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chemical milling, high-pressure water cutting, electrochem-
ical machining and so on.

It is recognized that material removal processes played 
a leading role in manufacturing in the history. For instance, 
it is enough to recall the study carried out by Merchant in 
1998 (Merchant 1998) which reported that about 15% of 
the value of all the mechanical components manufactured 
worldwide was achieved through machining. This quota 
surely increased in the last decade due to the growth of 
the machining market, the demands for micro and nano-
machining but also new opportunities to improve the pro-
duction rate and the introduction of new functional products 
in several mechanical fields except probably those related 
the automotive industries (Teti 2002; Dornfeld et al. 2006; 
Arrazola et al. 2013a; Melkote et al. 2017). In fact, the 
uncertainty about the future direction of the powertrain is 
slowly causing turmoil among the traditional engines pro-
duction stakeholders. In order to deal with this occurrence, 
they will need to adapt their products/services to the next 
generation of platforms and expand their portfolio to new 
and more advantageous market segments. On the manufac-
turing point of view, although the electrical vehicles (EVs) 
will have less number of components, they will still show 
the same degree of complexity compared to their Internal 
Combustion Engine (ICE) based competitors. An electric 
car can be divided into three main components, namely the 

Introduction

Generally, machining operations are material removal pro-
cesses in which a material is cut to a desired final shape 
and size. Commonly, turning, shaping, blanking, mill-
ing, drilling, grinding and broaching are identified as pri-
mary material removal processes although several other 
advanced machining methods are widely utilized nowadays, 
such as electric discharge machining (EDM), laser cutting, 

Domenico Umbrello
domenico.umbrello@unical.it

1 Department of Mechanical, Energy and Management 
Engineering, University of Calabria, Arcavacata di Rende 
(CS), 87036 Rende, Italy

2 Department of Mechanical Engineering, Tokyo Denki 
University, 5 Senjyu Asahi-cho, Adachi-ku, 120-8551 Tokyo, 
Japan

3 Faculty of Engineering, Mondragon Unibertsitatea, 
Loramendi 4, 20500 Arrasate-Mondragón, Spain

4 LAMPA, Arts et Métiers ParisTech, Campus d’Angers, 2 bd 
du Ronceray, 49035 Angers, France

5 University of Lyon, Ecole Centrale de Lyon - ENISE, LTDS 
CNRS UMR 5513, 58 Rue Jean Parot, 42000 Saint-Etienne, 
France

Abstract
This paper reports on the state of the art in the experimental and numerical investigations of cutting and machining pro-
cesses. The contributions on the above-mentioned processes and published on the Proceedings of the European Scientific 
Association for material FORMing (ESAFORM) Conferences are highlighted. In particular, this literature review is an 
update of a previous one conducted in the 2007, after ten years of the ESAFORM activities, and it confirms the crucial 
role played by the minisymposium on Machining and Cutting in this field. In fact, the research has been quite active 
even in these last fifteen years, as demonstrated by the number of contributions and their relevant scientific contents. As 
overall, this review shows as the minisymposium on Machining and Cutting, that has been organized since 2001 with no 
interruptions, has contributed to the scientific progress on the study of the material removal processes.
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Gutowski et al. 2005). Furthermore, regulations and stan-
dards demand even more healthier and safer environments 
for shop floor workers and employees in manufactur-
ing. For all these reasons and more, a deep analysis of the 
manufacturing processes performance is needed in order to 
achieve the most desired manufacturing sustainability prac-
tices. Sustainable manufacturing processes are those which 
demonstrate improved environmental impact and energy-
efficiency, generate minimum quantity of wastes, provide 
operational safety and personal health while maintaining the 
quality of the products and processes, or even improving 
them (Lu et al. 2011). In this context, machining is moving 
through the development of sustainable, or at least lower 
impacting, lubri-cooling conditions but also an improved 
control of the machined surface quality and integrity in 
order to extend the lifetime and in-use properties of a manu-
factured component.

In addition, during the last decades, a significant 
enhancement in manufacturing industries has been done by 
introducing and developing predictive models for machin-
ing operations. Machining modeling often targets the pre-
diction of fundamental variables evolution (such as stresses, 
strains, strain-rates, temperatures, etc.), on varying the pro-
cess conditions and parameters. However, in order to be 
useful to industries, these variables must be related to per-
formance measures: product quality (accuracy, dimensional 
tolerances, etc.), general surface and subsurface integrity, 
tool-wear, chip-form/breakability, burr formation, machine 
stability, etc. (Fig. 1). The adoption of machining models 
by industries critically depends on the capability of a model 
to correctly pose these links and to predict machining vari-
ables and performances (Arrazola et al. 2013a).

electric motor, a battery pack and a transmission. The battery 
pack does not have any moving part and the electric energy 
is obtained from them via chemical processes that aim to 
power the motor. It transfers power to the wheels through 
a small transmission (typically a single speed transmission 
for Tesla vehicles). Consequently, the overall requirements 
concerning the machining operations of automotive com-
ponents are extremely lower compared to the ICE vehicles 
production and regard above all the motor and minimally 
the transmission. Therefore, it is well legitimate to assume 
that the perused stakeholders will invest their efforts fol-
lowing the direction of the growing up market section that 
involves machining structured systems. Considering the 
actual predictions, the most promising sectors that involve 
machining operations and which are showing substantial 
growing up trends in the global market are principally those 
that involves precision machining and hard-to-cut alloys 
machining.

