the
nonlinear term. We then consider a pure forcing of the second (mechanical, high frequency) oscillator and neglect 𝜀𝑓1 with respect
to 𝑓2, since 𝜀 ≪ 1. Finally, the damping coupling terms of coefficient 𝜇12 are neglected. This is motivated because 𝜀 ≪ 1 and also
because the damping is considered small: 𝜇1, 𝜇2 ≪ 1. In this case, it can be shown that the non diagonal terms have a negligible
effect on the dynamics [63].

Consequently, for the analytical results, we consider the following system:

𝑥1 + 2𝜖𝜇1�̇�1 + 𝜔2
1𝑥1 + 𝜖𝛬2𝑥1𝑥2 = 0 (25a)

𝑥2 + 2𝜖𝜇2�̇�2 + 𝜔2
2𝑥2 + 𝜖𝛬4𝑥

2
1 = 𝑓2 cos �̄�𝜏 (25b)

where a bookkeeping parameter 𝜖 has been added to scale the terms of the equation before applying the perturbation method.
Following the multiple scales method, as fully described in [64], the two modal coordinates 𝑥1(𝜏) and 𝑥2(𝜏) are approximated at
first order by:

𝑥1 = 𝑎1 cos

(

�̄�
2
𝜏 −

𝛾1 + 𝛾2
2

)

, (26a)

𝑥2 = 𝑎2 cos(�̄�𝜏 − 𝛾2). (26b)

where the amplitudes 𝑎1 and 𝑎2 and the phase angles 𝛾1 and 𝛾2 are the solutions of the following modulation equations:

𝑎′1 = −𝜇1𝑎1 −
𝛬2𝑎1𝑎2
4𝜔1

sin 𝛾1, (27a)



1
2
(𝛾 ′1 + 𝛾 ′2)𝑎1 =

𝜎1 + 𝜎2
2

𝑎1 −
𝛬2𝑎1𝑎2
4𝜔1

cos 𝛾1,

 (27b)

𝑎′2 = −𝜇2𝑎2 +
𝛬4𝑎21
4𝜔2

sin 𝛾1 +
𝑓2
2𝜔2

sin 𝛾2, (27c)

𝛾 ′2𝑎2 = 𝜎1𝑎2 −
𝛬4𝑎21
4𝜔2

cos 𝛾1 +
𝑓2
2𝜔2

cos 𝛾2, (27d)

where ◦′ = 𝜕◦∕(𝜕𝜖𝜏) is the derivative with respect to the slow time scale and

𝜖𝜎1 = �̄� − 𝜔2, 𝜖𝜎2 = 𝜔2 − 2𝜔1, (28)

are the two detuning parameters, which express respectively the nearness of the driving frequency to the mechanical resonance
�̄� ≃ 𝜔2 and the detuning of the two natural frequency with respect to the exact internal resonance, which would be 𝜔2 = 2𝜔1.

The response amplitudes 𝑎1 and 𝑎2 and the phase angles 𝛾1 and 𝛾2 are estimated using the fixed-point solution of the above
dynamical system, i.e with 𝑎′1 = 𝑎′2 = 𝛾 ′1 = 𝛾 ′2 = 0. It leads to two kinds of solutions (see e.g. [64,65] for details):

• An uncoupled (U) solution, for which only the directly excited mode responds (𝑎2 ≠ 0, 𝑎1 = 0). This is the trivial linear solution,
which writes:

𝑎𝑈2 =
𝑓2

2𝜔2

√

𝜎21 + 𝜇2
2

, 𝛾𝑈2 = arctan
𝜇2
−𝜎1

, (29a)

𝑎𝑈1 = 0. (29b)

• A coupled (C) solutions, for which the energy is transferred from the second (directly excited) oscillator to the first one thanks
to the nonlinear terms. In this case, 𝑎1 ≠ 0 and 𝑎2 ≠ 0 are obtained by:

𝑎𝐶2 =
2𝜔1
|𝛬2|

√

4𝜇2
1 + (𝜎1 + 𝜎2)2, (30a)

𝑎𝐶1 = 2

√

√

√

√

√−𝛤1 ±

√

√

√

√

𝑓 2
2

4𝛬2
4

− 𝛤 2
2 , (30b)

𝛾𝐶1 = arctan
−2𝜇1
𝜎1 + 𝜎2

[2𝜋], (30c)

𝛾𝐶2 = arctan
2(𝛬4𝜇1𝜔1𝑎21 + 𝛬2𝜇2𝜔2𝑎22)

(𝜎1 + 𝜎2)𝛬4𝜔1𝑎21 − 2𝜎1𝛬2𝜔2𝑎22
[2𝜋], (30d)

where [2𝜋] means modulo 2𝜋 and with

𝛤1 =
2𝜔1𝜔2
𝛬2𝛬4

[

2𝜇1𝜇2 − 𝜎1(𝜎1 + 𝜎2)
]

, (31a)

𝛤2 =
2𝜔1𝜔2
𝛬2𝛬4

[

2𝜎1𝜇1 + 𝜇2(𝜎1 + 𝜎2)
]

. (31b)

In all the above expressions, the phases 𝛾1 and 𝛾2 are strictly defined since their sine and cosine are given in the dynamical
system (27). The formula including arctan(𝑏∕𝑎) must be understood as the angle of the complex number 𝑎+𝑖𝑏, computed numerically
with the function atan2(𝑏, 𝑎) in most numerical languages.

3.2. Typical response

A stability analysis of the fixed points of the slow scale dynamical system (27) shows that there exists an instability region in
the plane (𝜎1, 𝑎2) in which the U-solution is unstable [65]. Namely, it is the case as long as:

𝑎2 ≥ (𝜎1), (𝜎1) =
2𝜔1
|𝛬2|

√

4𝜇2
1 + (𝜎1 + 𝜎2)2. (32)

The analytical expression of (𝜎1) is exactly the same than 𝑎𝐶2 (𝜎1) which means that the boundary of the instability region coincides
with the C-solution for the directly excited mode 𝑎2.

Fig. 3 shows the typical frequency response of the system when driven at constant 𝑓2 and sweeping around the second oscillator
resonance �̄� ≃ 𝜔2 (𝜎1 ≃ 0). At the crossing points between the amplitude of the U-solution and the instability region, two subcritical
pitchfork bifurcations (points ‘‘PF’’ in Fig. 3) give rise to an unstable C-solution, which becomes stable after saddle–node bifurcations
(points ‘‘SN’’). This stable C-solution is characterized by a non-zero response of the low-frequency (electrical) mode, which oscillates
at the subharmonic �̄�∕2 (see Eq. (26)a). In the frequency band between the two pitchfork bifurcations, the resonance of the driven
(mechanical) mode is replaced by a low amplitude response, which shows a minimum at exactly �̄� = 2𝜔1 (Point 𝐴 of Fig. 3, 𝜎1 = −𝜎2,
see Eq. (30)a), that can be viewed as a nonlinear antiresonance. The phase 𝛾1 is exactly 3𝜋∕2 [2𝜋] at this point (see Eq. (30)c). The
main idea of the article is to take advantage of this nonlinear antiresonance to reduce de vibrations of a given resonance.



Fig. 3. Typical frequency response of Eqs. (25) obtained with the MS method: amplitude 𝑎1, 𝑎2 and phases 𝛾1, 𝛾2 as a function of the detuning 𝜎1 for a constant
forcing 𝑓2. The parameters are 𝛬2 = 𝛬4 = 0.1, 𝜇1 = 0.005, 𝜇2 = 0.01, 𝑓2 = 0.2, 𝜎2 = 0.05. ‘‘PF’’means pitchfork bifurcation; ‘‘SN’’means saddle–node bifurcation;
superscript 𝑈 refers to the uncoupled solution (in black) whereas superscript 𝐶 refers to the coupled solution (in blue for (𝑎1 , 𝛾1) and in green for (𝑎2 , 𝛾2)). The
blue shaded area depicts the instability region for 𝑎𝑈2 . Dotted and dash-dotted lines depict unstable branches.

Fig. 4. Typical response of Eqs. (25) obtained with the MS method for a perfect tuning 𝜎2 = 0 (𝜔2 = 2𝜔1). (a) amplitudes 𝑎1 and 𝑎2 as a function of the detuning
𝜎1 for several values of the forcing 𝑓2 (𝑓2 ∈ {0.005; 0.015; 0.03; 0.05}); (b) amplitudes 𝑎1 and 𝑎2 for a forcing at the antiresonance (𝜎1 = 0, �̄� = 𝜔2, as a function
of the forcing 𝑓2. The numerical values are 𝛬2 = 𝛬4 = 0.1, 𝜇1 = 0.005, 𝜇2 = 0.01. Superscript 𝑈 refers to the uncoupled solution (in black) whereas superscript 𝐶
refers to the coupled solution (in blue for 𝑎1 and in green for 𝑎2). The blue shaded area depicts the instability region for 𝑎𝑈2 .