In particular, the most promising sectors result to be the 
biomedical industries with the production of higher perfor-
mances prostheses, aeronautic/aerospace and defense indus-
tries concerned by the manufacturing of high-performance 
alloy components.

Moreover, in the past, manufacturing processes were 
systematically developed in order to achieve, through 
innovation, the highest possible efficiency for increasing 
profit, but, the present trends push manufacturers to develop 
new methodologies incorporating sustainability concepts 
(Jegatheesan et al. 2009; Jovane et al. 2008). The traditional 
practices are being replaced to reduce the energy, materi-
als and other resources required by the processes and the 
generated wastes from such processes (Jayal et al. 2010; 

Fig. 1 Finite elements output 
results used by industries to 
predict the machining perfor-
mance experimentally evaluated 
(Arrazola et al. 2013a)

 



were accepted and presented. In particular, most of the 
papers were focused on prediction and modeling of cutting 
forces and geometrical aspects, some on workpiece defor-
mation, time domain and machine behavior, while very few 
on frequency domain. The overall data is reported in a sum-
mary table in their review (Lorong et al. 2007). The main 
conclusion at this scale was that it was not possible to accu-
rately simulate the material removal processes due to poor 
representative mechanical models. Only models for cutting 
forces and, sometimes, for dynamic issues, seemed to be 
consistent. They finally suggested that one way to solve 
the encountered difficulties was to identify models able to 
couple the analyses at macroscopic and mesoscopic scales.

In contrast, in those years other research works focused 
on the mesoscopic scale with the idea to propose accurate 
material modeling, to predict mechanical variables or even 
thermal variables. It has been a very ambitious enhancement 
for the machining modeling, since simulation results were 
at that time mainly limited to the prediction of the cutting 
forces and to the analysis of simple machining processes 
under heavy hypotheses. Within ESAFORM Conferences 
more than 65 papers deal with above mentioned mesoscopic 
outputs were accepted and presented. In particular, most of 
the papers were focused on the prediction and modeling of 
mechanical aspects, chip formation and thermal variables, 
some on tool wear and few on surface integrity. The over-
all data is also reported in a summary table in their review 
(Lorong et al. 2007). The main conclusion at this scale was 
that huge enhancements were achieved in few years and a 
positive trend for the future could be expected since model-
ing of machining operations surely represented a key issue 
for the developments of such technologies.

In this context, also the ESAFORM Community have 
provided an important contribution to improve the knowl-
edge on material removal processes in the last twenty-five 
years. The former proposal of a minisymposium on Machin-
ing and Cutting Modelling at the ESAFORM Conference 
in Liege (2001) and its development with no interruptions 
at all the following editions, paved the way to an important 
forum where innovative and high-quality researches have 
been presented.

In this paper a wide bibliography of the papers pub-
lished in the period 1998–2021 in ESAFORM Conferences 
Proceedings dealing with the experimental and numerical 
analysis of the material removal processes are reported. It is 
interesting to highlight that in these twenty-five years, more 
than 350 papers focused on material removal processes and 
selected for the minisymposium on Machining and Cutting 
have been accepted, presented at the ESAFORM Confer-
ences and published in the Conferences Proceedings. It is 
important to underline that only a brief remark will be done 
for the period 1998–2006 since Lorong et al. in 2007 pub-
lished their review on the first ten years of ESAFORM activ-
ities in the fields of machining and cutting. In this period of 
time, more 80 papers were discussed in their review.

The attention of researches all over the world to pub-
lish their research on machining and cutting within the 
ESAFORM Conferences have been drastically increased in 
the last fifteen years, as shown in Table 1. In fact, more than 
270 papers have been accepted in the period 2007–2021 
within the minisymposium on Machining and Cutting and 
published in the Conferences Proceedings.

Therefore, in order to update the previous review from 
Lorong et al. in the 2007 (Lorong et al. 2007), the contribu-
tions have been grouped in two categories, a first short one 
referring to the macroscopic approaches and a second one 
presenting a more detailed contents on those carrying out a 
mesoscopic analysis.

Brief remarks of MS on machining and 
cutting activities during the first ten years 
for Esaform

Lorong et al. (2007) have conducted their review on the first 
ten years of ESAFORM activities on machining and cutting 
paying more attention to the enhancements of modeling of 
material removal processes in both macroscopic and meso-
scopic scales.

As far as the macroscopic scale is concerned in those 
years, the main goals of machining modeling were to pre-
dict the behavior of the Workpiece Tool Machine (WTM) 
system during machining. Within ESAFORM Conferences 
more than forty papers dealing with macroscopic aspects 

Table 1 Papers on material removal processes accepted in the last fif-
teen Editions
Edition Venue Nation Num-

ber of 
accepted 
papers

10th Zaragoza Spain 17
11th Lyon France 21
12th Twente Netherlands 6
13th Brescia Italy 26
14th Belfast United Kingdom 20
15th Erlangen Germany 19
16th Aveiro Portugal 17
17th Espoo Finland 19
18th Graz Austria 16
19th Nantes France 16
20th Dublin Ireland 11
21th Palermo Italy 27
22th Vitoria-Gasteiz Spain 24
23th Cottbus Germany 12
24th Liège Belgium 19



Enhancements in mesoscopic model

As far as the papers proposing a mesoscopic approach are 
concerned, very relevant enhancements have been regis-
tered in the last fifteen years, mainly as regards the reli-
ability and the effectiveness of the obtained results in terms 
of mechanical and thermal aspects, tool wear and surface 
integrity. Furthermore, the research activities are showing 
a strong emphasis on improving the current models and on 
finding other materials constitutive laws in order to predict 
the machining variables by improving the reliability and the 
stability of these models.