By tuning the electrical mode eigenfrequency exactly to half the one of the mechanical mode, 𝜔1 = 𝜔2∕2 (𝜎2 = 0), it is then
possible to replace the linear resonance of the mechanical mode by the nonlinear antiresonance. Since the energy transfer to the
electrical mode is nonlinear, the performances are dependent on the excitation level. This is illustrated in Fig. 4 in which several
response curves are shown for increasing forcing levels 𝑓2. For low values of 𝑓2, the linear resonance (the U-solution) is below the
instability region and no energy transfer occurs. For the perfect tuning, 𝜎2 = 0, the minimum value 𝑓 ∗

2 of the force necessary to
create the energy transfer is obtained by equating 𝑎2 between Eqs. (29)a and (30)a with 𝜎1 = 𝜎2 = 0:

𝑓 ∗
2 =

8𝜔1𝜔2𝜇1𝜇2
|𝛬2|

=
4𝜔2

2𝜇1𝜇2
|𝛬2|

. (33)

Above this threshold (𝑓2 > 𝑓 ∗
2 ), the coupled regime occurs and an interesting result is that the amplitude 𝑎𝐶2 of the driven mode

is independent of the forcing level 𝑓2 instead of being proportional to it, which is observed before the threshold. This leads to a
saturation phenomenon for 𝑎𝐶2 , shown in Fig. 4(b), with the constant amplitude:

𝑎∗2 =
𝑓 ∗
2

2𝜔2𝜇2
=

4𝜔1𝜇1
|𝛬2|

=
2𝜔2𝜇1
|𝛬2|

, (34)

equal to the one at the antiresonance.
On the contrary, the amplitude of the electrical mode increases with a square root dependence on the forcing amplitude at the

antiresonance, also shown in Fig. 4(b). It can be written:

𝑎∗1 =

√

2
|𝛬4|

(𝑓2 − 𝑓 ∗
2 ), (35)

obtained by setting 𝜎1 = 𝜎2 = 0 in Eqs. (31) and (30)b.
Still in the special case of perfect tuning (𝜎2 = 0), the values of the pitchfork bifurcation frequencies can be obtained by equating

𝑎2 between Eqs. (29)a and (30)a with 𝜎2 = 0 ⇒ 𝜔1 = 𝜔2∕2 (or equivalently by enforcing 𝑎𝐶1 = 0 in Eq. (30)b), as:

𝜎+PF =

√

√

√

√

√

√

√

√

√

√

√(4𝜇2
1 − 𝜇2

2)
2 +

𝑓 2
2𝛬

2
2

𝜔4
2

− 4𝜇2
1 − 𝜇2

2

2
, (36a)

𝜎−PF = −𝜎+PF, 𝛥PF = 2𝜎+PF. (36b)

where 𝛥PF characterizes the instability bandwidth (see Fig. 3). Moreover, the values of the saddle–node bifurcations frequencies are
obtained by enforcing to zero the radicand of the inner square root of 𝑎𝐶1 in Eq. (30)b:

𝜎+SN =
𝑓2|𝛬2|

𝜔2
2(2𝜇1 + 𝜇2)

, 𝜎−SN = −𝜎+SN, 𝛥SN = 2𝜎+SN, (37)

where 𝛥SN characterizes the full bandwidth of the response (see Fig. 3).
One idea could be to use 𝛥SN and 𝛥PF as design parameters: one could think of adjusting the shunt parameters 𝜇1 and 𝛬2 to

obtain a vibration reduction bandwidth 𝛥𝑃𝐹 as large as possible while minimizing the amplitude of the two lateral ‘‘wings’’ of the
frequency response by decreasing 𝛥𝑆𝑁 as much as possible. However, it should not be forgotten that the response of the system is
nonlinear and forcing amplitude dependent. In particular, 𝛥SN and 𝛥PF are increasing functions of the forcing 𝑓2. Consequently, by
looking at Fig. 4, it is clear that tailoring 𝛥𝑃𝐹 and 𝛥𝑆𝑁 is possible at a given forcing amplitude, but that the particular shape of the
frequency response will by lost for higher forcing amplitudes.

3.3. Effect of the parameters

In order to propose guidelines for the design of the nonlinear shunt, this section addresses the effect of the parameters of the
system: the detuning 𝜎2 = 𝜔2 − 2𝜔1 (from now on, we drop the bookkeeping parameter 𝜖 in the equations, meaning that the small
parameters 𝜇1, 𝜇2, 𝛬2, 𝛬4, 𝜎1, 𝜎2 are now considered with there nominal values, assumed small, to guarantee the validity of the
multiple scale developments), the excitation level 𝑓2, the damping parameters (𝜇1, 𝜇2) and the coefficients of the quadratic terms
(𝛬2, 𝛬4). In all this section, we assume that 𝜔1 = 1, with no loss of generality since one can rescale the time in Eqs. (25) and show
that the topology of the response curves does not depend on 𝜔1. The effect of 𝑓2 has been investigated in the previous section and
we consider here the other parameters.

The effect of the detuning parameter 𝜎2 is to shift the antiresonance frequency (𝜎2 > 0 (resp. 𝜎2 < 0) shifts it to the lower (resp.
upper) frequencies) and to desymmetrize the shape of the frequency response. In particular, a perfect tuning (𝜎2 = 0, 𝜔2 = 2𝜔1)
gives symmetrical curves with respect to the vertical axis 𝜎1 = 0 (�̄� = 𝜔2). This can be inferred by comparing Fig. 3 (obtained with
𝜎2 = 0.05) and Fig. 4(a) (with a perfect tuning, 𝜎2 = 0). In practice, a perfect tuning appears to be optimal since it guarantees the
tuning of the antiresonance in place of the linear resonance. This case is solely investigated in the remaining of the section.

By observing Eqs. (32)–(37), one can conclude that 𝛬2 and 𝜇1 have a crucial effect on the system’s response, since they appear
in all those equations. The first effect of (𝛬2, 𝜇1) is on the shape of the instability region boundary . Following Eq. (32), if 𝜇1 = 0,
 = 2𝜔1|𝜎1|∕|𝛬2| and thus reduces to a triangle bounded by straight lines of slope ±2𝜔1∕|𝛬2|. Consequently, increasing 𝛬2 decreases



Fig. 5. Effect of variation of parameters 𝛬2 and 𝜇1 on the system’s frequency response, obtained with the MS method for a perfect tuning 𝜎2 = 0 (𝜔2 = 2𝜔1).
(a) Effect of the variation of 𝛬2, with 𝜇1 = 0 and 𝜇1 ≠ 0, on the instability region (𝜎1); (b) Effect of the variation of 𝛬2 on the response curves amplitudes
(𝑎1 , 𝑎2); (c) Effect of the variation of 𝜇1 on the response curves amplitudes (𝑎1 , 𝑎2). The uncoupled solution 𝑎𝑈2 is in black and the coupled solutions (𝑎𝐶1 , 𝑎

𝐶
2 ) are

respectively in blue and green.

Fig. 6. Effect of variation of parameters 𝛬4 and 𝜇2 on the system’s frequency response, obtained with the MS method for a perfect tuning 𝜎2 = 0 (𝜔2 = 2𝜔1). (a)
Effect of the variation of 𝛬4 on the response curves amplitudes (𝑎1 , 𝑎2); (b) Effect of the variation of 𝜇2 on the response curves amplitudes (𝑎1 , 𝑎2). The uncoupled
solution 𝑎𝑈2 is in black and the coupled solutions (𝑎𝐶1 , 𝑎

𝐶
2 ) are respectively in blue and green.

these slopes and thus widens the instability region, as illustrated in Fig. 5(a). The effect of increasing 𝜇1 from zero is to round the
shape of the instability region at its lower end and thus to decrease its area. Since the amplitude 𝑎𝐶2 of the driven mode coincides
with , the same conclusions can be drawn, as shown in Figs. 5(b, c). In particular, the parameter |𝛬2|∕𝜇1 seems crucial: increasing
it leads to reduce the threshold amplitude of the energy transfer (see Eqs. (33) and (34) and Fig. 5(a–c)). A zero value of (𝑓 ∗

2 , 𝑎
∗
2) can

even theoretically be obtained with a zero electrical damping (𝜇1 = 0). In addition, Figs. 5(b, c) illustrate the effect of (𝛬2, 𝜇1) on
the amplitude 𝑎𝐶1 of the electrical mode: increasing 𝛬2 and/or decreasing 𝜇1 increases 𝑎𝐶1 . As a conclusion, it is clear that increasing
|𝛬2|∕𝜇1 leads to improve the performances of the absorber.

On the contrary, 𝛬4 appears only in the amplitude 𝑎1 of the electrical mode. Consequently, increasing it leads to decrease 𝑎𝐶1
and thus to improve the absorber performance, as shown in Fig. 6(a). Finally, Fig. 6(b) illustrates the effect of the mechanical mode
damping 𝜇2 on the system’s response. Decreasing 𝜇2 leads to increase the amplitude of the linear resonance, but has no effect on the
instability boundary  and the saturation amplitude 𝑎∗2. Consequently, the less the mechanical mode is damped, the less the forcing
threshold 𝑓 ∗

2 is and the better performance the absorber has.

4. Validity of the analytical solution and design of the nonlinear absorber

In Section 3, an analytical solution of the dynamical system (18) is investigated, by canceling the non diagonal damping terms and
the non-resonant terms (of coefficients 𝛬𝑖, 𝑖 = 1, 3, 5, 6). This section is devoted to the validity of this analytical solution, by comparing
it to reference numerical simulations. They are obtained with the software Manlab, that enables the numerical continuation of



Fig. 7. Frequency response of Eqs. (25): comparison of the analytical MS solution (thin ‘- -’) to a reference Manlab solution (thick ‘—’) of the same system.
Amplitude 𝑎1, 𝑎2 the detuning 𝜎1. The parameters are 𝛬2 = 𝛬4 = 0.1, 𝜇1 = 0.005, 𝜇2 = 0.01, 𝑓2 = 0.2, 𝜎2 = −0.05. ‘‘QP’’ means quasi-periodic response; ‘‘det.’’
means ‘‘detuning’’. The uncoupled solution 𝑎𝑈2 is in black and the coupled solutions (𝑎𝐶1 , 𝑎

𝐶
2 ) are respectively in blue and green. 𝐻 = 20 harmonics have been

considered for the Manlab HBM computations.

periodic solutions of the dynamical system. It is based on the harmonic balance method (HBM) and the asymptotic numerical
method [66,67], with a special strategy to compute the branching points and the stability of the branches [42,68].

4.1. Validity of the analytical solution without the non-resonant terms

We first investigate the validity of the analytical MS solution of Eqs. (27) of the simplified dynamical system (25) in 2:1 internal
resonance (𝜔2 ≃ 2𝜔1), by comparing it to the Manlab solution. Fig. 7 shows its frequency response with typical parameters. We
can observe that the reference Manlab solution is more asymmetrical with respect to the MS solution. One interesting effect is that
the frequency of the nonlinear antiresonance is slightly shifted to the low frequencies and does not appear exactly at �̄� = 2𝜔1
(𝜎1 = −𝜎2). By changing the tuning of the two modes, it has been verified that this shift always appears toward the low frequencies,
for any positive or negative small detuning 𝜎2, and that it increases with the excitation level 𝑓2. It has also been numerically verified
that the phase of the electrical mode is precisely 𝛾𝐶1 = 3𝜋∕2 [2𝜋] at the numerical antiresonance frequency, as predicted by the MS
solution.

Another feature is the appearance of a small frequency band in which the periodic response is unstable due to Neimark–Sacker
bifurcations, which leads to a quasi-periodic response. This quasi-periodic response does not appear for any values of the parameters
and tends to be more prominent for large values of 𝑓2. These Neimark–Sacker bifurcations can be predicted with the MS solution,
but no close form expression is at hand since they depend on the solution of an order four polynomial [69]. We consequently decided
not to show them on the MS solution plots.

4.2. Effect of non-resonant terms

We investigate in this section the effect of the non-resonant terms on the dynamics. To estimate their order of magnitude in
a practical piezoelectric shunt example, we consider, as explained in Section 2, that the coupling factor 𝑘𝑖, and thus 𝜀, are small
compared to 1. Then, for the case of 𝑉nl = 𝛽1𝑄2 (Eqs. (2)a, (23)), one has with Eqs. (21):

𝛬1 = 𝜆1, 𝛬2 = 2𝜀𝜆1, 𝛬4 = 𝜀𝜆1 (38)

𝛬3 = 𝜀2𝜆1, 𝛬5 = 2𝜀2𝜆1, 𝛬6 = 𝜀3𝜆1. (39)

In the other case of 𝑉nl = 𝛽2𝑉 2 (Eqs. (2)b, (24)), keeping the leading order in 𝜀 in Eqs. (21) conducts to 𝛬𝑘 ≃ 𝜆𝑘 for all 𝑘 = 1, 2, 3.
Then, to set the ideas, we consider numerical values: 𝑟𝑖 = 0.5 and 𝑘𝑖 = 0.1 leads to 𝜀 = 0.07 (Fig. 2). One then obtains:

𝛬1 = 0.13𝜆0, 𝛬2 = 0.05𝜆0, 𝛬4 = 0.009𝜆0 (40)

𝛬3 = 0.005𝜆0, 𝛬5 = 0.004𝜆0, 𝛬6 = 0.0004𝜆0. (41)

In both cases for the choice of 𝑉nl, 𝛬1 is larger than the two coefficients (𝛬2, 𝛬4) of the resonant terms, with the other coefficient
(𝛬3, 𝛬5, 𝛬6) negligible. It is then assumed in the remaining of the section that 𝛬1 is the dominant non-resonant term and we analyze
its effect on the frequency response of the system, with 𝛬3 = 𝛬5 = 𝛬6 = 0. We thus consider Eqs. (25) with an additional nonlinear
term 𝛬1𝑥21 in Eq. (25)a.

As a first step, the effect of 𝛬1 on the response is investigated in Fig. 8 for the perfect tuning case (𝜎2 = 0 ⇔ 𝜔2 = 2𝜔1). One
can see that increasing 𝛬1 from zero to positive values of the order of magnitude of the resonant term coefficients 𝛬2 and 𝛬4 leads



Fig. 8. Effect of variation of parameter 𝛬1 on the frequency response of the complete system (18), obtained with Manlab, for a perfect tuning 𝜎2 = 0 (𝜔2 = 2𝜔1).
The parameters are 𝛬1 ∈ {0; 0.2; 0.3}, 𝛬2 = 𝛬4 = 0.1, 𝛬3 = 𝛬5 = 𝛬6 = 0, 𝜇1 = 0.005, 𝜇2 = 0.01, 𝑓2 = 0.1. The uncoupled solution (𝑎𝑈2 , 𝛾

𝑈
2 ) is in black and the coupled

solutions (𝑎𝐶1 , 𝛾
𝐶
1 ), (𝑎

𝐶
2 , 𝛾

𝐶
2 ) are respectively in blue and green, with a darker color as 𝛬1 increases.

to a qualitative change of the shape of the response curves. Their symmetry with respect to the axis 𝜎1 = 0 is lost, with a kind of
overall ‘‘bending’’ of the curves to the low frequencies and with a decreasing of the amplitude of 𝑎𝐶1 (blue curves). This bending
seems qualitatively analogous to a softening behavior of the resonance of a Duffing oscillator. The main result is that increasing 𝛬1
shifts the antiresonance frequency of 𝑎𝐶2 to the low frequencies (see the minimum of the green curves in Fig. 8(a)). It then shows that
the simple tuning property of the simplified model (see Section 3.2, the antiresonance depends only on the eigenmode tuning since
it is obtained exactly at 𝜎1 = −𝜎2 (�̄� = 2𝜔1)) is lost with a non-zero 𝛬1. One can also observe that the asymmetry of the response
curves due to high values of 𝛬1 also increases the amplitude of the high frequency peak of the mechanical mode response 𝑎𝐶2 .

However, two interesting properties are kept with a non-zero 𝛬1. First, the amplitude of the antiresonance seems independent of
𝛬1 and thus keeps the analytical value 𝑎∗2 of Eq. (34). Secondly, the property of phase locking of 𝛾𝐶1 = 3𝜋∕2[2𝜋] at the antiresonance
seems perfectly kept. Those results have only been verified numerically by observing the minimum of 𝑎𝐶2 and the crossing of
𝛾𝐶1 = 𝑓 (𝜎1) curve with the horizontal 3𝜋∕2 line, as seen in Fig. 8.

We now investigate the effect on the frequency response of the other parameters of the system, namely 𝑓2, 𝜎2 and 𝜇1, with a
nonzero value of the non-resonant term coefficient, chosen equal to the ones of the resonant terms (𝛬1 = 𝛬2 = 𝛬4 = 0.1). Figs. 9(a,
b) show that increasing 𝑓2 or decreasing 𝜇1 naturally increase the amplitude of the responses but also amplifies the negative effect
of a non-zero 𝛬1 described above, by increases the shift the antiresonance to the low frequencies. However, as seen in Fig. 9(c), it
is still possible to adjust the value of the antiresonance frequency by changing the eigenmode detuning 𝜎2: decreasing (increasing)
𝜎2 from zero shifts it to the high-frequencies (low-frequencies). Moreover, one can observe in the insets of Figs. 9(a, c) that the
antiresonance amplitude is still independent of 𝑓2 and 𝜎2 and equal to 𝑎∗2. Another remark is that a quasi-periodic response can also
be observed for low (negative) values of 𝜎2, a feature already observed with 𝛬1 = 0 in Fig. 7. Moreover, one can observe in Fig. 9(b)
that the amplitude of 𝑎𝐶1 at the antiresonance seems independent of 𝜇1. This effect is here a particular case, a consequence of the
choice of the parameters, different from the one used in Fig. 5, and not of the presence of 𝛬1.

4.3. Correction of the antiresonance detuning

As seen in the previous sections and contrary to what predicted by the MS solution of the simplified model, the frequency of
the antiresonance of 𝑎𝐶2 is clearly affected by the parameters and this effect is amplified by a non-zero value of the non-resonant
term coefficient 𝛬1. On the contrary, the amplitude of this antiresonance keeps its analytical value 𝑎∗2 (Eq. (34)), independent of the
forcing 𝑓2. In the purpose of the vibration control of the mechanical mode, it then seems possible to keep the saturation phenomenon



Fig. 9. Effect of variation of parameters 𝑓2, 𝜎2 and 𝜇1 on the frequency response of the complete system (18), obtained with Manlab. (a) Variation of forcing 𝑓2.
(b) Variation of the damping 𝜇1. (c) Variation of the detuning 𝜎2 (𝜔2 = 2𝜔1 + 𝜎2). The common parameters are 𝛬1 = 𝛬2 = 𝛬4 = 0.1, 𝛬3 = 𝛬5 = 𝛬6 = 0, 𝜇2 = 0.01,
the others are specified on the plots. The uncoupled solution (𝑎𝑈2 , 𝛾

𝑈
2 ) is in black and the coupled solutions (𝑎𝐶1 , 𝛾

𝐶
1 ), (𝑎

𝐶
2 , 𝛾

𝐶
2 ) are respectively in blue and green,

with a darker color as the varied parameter increases. The insets show a zoom of the nonlinear antiresonance region. ‘‘QP’’ means quasi-periodic response.