Fifteen years ago, simulation results were quite limited 
whereas today the number of results provided by machining 
modeling and analysis is considerable. For the sake of com-
prehensibility the present review of the mesoscopic models 
is divided into the following parts:

● Machinability and workability of severe plastic defor-
mation processes;

● Material modelling;
● Prediction of chip formation;
● Prediction of thermal aspects;
● Prediction of tool wear;
● Prediction of surface quality;
● Prediction of surface integrity.

In particular, in the next paragraphs the most relevant 
enhancements achieved in the last fifteen years will be pre-
sented, as well as the new challenges for the years to come.

Machinability and workability of severe plastic 
deformation processes

Machinability of a material is a critical aspect to determine 
the machining cost of a component. However, it is not an 
intrinsic property of the material and it will depend on the 
final application (tool life, chip breaking, surface roughness, 
burr formation, etc.) which it is difficult to quantify. The 
working conditions (cutting parameters, cooling conditions, 
tool geometry and material) need to be adapted to obtain a 
minimum tool life, ensuring a proper tool life. For instance, 
the cutting speed parameter could be modified from ratio 
values going from 1 to 10, when machining Titanium and 
Ni-based alloys or Aluminium alloys, respectively. How-
ever, although several improvements have been made in the 
procedure to determine the adequate working conditions, to 
date in many cases the selection of the working conditions is 
based on the trial and error approach, which is still far from 
being the adequate one (Jawahir and Balaji 2000).

Most of the papers dealing with machinability, focus the 
analysis in fundamental outputs such as cutting forces and 

Processes and materials investigated and 
enhancements in macroscopic model

Among all the published papers in the last fifteen years of 
the ESAFORM conference, the orthogonal cutting (2D) 
seems to be one of the most studied operation (Bordin et al. 
2015), which is close to broaching but still far from other 
industrial needs in 3D machining. The machining opera-
tions more deeply studied in 3D are by far turning (Sartori 
et al. 2015), drilling (Meena & Mansori, 2016) and milling 
(Klocke et al. 2018a, b). Broaching (Arrieta et al. 2017) and 
blanking (of sheet metal), Laser Assisted Machining (Ger-
main et al. 2008), micro milling are additional machining 
operations that are studied. Table 2 reports a summary of 
the investigated material removal processes and the relative 
number of papers in these last fifteen years.

Most of the research in 2D/orthogonal cutting has the 
aim of gaining basic understanding about the process and 
to assess the impact of a specific input parameters, such as 
the workpiece material behavior and tool-chip contact fric-
tion, on the key process outputs. The second goal is then 
to obtain the more suitable laws that allow matching mod-
elling results to experimental ones with regards to cutting 
forces, temperatures, chip thickness and morphology, etc. 
Interestingly, several works have been published aiming to 
predict tool wear, surface integrity (residual stresses, mate-
rial affected layer, etc.) and even machinability, aspects that 
are clearly closer to the industrial needs. For 3D machining 
operations, again, aspects such as cutting forces, tempera-
tures, tool wear, surface integrity (residual stresses, mate-
rial affected layer, etc.) and process stability have been the 
major topics. With regards to materials, steels are by far 
the most studied (Makhfi et al. 2011, Marouvo et al. 2021), 
followed by Ti alloys, Ni-based alloys (Inconel 718, Wasp-
alloy) and composites.

Table 2 Material removal processes investigated in the last fifteen 
years within ESAFORM conferences
Machining operation Number 

of papers
Cutting (2D and 3D turning) 124
Milling 56
Drilling 24
Micromilling-Micromachining 6
Broaching 5
Laser Assisted Machining 5
Burnishing 4
Abrasive processes 3
Others (blanking) 49 (23)



cutting edge, followed by chipping, loss of the coating and 
substrate exposure.

With the advent of Additive Manufacturing new research 
works have been carried out in last years aiming to analyse 
their machinability compared to those obtained in traditional 
manufacturing routes (Imbrogno et al. 2016a), (Imbrogno 
et al. 2018a), (Tamura and Matsumura 2021, (Saffioti et al. 
2021a). For instance, Imbrogno et al. (2018a) developed a 
FE model to analyse the turning process of DMLS Ti6Al4V 
in dry conditions. An empirical model was implemented to 
predict lamellae thickness reduction and hardness modifi-
cations, showing satisfactory agreement with experimental 
tests.