Fig. 10. (a) Amplitude of 𝑎𝐶2 at 𝜎1 = 0 as a function of the detuning 𝜎2 (𝜔2 = 2𝜔1 + 𝜎2), for several values of the forcing 𝑓2 (𝑓2 ∈ {0.02; 0.05; 0.1; 0.2; 0.4}),
obtained with Manlab with the complete system (18); (b) ‘o’: values of 𝜎2 for each minima of the curves of Fig. (a), as a function of 𝑓2, and ’—’: linear fit. The
parameters are: 𝛬1 = 𝛬2 = 𝛬4 = 0.1, 𝛬3 = 𝛬5 = 𝛬6 = 0, 𝜇1 = 0.005, 𝜇2 = 0.01.

of 𝑎𝐶2 at a fixed frequency, by adjusting the eigenmode detuning 𝜎2 (𝜔2 = 2𝜔1 + 𝜎2) as a function of 𝑓2, in order to counterbalance
the detuning of the antiresonance as a function of 𝑓2.

To investigate this idea, Fig. 10(a) shows the amplitude 𝑎𝐶2 at the mechanical mode resonance 𝜎1 = 0 (�̄� = 𝜔1) as a function of
the eigenmode detuning 𝜎2, for several values of the forcing 𝑓2, all the other parameters being chosen constant. This was numerically
obtained with Manlab, by performing a continuation in 𝜎2, with 𝜎1 = 0 and 𝑓2 constant. This plot shows that the 𝑎𝐶2 = 𝑓 (𝜎2) curves
show a minimum, which corresponds to the value 𝜎∗2 of 𝜎2 necessary to place the antiresonance of 𝑎𝐶2 exactly at the resonance
𝜎1 = 0 ⇔ �̄� = 𝜔2. Then, Fig. 10(b) shows those optimal values 𝜎∗2 as a function of the forcing 𝑓2. A linear fit is also plotted, showing
that a linear relation

𝜎∗2 = −𝛼𝑓2, 𝛼 ∈ R+, (42)

is at hand. The slope is negative, in agreement with that can be observed in Figs. 9(a, c), in which one has to reduce the detuning
𝜎2 to shift the antiresonance to the high frequencies to counterbalance an increase of 𝑓2.

The 𝜎∗2 = −𝛼𝑓2 curve of Fig. 11(b) has been tested, to verify that the antiresonance of 𝑎𝐶2 can be placed at the resonance frequency
𝜔2 regardless of the excitation level. Several resonance curves for different excitation levels 𝑓2 are shown in Fig. 11(a), with, for
each response, the value of the detuning 𝜎2 adjusted to verify Eq. (42). One can observe in the inset that the antiresonance frequency
is perfectly kept at 𝜎1 = 0, allowing for a perfect autotuning. Then, using Manlab, we performed a continuation with 𝑓2 left free,
𝜎1 = 0 and 𝜎2 function of 𝑓2 with Eq. (42). We obtained Fig. 11(b), that shows that using the autotuning relation (42) enables
to recover the saturation phenomenon, since the amplitude 𝑎𝐶2 (𝜎1 = 0) at the antiresonance is independent of 𝑓2. Fig. 11(b) also



Fig. 11. Typical response of the complete system (18) obtained with Manlab, with the value of the detuning 𝜎2 adjusted as a function of the forcing 𝑓2 according
to Fig. 10(b) to place the nonlinear antiresonance (AR correction) at 𝜎1 = 0. (a) frequency response: amplitudes 𝑎1 and 𝑎2 as a function of the detuning 𝜎1 for
several values of the forcing 𝑓2 (𝑓2 ∈ {0.05; 0.1; 0.2}), with a darker color as 𝑓2 increases. The inset shows a zoom of the nonlinear antiresonance region. ‘‘QP’’
means quasi-periodic response; (b) Force response: amplitudes 𝑎1 and 𝑎2 at 𝜎1 = 0 as a function of the forcing 𝑓2 with (‘—’) and without (‘- -’) the AR correction.
The parameters are: 𝛬1 = 𝛬2 = 𝛬4 = 0.1, 𝛬3 = 𝛬5 = 𝛬6 = 0, 𝜇1 = 0.005, 𝜇2 = 0.01.

Fig. 12. Beam with a piezoelectric patch and a nonlinear shunt.

shows the response of the system without the autotuning (with 𝜎2 = 0), showing that the saturation phenomenon is lost but that a
vibration reduction at the resonance of 𝑎2 is however achieved, since the green dashed curved (𝑎𝐶2 without AR correction) is below
the black dash-dotted curve (𝑎𝑈2 ). One can also observe that the amplitude of the electrical mode 𝑎𝐶1 is almost left unchanged, at
the antiresonance, by the non-zero value of 𝛬1, since the two blue solid and dashed curves are almost merged.

4.4. Conclusions

The comparison between the responses of the complete system (18) and the MS analytical solution (27) of the simplified system
(without the non-resonant terms) seen in the previous sections leads to the following conclusions, regarding the design of the
vibration absorber. We studied only the effect of the leading resonant-term, of coefficient 𝛬1. The complete system (18) shows a
more complicated frequency response in comparison to that of the simplified one, due to the non-resonant term, that appeared to
have a significant effect on the response. First, a kind of softening behavior is observed, since the curves show an overall bending
to the low frequencies. It is responsible of a shift of the antiresonance frequency of the mechanical mode, that is now a function
of the forcing and the damping. Secondly, we showed that the amplitude of this antiresonance remains independent of the forcing
amplitude, with a phase 𝛾𝐶1 also locked at 3𝜋∕2. Thirdly, in order to correct this antiresonance shift, we showed that it is possible
to continuously adjust the frequency 𝜔1 of the electrical mode as a function of the forcing amplitude 𝑓2 (with the linear relation
of Eq. (42) and 𝜎2 = 𝜔2 − 2𝜔1 ⇒ 𝜔1 = (𝜔2 + 𝛼𝑓2)∕2), to keep the antiresonance frequency independent of 𝑓2 and then to obtain a
perfect saturation phenomenon of the mechanical mode amplitude 𝑎𝐶2 at the antiresonance. Qualitatively, since 𝛼 > 0, one has to
overtune 𝜔1 with respect to the perfect tuning 𝜔1 = 𝜔2∕2. A last comment is that the proportionality coefficient 𝛼 depends on the
other parameters of the system and in particular on the nonlinearity coefficient 𝛽. This will be investigated in Section 5.7.

5. Application to a real structure

We investigate in the section the application of the proposed nonlinear shunt absorber to an arbitrary elastic structure with
piezoelectric patches (as depicted in Fig. 1) and we give an example considering a beam structure (Fig. 12).



Fig. 13. Mode shape parameter 𝜀 as a function of the electromechanical coupling factor 𝑘𝑖 for different values of the frequency ratio 𝑟𝑖, as specified. ‘—’: exact
value from Eq. (14); ‘- -’: linear approximation, Eq. (46).

5.1. Effect of electromechanical modal expansion

The simplified model of Section 3 aimed at raising simple design guidelines, which were extended to a more realistic model in
Section 4. However, both models are valid within the electromechanical modal expansion of Eqs. (15) and (16). The effect of this
latter is investigated in this section.

First, the electromechanical modal analysis of Section 2.2 shows that the two dimensionless natural frequencies of the system
are 𝜔1 and 𝜔2. Analyzing Eq. (12) shows that 𝜔1 is slightly smaller than 𝑟𝑖 and 𝜔2 is slightly above 1. This shows that the two
corresponding dimensioned natural frequencies of the system, denoted �̃�𝑒 = 𝜔1�̂�𝑖 and �̃�𝑖 = 𝜔2�̂�𝑖, are such that �̃�𝑒 ≲ 𝜔𝑒 and �̃�𝑖 ≳ �̂�𝑖:
they are located apart from the two uncoupled frequencies 𝜔𝑒 and �̂�𝑖, because of the piezoelectric coupling. This means that all the
frequency responses shown in Sections 3 and 4, and consequently the frequency band of vibration reduction, are in the vicinity of
the �̃�𝑖 resonance, slightly above the open circuit resonance at �̂�𝑖, obtained with 𝑄 = 0 in Eqs. (6). This will be illustrated in Fig. 16.

Then, following the modal expansion (4), the displacement of the point of the structure can be written 𝒖(𝑡) = 𝜱𝑖𝑞𝑖(𝑡) =
𝜱𝑖𝑞𝑖(𝑡)∕

√

𝑚𝑖, where the scaling of Eq. (9) has been used. We consider that the external forcing is harmonic, of angular frequency 𝛺.
Then, the first order solutions for the displacement and charge electromechanical modal coordinates (𝑥1(𝑡), 𝑥2(𝑡)) seen in Sections 3
and 4, Eqs. (26)a,b, and the electromechanical modal change of variables (16)a enable writing the displacement as:

𝒖(𝑡) =
𝜱𝑖
√

𝑚𝑖

[

−𝜀 𝑎1 cos
(

𝛺
2
𝑡 −

𝛾1 + 𝛾2
2

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑥1(𝑡)

+ 𝑎2 cos
(

𝛺𝑡 − 𝛾2
)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑥2(𝑡)

]

, (43)

As a first result, because the leading harmonics of 𝑥1(𝑡) is 𝛺∕2 (H1∕2) and the one of 𝑥2(𝑡) is 𝛺 (H1), there is a frequency splitting
between 𝑥1(𝑡) and 𝑥2(𝑡). Consequently, the saturation phenomenon (see Fig. 11) that has been exhibited on 𝑥2(𝑡) in Sections 3 and
4 is equally observed on the mechanical displacement 𝒖(𝑡) of any point of the structure, at the driving frequency 𝛺. In addition, the
electromechanical modal change of variables (16)a creates a subharmonic component (H1∕2) in 𝒖(𝑡), proportional to 𝑥1(𝑡), a priori
of a smaller amplitude because of the 𝜀 factor.

In the same manner, Eqs. (9), (16)b give, for the electrical charge:

𝑄(𝑡) = 1
√

𝐿

[

𝑎1 cos
(

𝛺
2
𝑡 −

𝛾1 + 𝛾2
2

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑥1(𝑡)

+𝜀 𝑎2 cos
(

𝛺𝑡 − 𝛾2
)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑥2(𝑡)

]

. (44)

Here, the leading harmonics is H1∕2, with a H1 harmonics of smaller amplitude, because of the 𝜀 factor.

5.2. Saturation amplitude and design

To evaluate the relevant parameters for the design of the nonlinear shunt, we base ourselves on the amplitude 𝑎∗2 of the
mechanical mode saturation given by Eq. (34). Inserting this equation into Eq. (43), the 𝛺 (H1) harmonics amplitude of the
displacement vector then reads:

𝒖∗H1 =
𝑎∗2𝜱𝑖
√

𝑚𝑖
= 𝑢∗H1𝜱𝑖, with 𝑢∗H1 =

2𝜔2𝜇1
𝛬2

√

𝑚𝑖
(45)



Table 1
Typical values of capacitance 𝐶p𝑖 and 𝛽1∕𝛽2 for a thickness/length ratio ℎ𝑝∕𝑙𝑝 = 0.01, a frequency ratio 𝑟𝑖 = 0.5, a typical
dielectric permittivity 𝜖33 = 2000𝜖0 ≃ 2 ⋅ 10−8 F∕m (𝜖0 = 8.82 ⋅ 10−12 F∕m is the vacuum permittivity) for a PZT like
piezoelectric material [58], as a function of width 𝑏.
𝑏𝑝 [m] 1e−6 1e−3 1e−2 1e−1
𝐶p𝑖 2 pF 2 nF 20 nF 200 nF
𝛽1∕𝛽2 = 1∕(𝐶2

p𝑖𝑟
2
𝑖 ) 1024 1018 1016 1014

We can verify that the above amplitude is logically independent of the scaling of the mode shape 𝜱𝑖 since the modal mass is
𝑚𝑖 = 𝜱T

𝑖 𝑴𝜱𝑖 (see Eqs. (5)).
To go further, we consider practical values of the parameters. As explained in Section 2.2, the parameter 𝜀 is small and depends

on the electromechanical coupling factor 𝑘𝑖 and the tuning of the electrical resonance 𝑟𝑖. To easily analyze the mathematical results,
we neglect in 𝛥 the term 4𝑟2𝑖 𝑘

2
𝑖 and Eqs. (14) and (12) give:

𝜀 ≃
𝑘𝑖𝑟𝑖
1 − 𝑟2𝑖

, 𝜔2 ≃ 1. (46)

Fig. 13 shows that the above linear approximation of 𝜀 as a function of 𝑘𝑖 is valid on a large range of 𝑘𝑖 values, below 𝑘𝑖 = 0.2.
Then, because 𝜀 is small, we approximate 𝜇1 and 𝜇2 in Eq. (19) by:

𝜇1 ≃ 𝜉𝑒𝑟𝑖, 𝜇2 ≃ 𝜉𝑖. (47)

Finally, 𝒖H1 depends on 𝛬2, which depends on the choice of the nonlinear shunt in Eq. (2).
Considering the first case of nonlinear shunt for which the voltage is proportional to the squared electrical charge (Eq. (2)a)),

one obtains, with Eqs. (21) and (23), 𝛬2 = 2𝜀𝛽1𝑟3𝑖 �̂�𝑖𝐶
3∕2
p𝑖 , which gives:

𝒖∗(1)H1 =
𝜉𝑒
𝑘𝑖𝛽1

1 − 𝑟2𝑖
𝑟3𝑖 𝐶

3∕2
p𝑖

𝜱𝑖

�̂�𝑖
√

𝑚𝑖
(48)

In the second case for which the voltage is proportional to the squared piezoelectric voltage (Eq. (2)b), one obtains, with Eqs. (21)
and (24),

𝛬2 ≃ 2𝜆1𝜀 + 𝜆2 − 2𝜆3𝜀 =
2𝑟2𝑖 𝑘𝑖(1 − 𝑘2𝑖 )

1 − 𝑟2𝑖

𝛽2�̂�𝑖
√

𝐶p𝑖
,

which gives, with 1 − 𝑘2𝑖 ≃ 1:

𝒖∗(2)H1 =
𝜉𝑒
𝑘𝑖𝛽2

(1 − 𝑟2𝑖 )
√

𝐶p𝑖

𝑟𝑖

𝜱𝑖

�̂�𝑖
√

𝑚𝑖
(49)

Eqs. (48) and (49) share similarities. If one wants to minimize the saturation vibration amplitude of the structure 𝒖∗H1, one
has to consider the factor 𝜂 = 𝜉𝑒∕(𝑘𝑖𝛽) as low as possible, i.e. with a low electrical shunt damping ratio 𝜉𝑒 and high piezoelectric
coupling factor 𝑘𝑖 and nonlinearity coefficient 𝛽. Since the values of 𝜉𝑒 and 𝑘𝑖 are in practice limited by the material constants of the
components, one can imagine increasing 𝛽 as much as possible, with a suitable electronic circuit, to efficiently improve the shunt
performance, and/or balance a too high 𝜉𝑒 or a two low 𝑘𝑖.

5.3. Order of magnitude of coefficient 𝛽

Following the previous section and considering the two choices for the nonlinear shunt design in Eq. (2), if we consider a given
targeted saturation amplitude 𝒖∗H1, the ratio between 𝑢∗(1)H1 and 𝑢∗(2)H1 gives the order of magnitude of 𝛽1∕𝛽2 of the two choices:

𝑢∗(1)H1

𝑢∗(2)H1

= 1 =
𝛽2

𝛽1𝐶2
p𝑖𝑟

2
𝑖

⇒
𝛽1
𝛽2

= 1
𝐶2

p𝑖𝑟
2
𝑖

. (50)

Remember that the units of 𝛽1 and 𝛽2 are not the same. One observes that 𝛽1∕𝛽2 depends only on the piezoelectric patch capacitance
𝐶p𝑖 and the frequency ratio 𝑟𝑖. In most practical cases, 𝐶p𝑖 takes a very small value in Farads. This is illustrated in Table 1 in which
the capacitance of a rectangular piezoelectric patch of length 𝑙𝑝, thickness ℎ𝑝 and width 𝑏𝑝 is indicated, computed with:

𝐶p𝑖 =
𝜖33𝑙𝑝𝑏𝑝
ℎ𝑝

, (51)

where 𝜖33 is the permittivity of the material. Typically, if the patch is thin (𝐿∕ℎ = 100) and of centimetric dimensions, 𝐶p𝑖 ≃ 20nF,
which leads to a very large ratio 𝛽1∕𝛽2, of the order of 1016 F2. This huge ratio can be explained because piezoelectric transducers
typically exhibit small charges and high voltages. More insights on practical values of the gains 𝛽𝑘 are investigated in the next
section on a practical example, of centimetric size.



5.4. Electric charge order of magnitude

We evaluate here the effect of the design parameters on the value of the electric charge at the antiresonance. We consider its
leading harmonics H1∕2, which, considering Eqs. (44) and (35), (9), (20), reads:

𝑄∗
H1∕2 =

𝑎∗1
√

𝐿
=

√

2
𝐿𝛬4

√

𝐹 − 𝐹 ∗

�̂�2
𝑖
√

𝑚𝑖

. (52)

In the above equation, 𝐹 ∗ = 𝜱T
𝑖 𝑭

∗ is the value of the forcing amplitude 𝐹 = 𝜱T
𝑖 𝑭 at the nonlinear coupling threshold. Considering

Eq. (34) and the scaling (9), one shows that:

𝐹 ∗ = 2𝜉𝑖�̂�2
𝑖𝑚𝑖𝑢

∗
H1. (53)

In the same manner than in the previous sections, we consider successively the two shunt designs. For the first case (Eq. (2)a),
one obtains, with Eqs. (21) and (23), 𝛬4 = 𝜀𝛽1𝑟3𝑖 �̂�𝑖𝐶

3∕2
p𝑖 which gives:

𝑄∗(1)
H1∕2 =

√

√

√

√

2(1 − 𝑟2𝑖 )

𝑘𝑖𝛽1𝑟2𝑖 �̂�𝑖
√

𝑚𝑖𝐶p𝑖

√

𝐹 − 𝐹 ∗, 𝐹 ∗ =
2𝜉𝑖𝜉𝑒(1 − 𝑟2𝑖 )�̂�𝑖

√

𝑚𝑖

𝑘𝑖𝛽1𝑟3𝑖 𝐶
3∕2
p𝑖

. (54)