Drobnič et al. (2021) employed a novel approach of 
lubricated liquid carbon dioxide (LCO2) for milling mar-
tensitic stainless steel and compared results with other 
lubrication conditions (dry, flood, LCO2, LCO2 + MQL). It 
was observed that conventional flooding machining outper-
formed LCO2 and LCO2 + MQL assisted machining in terms 
of surface roughness. LCO2 and LCO2 + MQL cooling/
lubricating strategies significantly reduce the temperature in 
the cutting zone while dry machining strategy provided the 
longest tool lifetime.

With regards to aluminium alloys, Asad et al. (2008) 
conducted their research in aluminium alloy A2024-T351 to 
comprehend the chip formation according to the variation of 
feed rate and cutting speed.

Fukumori et al. (2019) have shown that the ultrasonic 
elliptical vibration cutting (UEVC) is an effective method 
for ultra-precision machining with diamond tools for fer-
rous materials due to the formation of protective films in 

temperatures in orthogonal cutting. Other research works 
were focused on the characterization of wear such as David 
et al. (2021) which determined the wear modes in orthogonal 
milling of 15-5PH Stainless Steel combined with a numeri-
cal methodology, where thermal and mechanical loadings 
were extracted within the coatings and the substrate.

Quite often machining difficult to cut materials such as 
Inconel 718 has been one of the main goals of researches 
trying to find the influence of tool material such as ceramic 
tools (Rinaldi et al. 2019), Sialon (Agirreurreta et al. 2016) 
or carbide tools (Germain et al. 2008) in tool life. Cooling 
systems have been as well analysed by introducing innova-
tive cooling methods such as cryogenic machining (Chaa-
bani et al. 2019) and air jet assisted machining with whisker 
reinforced ceramic tools (Obikawa and Funai 2013).

Also, Titanium alloys have been the focus of several 
research works (Ayed et al. 2013), (Ben Boubaker et al. 
2018), (Harzallah et al. 2016; Ayed et al. 2013) showed 
that the high pressure water jet assistance can significantly 
increase the tool life.

Braham-Bouchnak et al. (2010) demonstrated the effec-
tiveness of high pressure water jet assisted machining on a 
duplex stainless steel (X2CrNiMo 22 − 5), by increasing the 
tool life and obtaining a good chip fragmentation. Amaro 
et al. (2018, 2020) employed a tool with interchangeable 
inserts of sintered carbides coated with AlTiN to mill a 
duplex stainless steel with trochoidal strategies. Cutting 
speed range from 120 to 300 m/min were used and the eval-
uation of tool deterioration and tool life. It was observed 
a progressive development of a flank wear and a cumula-
tive cyclic process of localized adhesion of the chip to the 

Fig. 2 Papers focusing on mate-
rial modelling in ESAFORM 
since 2007

 



The previously cited works show that a proper identi-
fication of the constitutive model is needed to ensure the 
reliability of the numerical models. A first approach is to 
perform mechanical testing in order to directly conduct their 
identification out of the machining process. Shear tests were 
performed on plates (Ganesan et al. 2008) or hat-shaped 
specimens (Harzallah et al. 2016) in order to achieve the 
closest deformation mode compared to the cutting process. 
In both studies, using a finite-element model of the test itself 
was required to inversely identify the equation parameters 
as the loading conditions were finally not that simple to take 
into account. A simpler method is to conduct uniaxial com-
pression tests such as Courbon et al. (2013) on an AISI 1045 
steel, Le Mercier et al. (2014) on a spheroidal graphite iron 
or Ben Boubaker et al. (2018) on a titanium alloy. While the 
main benefit of compression tests is to achieve relatively 
uniform strains up to 100%, a wide range of temperatures 
could be covered up to 800 °C and strain rates up to 100s− 1. 
However, questions still remain regarding the relevance of 
the heating and deformation rates applied in these tests com-
pared to those existing in metal cutting. Burns et al. (2010) 
developed to this end a pulse heated Kolsky bar set-up able 
to run compression tests at heating rates of up to 6000 ºC 
s− 1 and strain rates up to the order of 104 s− 1. Applied on 
an AISI 1075 steel, they questioned the potential phase 
transformation which could occur during the compression 
tests but which are most probably not taking place in a true 
cutting configuration. The last trend is to perform more 
advanced and severe mechanical testing such as the Taylor 
impact test in order to achieve the most consistent loading 
configuration (Ducobu et al. 2021).

The intense conditions under which deformation occurs 
in metal cutting still make the comparison between the 
observed behavior in conventional testing methods and the 
one encountered in the process relatively tricky. Therefore, 
a second approach is to use machining itself to inversely 
identify constitutive equation. This requires the develop-
ment of a numerical (Chinesta et al. 2008) or analytical 
model of the cutting process (Pittalà and Monno 2010) and 
an inverse procedure to conduct the identification. Some 
studies defined an objective function based on force compo-
nents only (Maurel et al. 2007), chip geometry only (Shrot 
and Bäker 2012) or force components and cutting tempera-
ture (Chinesta et al. 2008).

An identification via an inverse method requires first the 
definition of the targeted constitutive equation, i.e. suppos-
ing thus that the way the material behaves is already known. 
Mechanical testing can directly provide stress strain curves 
on which the formulation of advanced constitutive equa-
tions can be proposed. The trend over the last decade is to 
develop new constitutive models including not only strains, 
strain rates and temperatures with constant coefficients but 

the cutting tools and a reduction in tool temperature. Other 
authors have analysed the influence of the tool microgeome-
try in tool life, they observed that among different geometry 
parameters (clearance angle, rake angle and cutting-edge 
radius) the cutting edge radius is the most significant factor 
and it has the maximum influence on tool wear.