In the above equation, the relation (7) between 𝐿 and 𝜔𝑒 as well as the approximation (46) for 𝜀 have been used.
For the second case (Eq. (2)b), one obtains, with Eqs. (21), (24), (46),

𝛬4 = 𝜀(𝜆1 − 𝜆2𝜀 + 𝜆3𝜀
2) =

𝑟4𝑖 𝑘𝑖
1 − 𝑟2𝑖

(

1 − 𝑜(𝑘2𝑖 )
) 𝛽2�̂�𝑖
√

𝐶p𝑖
,

where 𝑜(𝑘2𝑖 ), of the order of 𝑘2𝑖 , will be neglected in the following. One then obtains:

𝑄∗(2)
H1∕2 =

√

√

√

√

√

2(1 − 𝑟2𝑖 )𝐶
3∕2
p𝑖

𝑟2𝑖 𝑘𝑖𝛽2�̂�𝑖
√

𝑚𝑖

√

𝐹 − 𝐹 ∗, 𝐹 ∗ =
2𝜉𝑖𝜉𝑒(1 − 𝑟2𝑖 )�̂�𝑖

√

𝑚𝑖𝐶p𝑖

𝑘𝑖𝛽1𝑟𝑖
(55)

As considered in the previous Section 5.3, by considering a given targeted threshold amplitude 𝒖∗H1, the ratio between the two
charge expressions in the two cases of shunt design gives:

𝑄∗(1)
H1∕2

𝑄∗(2)
H1∕2

=
𝛽2

𝛽1𝐶2
p𝑖

= 𝑟2𝑖 ≃ 1∕4, (56)

where the last equality comes from Eq. (50) and 𝑟𝑖 ≃ 0.5.
Two comments can be raised. The first one is that, considering a given threshold amplitude 𝒖∗H1, the electric charge amplitudes

estimated for the two shunt designs (Eq. (2)a or (2)b) are of the same order of magnitude, since the ratio is ≃ 1∕4. Then, the other
major parameter which influences the amplitude of the electric charge is the force threshold 𝐹 ∗: the smaller it is, the higher 𝑄∗

H1∕2
is for a given excitation amplitude 𝐹 . This is illustrated in Figs. 4(b) or 11(b), where decreasing 𝐹 ∗ (or 𝑓 ∗

2 ) would translate the 𝑎𝐶1
curve to the left and thus increase the value of its amplitude for a given forcing 𝑓2. Finally, another important parameter is 𝑘𝑖𝛽
which appears in the denominator of 𝑄∗

H1∕2 and in 𝐹 ∗. We can write 𝑄∗
H1∕2 =

√

(𝑎𝑥 − 𝑏)∕𝑥2 with 𝑥 = 𝑘𝑖𝛽 and 𝑎, 𝑏 functions of the
other parameters. One can remark that this function is increasing as a function of 𝑥, showing that an increase of 𝑘𝑖𝛽 also leads to an
increase of the electric charge. This was already observed in Figs. 5(b) and 6(a) where 𝑎𝐶1 increases as a function of 𝛬2 and 𝛬4, both
proportional to 𝑘𝑖𝛽.

5.5. Subharmonic of the displacement

As shown in Eq. (43), the electromechanical coupling is responsible of a parasitic subharmonic H1∕2 in the displacement 𝒖(𝑡).
To estimate its relative amplitude, we compute the ratio of harmonics H1∕2 and H1 at the antiresonance:

𝑢∗H1∕2

𝑢∗H1
=

𝜀𝑎∗1
𝑎∗2

= 𝜀

√

√

√

√
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𝛬4�̂�2

𝑖
√

𝑚𝑖

𝛬2
2

4𝜔2
2𝜇

2
1

. (57)

With the same reasoning as in the previous sections, for the first case of 𝑉nl = 𝛽1𝑄2, one obtains 𝛬4 = 𝛬2∕2 and:

𝑢∗(1)H1∕2

𝑢∗(1)H1

=

√

√

√

√

√
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𝑚𝑖
. (58)

For the second case of 𝑉nl = 𝛽2𝑉 2, 𝛬4 = 𝑟2𝑖𝛬2∕2 and:

𝑢∗(2)H1∕2

𝑢∗(2)H1

=

√

√

√

√

𝑘3𝑖 𝛽2
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√

𝑚𝑖𝐶p𝑖
. (59)



Fig. 14. Saturation amplitude 𝑢∗(𝑘)H1 , 𝑘 = 1, 2 as a function of 𝛽𝑘, from Eqs. (61) and (62), for various values of the electrical damping ratio 𝜉𝑒, as specified. The
plot is related to the first mode of a beam (𝜁𝑖 = 𝜁1 = 1.875) in steel (𝐸 = 200 GPa), with a thickness/length ratio ℎ∕𝐿 = 0.01, a frequency ratio 𝑟𝑖 = 0.5, a dielectric
permittivity 𝜖33 = 2000𝜖0 ≃ 2 ⋅ 10−8F∕m (𝜖0 = 8.82 ⋅ 10−12F∕m is the vacuum permittivity) and a coupling factor 𝑘𝑖 = 0.2. In the first case, 𝑘 = 1, the beam thickness
is 𝑏 = 10 mm.

Considering the above result, two conclusions can be drawn. First, since the subharmonic is proportional to 𝑎∗1 (similarly to the
electric charge 𝑄∗

H1∕2), it is also proportional to the factor
√

𝐹 − 𝐹 ∗. Secondly, it is proportional to the factor
√

𝑘3𝑖 𝛽∕𝜉2𝑒 , a fact that
will be analyzed in Section 6.

5.6. An arbitrary thin piezoelectric beam

All the previous investigations can be applied to an arbitrary structure. To precise the design, we particularize the geometry and
we consider a beam with a piezoelectric patch, as depicted in Fig. 12. To obtain the order of magnitude of the several parameters,
we neglect the mechanical inertia and stiffness of the piezoelectric patch and consider in the model only those of the elastic layer
(see for instance [58,70] for more refined models). We denote by (𝐸, 𝜌) the Young’s modulus and density of the elastic layer and
we consider a rectangular cross section of width 𝑏 and thickness ℎ. 𝑙 is the length of the beam. An analytical model is thus at hand
and gives, for this beam (with a classical Euler–Bernoulli kinematics [71]):

�̆�𝑖 ≃ �̂�𝑖 =
𝜁2𝑖 ℎ

𝑙2

√

𝐸
12𝜌

, 𝑚𝑖 = 𝜌𝑏ℎ𝑙∕4, 𝛷𝑖(𝑙) = 1, (60)

with 𝜁1 = 1.875, 𝜁2 = 4.694, 𝜁3 = 7.855. . . and 𝛷𝑖(𝑙) the value of the 𝑖th mode shape at the tip of the beam. To obtain a consistent
order of magnitude of the electric capacitance of the piezoelectric patch, we use Eq. (51), by considering a piezoelectric patch of
equivalent size to that of the elastic layer.

Introducing the above parameters in Eqs. (48) and (49) leads to:

𝑢∗(1)H1 =
4
√

3𝜉𝑒
𝑘𝑖𝜁2𝑖

√

𝐸
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, (61)

𝑢∗(2)H1 =
4
√

3𝜉𝑒
𝑘𝑖𝜁2𝑖

√

𝐸

1 − 𝑟2𝑖
𝑟𝑖

√

𝜖33𝐿2

𝛽2ℎ2
, (62)

where 𝑢∗(𝑘)H1 , 𝑘 = 1, 2, are the beam tip displacement amplitudes for the two shunt design choices. One observes that those two
equations are independent of the density of the material 𝜌. They are composed of three factors. The first one is common two both
equations; the second one depends on the piezoelectric shunt tuning 𝑟𝑖 = 𝜔𝑒∕�̂�𝑖 ≃ 0.5. The third one differs in the two equations,
because of the different physical nature of 𝛽1 (of unit V∕C2) and 𝛽2 (of units V−1), stemming from the two choices for the nonlinear
shunt.

In the case of the second choice (𝑉𝑛𝑙 = 𝛽2𝑉 2
𝑝 ), Eq. (62) shows that the saturation value 𝑢∗(2)H1 of the tip amplitude of the beam,

expressed in [m], does not depend on the size of the structure but only of its slenderness ratio ℎ∕𝑙. On the contrary, 𝑢∗(1)H1 for the first
choice (𝑉𝑛𝑙 = 𝛽1𝑄2) is inversely proportional to the squared size of the structure, through its squared width 𝑏2. The dependence on
the other parameters is the same for both cases. To set the ideas of the order of magnitude of 𝛽1 or 𝛽2 in a practical case, Fig. 14 gives
the saturation amplitude 𝑢∗(𝑘)H1 of the beam’s tip as a function of 𝛽𝑘. In the case of a centimetric thin beam (ℎ∕𝑙 = 0.01) in steel, with
a PZT piezoelectric patch, a saturation amplitude of 0.05 mm is obtained for 𝛽2 ≃ 0.005 V−1, whereas 𝛽1 ≃ 5 ⋅1013 V∕C2, in agreement
with Table 1. In a practical case, since analog nonlinear capacitors with the required level of nonlinearity are scarce in common
electronic components, one would probably rely on analog multipliers or a synthetic digital shunt to realize the electronics. In those
cases, huge values of 𝛽1, naturally explained by the small electric charge generated by the piezoelectric transducers, would probably



Table 2
Parameters of the first mode of the beam used for the frequency response of Fig. 16.
�̂�1∕(2𝜋) 𝜉1 𝑚1 𝐶p1 𝜃1 𝑘1 𝛷1(𝑙)
37.51 Hz 0.005 8.9 g 32.45 nF 0.88 mN∕V 0.22 1

Fig. 15. Amplitude 𝑢H1 at the open circuit natural frequency 𝛺 = �̂�1 of the beam tip of the beam as a function of the frequency parameter 𝑟1 = 𝜔𝑒∕�̂�1, for
several values of the nonlinearity coefficient 𝛽2 (𝛽2 ∈ {0.008; 0.01; 0.015} V−1), as specified, and for a given value of the forcing 𝐹 = 0.53 mN. Those curves were
obtained by numerical continuation of Eqs. (6) with Manlab. The parameters are those of Table 2 and the electrical damping ratio is 𝜉𝑒 = 0.0053.

be realized in practice using dedicated charge amplifiers, with possible complex electronic implementations. On the contrary, the
second design choice of 𝑉𝑛𝑙 = 𝛽2𝑉 2

𝑝 appears more straightforward, with smaller values of 𝛽2, and would probably lead to simpler
electronic circuit designs, which motivates the practical example of the next section.