Material modelling

Machining is known to be one of the most severe manufac-
turing processes. Extreme values of strains (1 to 10), strain 
rates higher than 104 s− 1, temperatures up to 1000 °C and 
heating rates close to 106 °C.s− 1 are commonly reported 
(Chinesta et al. 2008; Courbon et al. 2010). Nevertheless, 
modelling of machining, and especially metal cutting, has 
always been of particular interest in order to predict chip 
formation, forces, strain and temperature fields, tool wear 
or surface integrity. The performance of any metal cutting 
model however largely depends on the consistency of the 
constitutive model employed which thus appears as a key 
input data.

During the last fifteen years, many research groups within 
the ESAFORM community have endeavored to improve the 
knowledge on this input data via more than 30 papers by 
especially investigating three aspects (Fig. 2): (i) what is 
the influence of various constitutive equations on the out-
puts computed by a cutting model, (ii) how to identify the 
parameters of a given constitutive equation and (iii) how 
to develop enhanced constitutive equations to improve the 
performance of a cutting model.

Chip formation is a fundamental aspect in metal cutting 
and thus was the first output to be investigated. Arrazola et 
al. (2010) highlighted that the constitutive equation, beside 
the thermophysical properties, had a significant impact 
on the serration ratio. On the other side, Shrot and Bäker 
(2010) showed that, under adiabatic conditions, the chip 
shape was not drastically modified when 8 different sets of 
the Johnson and Cook model were implemented. Several 
works extended such analyses to the comparison of cut-
ting forces, cutting temperature and chip geometry. Jafarian 
et al. (2014) reported average errors between 10 and 30% 
on these three outputs compared to the experimental data 
when cutting Inconel 718, whereas Imbrogno et al. (2014) 
or Sela et al. (2019) noted an error up to 75% depending 
on the parameter set when modelling titanium machining. 
They especially emphasized the importance of the constitu-
tive equation when chip serration occurs, which was later 
confirmed by several studies (Ducobu et al. 2015; Kugalur-
Palanisamy et al. 2021). The machined surface was also 
investigated and it was found that the subsurface hardness 
and microstructure were highly dependent on the selected 
material constitutive model (Rinaldi and Umbrello 2021).



Finally, the Fig. 3 shows the materials that were mainly 
investigated. If steels were indeed the most common ones, 
difficult to machine materials were obviously of high inter-
est such as Nickel, Titanium or stainless steel alloys. This 
summary confirms that understanding the deformation 
mechanisms associated with the chip formation can be seen 
as essential in order to propose advanced constitutive mod-
els not only based on empirical fitting but also on a strong 
physical basis.

rather varying ones and material based parameters. Tem-
perature dependent Johnson and Cook parameters were pro-
posed by Harzallah et al. (2016) whereas a plasticity model 
was combined with a damage model in several studies (Saa-
nouni et al. 2009; Umbrello et al. 2012). Material aspects 
were included by different approaches such as taking into 
account the hardness (Umbrello et al. 2007, 2012; Biermann 
et al. 2010; Tiffe et al. 2014), microstructural evolution due 
to dynamic recrystallization (Thibaud et al. 2007; Courbon 
et al. 2013; Le Mercier et al. 2014), dislocation density 
(Kalhori et al. 2010; Rinaldi et al. 2020) or even recently 
crystal plasticity (Boubakri et al. 2019).

Fig. 4 Papers focusing on chip 
formation in ESAFORM since 
2007

 

Fig. 3 Materials discussed 
on material modelling in 
ESAFORM since 2007

 



f < 0.025 mm / rev (Chodor et al. 2018). These studies are 
similar to observing the machinability of materials.

For a more detailed understanding of the phenomena, 
orthogonal cutting machining is used. Some works have 
used an experimental approach by fast cameras to observe 
the zones of chip formation (Batista et al. 2012). This exper-
imental approach is very interesting (and is currently devel-
oping), but only the surface of the material can be observed. 
The internal deformation and thermal quantities are not vis-
ible. On the other hand, the numerical simulation makes it 
possible to know these internal values in the various zones 
of chip formation.

The numerical approach makes it possible to calculate 
all the local quantities, but its implementation is not easy. 
The results obtained depend a lot on modeling. Asad et al. 
(2008) showed that it is important to have a law of plas-
ticity and a law of damage relevant to properly model the 
behavior of the material. The numerical approach makes it 
possible to calculate all the local quantities, but its imple-
mentation is not easy. The results obtained depend a lot on 
modeling. They also showed that it is important to have a 
law of plasticity and a law of damage, relevant to properly 
model the behavior of the material. Numerous studies have 
therefore been carried out on the constitutive laws of mate-
rials in high strain for very high strain rates and for high 
temperatures (Ducobu et al. 2015; Kugalur-Palanisamy et 
al. 2019, 2020). These studies are carried out for metallic 
materials, but can be adapted to the behavior of compos-
ite materials (Benhassine et al. 2018). Numerical simula-
tions must imperatively be validated by a comparison with 
experimental results, as shown by Asad et al. (2008), Had-
dag et al. (2016) and Benhassine et al. (2019). By numerical 