5.7. A practical example

In this section, we give an example of design of the nonlinear piezoelectric shunt on a particular structure. We choose the
piezoelectric beam already used in [59]. It is a stainless steel cantilever beam (with a length of 178.8 mm, a width of 30.5 mm and
a thickness of 1.1 mm) with two Physik Instrumente PIC 151 piezoelectric patches (with a length of 70 mm each, 0.5 mm thick and
with wrapped electrodes) bonded on each side of the beam and electrically connected in series. An experimental modal analysis
gave us the modal parameters of Table 2, for the first mode of the beam (𝑖 = 1). In the following, we consider that the beam is
driven at its tip, with a point force 𝐹 (𝑡) = 𝐹 cos𝛺𝑡.

We choose to design a shunt based on the second possible case, namely with 𝑉nl = 𝛽2𝑉 2. Looking at Fig. 1 shows that three
parameters have to be chosen to design the shunt: its inductance 𝐿, resistance 𝑅 and nonlinearity coefficient 𝛽2. The inductance
𝐿 influences the electrical frequency 𝜔𝑒 (Eq. (7)), that has to be tuned properly to obtain the 2:1 internal resonance. In theory,
it is obtained with 𝜔2∕𝜔1 = �̃�𝑖∕�̃�𝑒 = 0.5. Following Fig. 2, 𝜔𝑒 has to be overtuned with respect to �̂�𝑖∕2 and with the present
electromechanical coupling factor of 𝑘𝑖 = 0.22, an estimation of the tuning is 𝑟𝑖 ≃ 0.525.

Moreover, to lock the antiresonance at a given frequency, this tuning slightly depends on the amplitude of the motion and other
parameters, as explained in Section 4. We then use a numerical continuation of the modal reduced order model (6) as a function of
the electrical frequency 𝜔𝑒 to precisely determine it. It is obtained in practice with Manlab, by leaving 𝜔𝑒 free whereas the driving
frequency 𝛺 and forcing 𝐹 are prescribed. Since we are targeting an antiresonance in the middle of the frequency band of vibration
reduction, we choose here 𝛺 = �̃�𝑖: the resonance of the coupled electromechanical system, corresponding to �̄� = 𝜔2 or 𝜎1 = 0 in
Sections 3 and 4. As explained in Section 5.1, �̃�𝑖 is slightly above the open circuit resonance of the system at 𝛺 ≃ �̂�𝑖. With Eq. (12),
it is clear that �̃�𝑖 = 𝜔2�̂�𝑖 depends on 𝑘𝑖 and 𝑟𝑖. Consequently, we choose our initial guess 𝑟𝑖 = 0.525, which leads to �̃�1 = 37.85 Hz
with Eq. (12).

Fig. 15 (analogous to Fig. 10(a) in the case of the modal model Eqs. (18)) is obtained. It shows that the amplitude 𝑢(2)H1 of the first
harmonics of the beam tip has a minimum for a certain value 𝑟∗𝑖 of the frequency ratio 𝑟𝑖 that correspond to place the antiresonance
of 𝑢(2)H1 = 𝑓 (𝛺) exactly at 𝛺 = �̃�1. This plot is also valuable since it enables to visualize the value of 𝛽2 necessary to obtain a
certain amplitude threshold 𝑢∗(2)H1 . For instance, the dark green curve shows that 𝛽2 = 0.015 V−1 leads to an amplitude threshold of
𝑢∗(2)H1 = 0.02 mm and that a tuning 𝑟𝑖 = 0.5309 is necessary for the AR correction at this forcing (𝐹 = 0.53 mN). The obtained tunings
for the three values of 𝛽2 shown in Fig. 15 are, as expected, slightly above our initial guess of 𝑟𝑖 = 0.525.

Using the values of 𝑟∗𝑖 taken from Fig. 15, Fig. 16 shows the frequency response of the first harmonics of the beam tip 𝑢(2)H1 = 𝑓 (𝛺)
and the subharmonics of the electric charge 𝑄H1∕2 = 𝑓 (𝛺). Instead of plotting this frequency response for several values of the forcing
𝐹 , which would give a plot similar to Fig. 11, we show here the frequency response for several values of the nonlinearity coefficient
𝛽2 for a given value of the external forcing 𝐹 . This plot confirms that the AR correction obtained by adjusting 𝑟𝑖 according to the



Fig. 16. Resonant response around the first resonance of the beam for several values of the nonlinearity coefficient 𝛽2 (𝛽2 ∈ {0.008; 0.01; 0.015} V−1) and the
nonlinear shunt tuned to obtain the nonlinear antiresonance at 𝛺 = �̂�1, according to the minima of the curves in Fig. 15 (𝑟1 = 𝜔𝑒∕�̂�1 ∈ {0.5252; 0.5276; 0.5300}).
(a) amplitude of the first harmonics of the beam’s tip displacement 𝑢H1 and (b) amplitude of the subharmonic of the electrical charge 𝑄H1∕2 obtained by numerical
continuation of Eqs. (6) with Manlab, with a darker blue as 𝛽2 increases. The parameters are those of Table 2, with 𝐹 = 0.53 mN and 𝜉𝑒 = 0.0053.

minima of Fig. 15 works since the nonlinear antiresonance is perfectly located at 𝛺 = �̃�1, the resonance of the coupled system. This
plot also shows the linear resonances of the system, in the vicinity of 𝛺 = �̃�𝑖 ≃ 37.85 Hz. The slight dependence of 𝛺 = �̃�𝑖 upon 𝑟𝑖
is also visible in Fig. 16(a), since three linear resonances are obtained in dashed–dotted lines. The open circuit resonance around
�̂�𝑖 = 37.51 Hz is also shown in dashed lines. An interesting point is that increasing the value of 𝛽2 slightly decreases the value of
the electrical charge in Fig. 16(b).

Moreover, as already observed in Section 4, some quasiperiodic (QP) responses are obtained in Fig. 16. They can be close to
the antiresonance point and seems to approach it as 𝛽2 or 𝐹 are increased. Those QP responses are also obtained in Fig. 15. Some
examples of QP response as a function of time are shown in Figs. 17(d, e). There amplitude is of the same order of magnitude than
the one of the periodic response at the antiresonance point (Figs. 17(b, c)), leading to think that this QP responses are not an issue
for the vibration reduction. On the contrary, it can be observed that there is a unexpected strong effect of the subharmonic H1∕2 on
the total response in displacement, since its amplitude is of the same order of magnitude than the leading harmonics H1. This is the
joint consequence of the large coupling factor 𝑘1 = 0.22 used in the simulations as well as the fact that at the antiresonance point,
the H1 harmonics is small because of the saturation phenomenon, leading to H1∕2 harmonics of the same order of magnitude.

6. Design guidelines and parameter optimization for high vibration attenuation

As highlighted in the previous section, the design parameters that have to be chosen and controlled in a given application of the
nonlinear shunt are the electrical frequency tuning 𝑟𝑖 = 𝜔𝑒∕�̂�𝑖, the nonlinearity coefficient 𝛽, the electrical damping factor 𝜉𝑒 and
the piezoelectric coupling factor 𝑘𝑖. Here is a set of guidelines that can be considered when selecting each parameter.

Firstly, one has to remark that the response of the nonlinear shunt is amplitude dependent, as shown for instance in Fig. 11. It
means that, contrary to a fully linear system, the shape of the frequency response depends on the amplitude 𝐹 of the forcing. On
the contrary, the major property of the shunt is the saturation phenomenon, that depends on the vibration amplitude threshold 𝑢∗H1,
which is the minimum vibration amplitude above which it is independent of the forcing. This occurs at a particular driving frequency,
close to twice the electrical frequency 𝜔𝑒, that has to be tuned close to half the targeted resonance, such that 𝑟𝑖 = 𝜔𝑒∕�̂�𝑖 ≃ 0.5 in
order to activate the energy transfer thanks to the 2:1 internal resonance.

The main design criterion is thus the amplitude threshold 𝑢∗H1, that we want to be as small as possible. In addition, the amplitude
of the electric charge 𝑄∗

H1∕2 during the energy transfer has also to be considered for the design of the electrical components of
the circuit. Finally, the electromechanical coupling creates a subharmonic H1∕2 in the displacement signal that can have a non
negligible amplitude with respect to the H1 harmonics, and thus decreases the damping performance (see Fig. 17). The harmonics
ratio 𝑢∗H1∕2∕𝑢

∗
H1, to be minimized, is thus also a design criterion.