Prediction of chip formation

Understanding chip formation has been of interest to the 
community for many years, 21 papers have focused on this 
theme since 2007. This understanding of the phenomena 
involved is very difficult, because everything happens in a 
very small area (a few square millimeters) where very strong 
thermal and mechanical gradients are present. The approach 
is complex because the thermal and mechanical phenomena 
are strongly dependent on one another (thermomechani-
cal phenomenon) with strongly nonlinear behaviours. It 
is therefore difficult to separate the thermal and mechani-
cal phenomena. One way to achieve this is to use assisted 
machining, by preheating the workpiece with a laser beam 
(Germain et al. 2008) or by cooling the cutting zone with 
a cryogenic fluid (Imbrogno et al. 2018b; Chaabani et al. 
2019, 2020) which showed the differences in machinability 
and chip formation with and without assistance.

The experimental approach being very difficult, many 
works propose a numerical approach, but there are also 
experimental papers at the scale of the tool (meso), or more 
finely, at the scale of deformation zones, for the chip forma-
tion (micro). The Fig. 4 shows this distribution and all these 
studies were mainly focused on Titanium alloys and steels 
as shown in Fig. 5.

A macroscale approach is used to know the chip forma-
tion on specific materials, such as Waspaloy, nickel-based 
superalloys (Caruso et al. 2017), a fine grain steel (Komatsu 
et al. 2011) or additive manufacturing martensitic stainless 
steel (Tamura and Matsumura 2021), but also for particular 
machining operations, such as the use of very low feeds, 

Fig. 5 Materials discussed on 
chip formation in ESAFORM 
since 2007

 



to carry out, and the modeling complex, their knowledge is 
therefore very complicated, while the effect of the thermal 
aspects is very important in machining operation. In fact, 
the temperatures will influence: (i) the behavior of the mate-
rial, and therefore the cutting force (ii) the wear of the tool 
which increases with the rise in temperature (iii) the surface 
integrity, in particular the residual stresses which will influ-
ence the in-service behavior of the machined part.

Due to the complexity of temperature measurements, 
an analytical approach (Matsumura et al. 2008), finite dif-
ference method (Matsumura et al. 2010) or finite element 

simulations, Arrazola et al. (2010) showed that the self-
heating and thermal softening parameters were very influ-
ential parameters on chip segmentation. These models are 
important for the understanding of the phenomena, but must 
also be adapted to the processes to improve the computing 
time for example (Fabre et al. 2016).

Prediction of thermal aspects

The prediction of the thermal aspects is surely the most 
critical point, because the measurements are very difficult 

Fig. 7 Materials discussed on 
chip formation in ESAFORM 
since 2007

 

Fig. 6 Papers focusing on 
thermal aspects in ESAFORM 
since 2007

 



tool (He et al. 2013) or of the cutting parameters (Angiuli et 
al. 2019) on the temperatures reached. These studies remain 
very global (macro scale), but recent works, such as (Bonnet 
et al. 2021), allow a more local approach with an estimation 
of the temperature fields in the cutting zone.

Prediction of tool wear

Fifty-four papers focusing on tool wear have been presented 
in ESAFORM since 2007. These papers are classified into 
(1) wear characteristics; (2) wear modelling and simulation; 

method (Filice et al. 2007; Arrazola et al. 2013b) can be used 
to estimate the temperatures reached in machining. Figure 6 
shows this distribution and all these studies focused mainly 
on steels and not ferrous alloys as shown in Fig. 7.

An experimental approach can also be proposed, with 
the use of a calorimeter (Denkena et al. 2012), the use of 
thermocouples in the workpiece (Drobnič et al. 2021) or by 
infrared cameras (Ferreira et al. 2014; Caruso et al. 2017). 
These approaches can be complementary, in particular 
the use of finite element calculations and infrared camera 
measurement to show the effect of the machined material 
(Careri et al., 2020; Montoya et al., 2014), of the cutting 

Fig. 9 Materials discussed in 
ESAFORM since 2007
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well investigated with the chip fragmentation when the 
pressure of the coolant supply increases. Then, the tool tem-
perature and the manufacturing cost were associated with 
the diameter of the coolant nozzle (Klocke et al. 2013).

The tool treatment is an interesting strategy to control 
the temperature on the tool face. In cryogenic treatment, the 
tool material is held for a long time at temperatures of sub-
zero range; and is returning to the room temperature. The 
treatment changes mechanical properties and the crystal 
structure of materials and improves the tool wear resistance 
(Thamizhmanii and Hasan 2012). As another approach, 
micro textures were fabricated on the tool faces to promote 
the coolant supply effect and reduced the temperature with 
a jet coolant (Obikawa et al. 2018). A triangular groove was 
also fabricated on the flank face and the coolant flow was 
analyzes using Particleworks, one of codes for smoothed 
particle hydrodynamics (Obikawa et al. 2019).

Regarding the path control, the cutter is controlled to 
reduce the tool-workpiece contact and the temperature rise 
in milling. In the trochoidal tool path for slotting, heat and 
wear were distributed evenly, providing a longer tool life 
than traditional milling (Amaro et al. 2018, 2020). Tool 
engagement is also a factor influencing on the tool wear. 
The flank wear was investigated with changing the engage-
ment angle and a feasibility map was made for the depths 
of cuts and the engagement angles (Del Prete et al. 2012).

Tool wear monitoring has recently become more popular 
with demands of the intelligent machining. The tool wear 
and the tool breakage are critical in continuous production. 
A new approach was presented using standard transducers 
available on actual machines for a monitoring of cutting 
process. The presented method analyses instantaneous vari-
ations in rotational frequency to observe milling operation 
(Girardin et al. 2010).

Regarding the tool wear modeling and simulation, it is 
well known that it is classified into diffusion, adhesion and 
abrasive in metal cutting. In the diffusion wear, parts of 
compositions in the chip and the tool replaced each other 
under high temperature. In cutting of carbon steel with 
cemented carbide, cobalt working as binder diffuses into the 
chip. Then, particles of tungsten carbide are taken out with 
the chip flow. In the diffusion wear model, the wear rate is 
associated with the activation energy, the gas constant and 
the local temperature measured as the absolute temperature 
(Takeyama and Murata 1963).

The adhesion wear is induced by the material adhesion 
depending on the temperature at the interface between the 
chip and the tool face. The adhesion wear model also con-
siders the material removal with the asperity contact associ-
ated with the material hardness. The adhesion, therefore, is 
controlled by the stress on the tool face and Holm’s prob-
ability, the probability of generation of the wear particles 

(3) wear control and optimization; and (4) wear monitoring. 
The numbers of papers are shown in Fig. 8.

Many papers related to wear characteristics discussed the 
wear progresses and the tool damages in nickel based alloys 
such as Inconel, stainless steels, alloy steel, titanium alloys 
(Ti6Al4V), carbon steel, ADI, Waspaloy, and aluminum 
alloy as shown in Fig. 9.

The materials made by additive manufacturing have 
recently investigated. The tool wear of a titanium alloy 
made in EBM (Electron Beam Melting) was discussed with 
a wrought one (Bordin et al. 2014). The cutting perfor-
mances were discussed with the coating, the tool treatments 
and the tool material. The tool life largely depends on the 
hardness of the material. The tool wear in cutting of Inconel 
with a SiAlON tool was investigated in manner of circu-
lar ramping (Agirreurreta et al. 2016). Whisker reinforced 
ceramic tool was tried to machine Inconel assisted by air jet 
supply in turning (Obikawa and Funai 2013).

Regarding the wear modelling and simulation, tool wear 
progresses have been simulated in FEM, analytical and 
experimental models. Height papers simulated the tool wear 
in FEM. Analytical models were applied to tool wear pre-
diction in two papers. A paper presented an experimental 
model with ANOVA (Mehrban et al., 2008). Many studies 
have simulated in turning, milling and drilling of carbon 
steel as a widely machined material.

The wear control has been studied in terms of the cutting 
temperature because the tool wear depends on the tempera-
ture on the rake and the flank faces. The strategies in the 
reduction of the temperature are: (1) cryogenic coolant sup-
ply; (2) high pressure cooling system; (3) improvement of 
tool surface treatment; and (4) path control.

Four papers discussed the effect of cryogenic cooling on 
the tool wear with comparing to the conventional coolant 
supply. The effect of the cryogenic cooling has been con-
firmed in cutting of difficult-to-cut material such as Inconel 
(Chaabani et al. 2019), hardened AISI 52,100 bearing steel 
(Umbrello et al. 2011b) and titanium alloy, Ti6Al4V (Tire-
lli et al. 2014). An economical assessment of the cryogenic 
cooling was done with optimizing the cutting conditions 
(Tirelli et al. 2015).

High pressure coolant system has been studied to improve 
coolant supply. Because the space between the tool and the 
workpiece or the chip is narrow, the coolant cannot achieve 
the tool tip easily. Therefore, the supply pressure of the 
coolant is a critical factor to control the tool wear with the 
temperature. The high-pressure coolant supply is also effec-
tive in the chip breaking/fragmentation. The chip formation 
changes at higher than 250 bar and the tool wear reduces 
with the cutting force (Braham-Bouchnak et al., 2010). The 
dominant wear mechanism changes with pressure of the 
coolant supply (Ayed et al. 2013). The tool damages were 



Prediction of surface quality

Surface integrity has a remarkable influence on aspects 
such as fatigue life, tribology and corrosion. The surface 
integrity condition is defined by the surface roughness, 
residual stresses and material affected layers. The topic 
has been tackled very often during the last fifteen years 
of ESAFORM conference within the mini symposium on 
Machining and Cutting. Analysis of residual stresses has 
been by far the subjects more analyses for several machin-
ing operations (turning, milling, burnishing) and a variety 
of materials (AISI 52,100 steel, Ti64, Cemented carbides, 
AISI H13, Duplex stainless steel, copper, etc.) with empiri-
cal and modelling approaches. For predicting the com-
plexity of residual stress (Caruso et al. 2010) and material 
affected layer phenomena (Schulze et al. 2013) (Umbrello 
et al. 2011a), finite element codes such as Abaqus, Deform, 
AdvantEdge or Deform are employed.