Fig. 17. (a) Resonant response around the first resonance of the beam with both the leading harmonics H1 and the subharmonic H1∕2 of the beam’s tip
displacement (same case as Fig. 15 for 𝛽2 = 0.015 V−1); (b, c): periodic response at the antiresonance point; (d, e): examples of quasi-periodic responses, obtained
by time integration. The parameters are those of Table 2, with 𝐹 = 0.53 mN and 𝜉𝑒 = 0.0053.

As shown in Sections 5.2 and 5.5:

𝑢∗H1 ∝
𝜉𝑒
𝑘𝑖𝛽

= 𝜂,
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√

𝑘𝑖
𝛽
, (63)

where ∝ means ‘‘proportional to’’. Consequently, to minimize the saturation amplitude 𝑢∗H1, one has to choose 𝜂 as small as possible.
However, decreasing 𝜂 leads to an increase of the subharmonic 𝑢∗H1∕2. . . Considering the criterion ‘‘minimize 𝑢∗H1 and 𝑢∗H1∕2’’, one can
first choose the electrical damping factor 𝜉𝑒 as small as possible. It is linked to the electrical resistance of the electronic circuit built
for the shunt. Decreasing it is often limited in practice by the inherent resistance of the wires. Using an active negative capacitance
synthetic circuit could be an alternative to artificially decrease 𝜉𝑒 (see e.g. [4]). Then, one can remark that the piezoelectric coupling
factor 𝑘𝑖 and the nonlinearity parameter 𝛽 play the same role and that their product 𝑘𝑖𝛽 has to be as large as possible to minimize
𝜂 and thus 𝑢∗H1. On the contrary, the subharmonic amplitude 𝑢∗H1∕2 is directly linked to the piezoelectric coupling. Then, a correct
design should be with a low (but non-zero) piezoelectric coupling factor 𝑘𝑖 to minimize 𝑢∗H1∕2, which can be counterbalanced by a high
nonlinearity coefficient 𝛽. In particular, if a given 𝑢∗H1 is targeted, one can think of minimizing 𝑢∗H1∕2 by decreasing 𝑘𝑖 while increasing
𝛽 in the same proportion, to keep 𝑘𝑖𝛽 (and 𝑢∗H1) constant.

In most applications (linear shunt damping, energy harvesting), the piezoelectric coupling factor 𝑘𝑖 has to be as high as possible,
which also leads to a good performance here by minimizing the saturation amplitude 𝑢∗H1. This is achieved by selecting a quality
piezoelectric material as well as with suitable optimization of the geometry and placement of the piezoelectric patch on the
structure (see [70,72]). It can be also improved by adding a negative capacitance in the shunt circuit, since it is equivalent to
artificially increase the coupling factor [59]. On the contrary, for our present application, a not too high 𝑘𝑖 is preferable to minimize
the subharmonic amplitude, and the opposite reasoning has to be followed, allowing piezoelectric materials with lower coupling
constants and non optimal geometry/placement of the patches.

As shown in Section 5.4, the amplitude 𝑄∗
H1∕2 of the electric charge is an increasing function of 𝑘𝑖𝛽. It is also proportional to

√

𝐹 − 𝐹 ∗, with 𝐹 ∗ being proportional to 𝑢∗H1 (see Eq. (53)). It then means that optimizing the parameters to decrease 𝑢∗H1 also leads
to an increase of 𝑄∗

H1∕2. Moreover, increasing 𝑘𝑖𝛽 or decreasing 𝜉𝑒 has also the negative effect to widen the bistability region of
the response curve in which a potential high amplitude response of the system can be reached, on the sides of the antiresonance
(see Fig. 5, since 𝛬2 is proportional 𝑘𝑖𝛽 and 𝜇1 is proportional to 𝜉𝑒). Consequently, the benefit gained by decreasing the amplitude
threshold 𝑢∗H1 has a direct effect on increasing the electrical charge in the circuit and widening the side bistable regions.

In addition, the parameter 𝑟𝑖 must be chosen so that the coupled solution appears and must be slightly corrected as a function
of the values of 𝛽 and 𝐹 , as illustrated in Sections 4.3 and 5.7. It has been shown in Fig. 10 that the correct tuning 𝑟∗𝑖 is a linear
function of the forcing 𝐹 , with a coefficient that depends on the other parameters. Consequently, a performant shunt design should
include a tuning correction of the electrical mode, using the proportionality relation (42). In practice, since the antiresonance occurs
for a phase locking 𝛾1 = 3𝜋∕2, this property could be used to estimate the 𝛼 proportionality coefficient.



7. Conclusion

In this paper, a passive nonlinear vibration absorber has been designed by utilizing a nonlinear piezoelectric electric shunt circuit
with quadratic non-linearity. The quadratic non-linearity has been chosen to create a 2:1 internal resonance between a given resonant
(mechanical) mode of the primary structure and a resonant electric circuit tuned at the order two subharmonic. The main feature
to exploit from the 2:1 internal resonance is the saturation phenomenon, which leaves the mechanical amplitude independent of
the forcing amplitude above a threshold. It is linked to a nonlinear energy transfer from the mechanical mode to the electric mode,
leading to an efficient vibration attenuation near the resonance frequency.

Since the coupling of the mechanical mode and the electric mode through the piezoelectric patch breaks the invariance of those
linear modes, the 2 ∶ 1 internal resonance properties are directly linked to the electromechanical modal coordinates, that are linear
combination of the electrical and mechanical modes. However, because the energy is transferred from the excitation frequency
harmonic to the subharmonic, we proved that this does not break the pure saturation phenomenon that is created on the mechanical
amplitude of the structure at the driving frequency. However, this invariance break is also responsible of an unwanted subharmonic
component in the displacement.

The choice of the nonlinear shunt parameters (piezoelectric coupling factor 𝑘𝑖, inductance 𝐿, resistance 𝑅 and nonlinearity
parameter 𝛽) has also been thoroughly addressed. It was shown that improving the performance of the shunt, by lowering as much
as possible the mechanical amplitude coupling threshold 𝑢∗H1, relies on decreasing as much as possible the factor 𝜂 = 𝜉𝑒∕(𝑘𝑖𝛽), with 𝜉𝑒
the dimensionless damping ratio proportional to 𝑅. Consequently, the electric circuit of the shunt must be designed as less resistive
as possible, and, contrary to more classical shunt applications, the piezoelectric coupling factor 𝑘𝑖 must be chosen not so high to
minimize the subharmonic component creation. The main design parameter is thus the nonlinearity parameter 𝛽, that has to be
chosen as high as possible.

The second design parameter set is the electrical tuning of the shunt, linked to the inductance 𝐿. The electrical frequency 𝜔𝑒
has to be chosen close to half the short circuit natural frequency of the targeted mechanical mode: 𝜔𝑒 ≃ �̂�𝑖∕2 to activate the 2 ∶ 1
internal resonance. The fine tuning depends on the piezoelectric coupling factor 𝑘𝑖 (because of the invariance break considered
above) in a constant fashion, but also slightly on the forcing amplitude. This unexpected effect is directly related to the high value
of the non resonant term of coefficient 𝛬1 in the electromechanical modal system. This high value of 𝛬1 cannot be avoided with
the architecture of our shunt. However, it was proven that the relation between the fine tuning of 𝜔𝑒 as a function of the forcing
amplitude is linear, which gives a simple manner to correct this effect in a practical electronic circuit implementation.

Two shunt designs have also been tested (see Eqs. (2)). In theory, no difference of performance has been shown between both
designs in the shunt performance and in the shape of the frequency response. The only notable difference is in the numerical value
of the nonlinearity coefficient 𝛽, that has to be chosen very high in the first design (𝑉nl = 𝛽𝑄2, 𝛽 ≃ 5 ⋅ 1013V∕C2) and small for
the other one (𝑉nl = 𝛽𝑉 2, 𝛽 ≃ 5 ⋅ 10−3V−1). This huge difference in the orders of magnitudes has to be considered in a practical
implementation of the electronic circuit. If electronic multiplier components are used like in [20], the second design has probably
to be preferred.

Some quasi-periodic (QP) solutions have also been observed in our simulations, close to the antiresonance point. Those QP
solutions are responsible for beatings superimposed to the classical periodic solutions, that could slightly decrease the vibration
control performance, depending on the beating amplitude. The appearance of those QP responses is also probably linked to the
increase of the performance factor 𝑘𝑖𝛽∕𝜉𝑒, in a non trivial manner. A way of investigation should be the tracking of the Neimark–
Sacker bifurcations, using numerical continuation, as proposed for instance in [73]. The study of those QP solutions is left for further
studies.

Finally, one must bear in mind that this kind of nonlinear shunt is forcing amplitude dependent. The first consequence is that
the amplitude reduction appears above an amplitude threshold. So, below this amplitude, a classical linear absorber (like a resonant
shunt for instance [7]) has better performance. However, above the threshold, since the amplitude at the antiresonance saturates,
the present nonlinear shunt behaves better and better as long as the forcing amplitude increases. It is thus well suited to cases for
which the force is harmonics (like in rotating machines [74]), with a frequency in the vicinity of the mechanical resonance. In other
cases of a force with a large band frequency content, the side resonance created by the non-resonant term 𝛬1 on the right of the
antiresonance, as seen in Fig. 11 or 16, could be an issue.
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