Gravier et al. (2008) analyzed the electromechanical 
behavior of the copper machined surface and showed that 
the most influent cutting parameters are feed rate, lubrica-
tion and tool nose radius.

Rech et al. (2008), obtained residual stresses empiri-
cally and numerically after belt finishing, showing that it 
improves very significantly surface integrity by the induc-
tion of strong compressive residual stresses in the external 
layer in samples obtained by hard turning.

Caruso et al. (2010) analyzed residual stresses induced 
by orthogonal cutting of AISI H13 tool steel using the Finite 
Element (FE) code of Abaqus and validated the results using 
X-ray diffraction technique. Finally, the proposed FE model 
was applied to investigate the influence of flank tool wear 
and cutting regime parameters on surface residual stresses 
distribution in the machined surface of AISI H13 tool 
steel. They concluded that as the cutting speed, uncut chip 
thickness and tool wear increase surface residual, stresses 
increase as well, becoming more compressive.

Rizzuti et al. (2010a, b) studied numerically the predic-
tion of residual stresses in the orthogonal cutting process 
of machining AISI 1045 steel using uncoated WC tool, 
obtaining a reasonable agreement was obtained between the 
numerical predicted residual stresses and those experimen-
tally measured.

Desmaison et al. (2011) used Forge® to predict the resid-
ual stresses distribution and cutting forces, hat ware vali-
dated with experimental tests.

Andreas et al. (2012) analyzed the residual stresses gen-
erated in grinning of cemented carbide employed in tooling 
for forging. It was observed that for equal removal rates, 
higher hardness of cemented carbides results in higher 
compressive stresses due to higher required cutting forces. 
Higher feed values result in lower compressive stresses 

at a contact. The Holm’s probability is formalized with the 
activation energy depending on the surface structure and the 
temperature at the interface. The adhesion wear rate is asso-
ciated with the stress and the temperature on the tool face 
(Usui et al. 1984).

The abrasive wear is caused by ploughing, mechanical 
removal in subsurface of the tool. In the ploughing model 
(Rabinowicz et al. 1961), the wear volume is characterized 
by the normal stress and the material hardness depending on 
the temperature. The abrasive wear rate is determined by the 
stress and the temperature on the tool face (Usui et al. 1984).

In the wear models, the wear characteristic constants 
are required for the tool and the workpiece materials. As 
an inverse analysis, the wear characteristic constants were 
identified to minimize the prediction error of the tool wear 
in the simulation (Matsumura et al. 2008). The wear models 
were discussed in the flank wear prediction (Umbrello et al. 
2008). As another wear model, adhesion, abrasion, and frac-
ture are included with the initial and the fast wear process 
(Franco et al. 2007).

The tool wear prediction requires the stress and the 
temperature distributions. In the analytical simulation, 
the stresses on the rake and the flank faces are given with 
assuming the distributions. The temperature distribution 
was simulated in finite volume method (Matsumura et al. 
2008).

he stress and the temperature distributions are also 
obtained numerically in FE analysis. The contact interface 
conditions are critical in the simulation, which depends on 
the friction and heat partition conditions. The tool wear 
prediction was conducted after assessment of the interface 
definition (Giovenco et al. 2019). The tool wear mecha-
nism of the coating thin film was investigated in detail and 
a multi-scale numerical model was applied to predict the 
tool wear of alumina and TiAlN coated tools in orthogonal 
milling (David et al. 2021). The diffusive wear on the rake 
face in turning was simulated with the tool mesh updating 
corresponding to the geometry of the crater wear in 3D 
FE analysis (Attanasio et al. 2008). Abrasive and diffusive 
wear models were also applied to the prediction of the cra-
ter wear. The areas of the abrasive and the diffusive wear 
were determined by the temperature distribution on the rake 
face, which was simulated in 3D FE analysis (Attanasio 
and Umbrello 2009). The abrasive/diffusive combination 
model was also applied to flank wear prediction in turning 
with 3D FE analysis (Attanasio et al. 2011). The increase 
of the cutting force with the tool wear, which has influence 
on the machining quality, was simulated in 2D FE analysis 
(Equeter et al. 2018). As advanced simulation, the tool wear 
was predicted using a microstructure-based FEM (Sáez-de-
Buruaga, 2015).



Prediction of surface integrity

In several key industrial sectors, especially concerned by 
safety-critical components, the quality requirements do not 
only consist in geometrical specifications but also in the 
ability to withstand loading conditions in service such as 
fatigue resistance (Mäntyjärvi et al. 2009), creep or stress 
corrosion cracking (Gravier et al. 2008). The performance 
of these high added value components depends to a large 
extent on the physical state of their surface layer character-
ized by three particular features: the surface topography, the 
distribution of residual stresses and the subsurface micro-
structure induced by the last manufacturing process. Forty 
papers tackled this topic during the last fifteen years in the 
ESAFORM machining community, confirming the grow-
ing interest not only for academy but also for industry. The 
Fig. 10 highlights the contributions focused on each surface 
feature with numerous studies on the microstructural evolu-
tion as well as recent strong developments in modelling of 
surface integrity.

Surface roughness is the most common and easiest to 
measure surface integrity parameter. If simple geometrical 
equations exist to estimate the mean surface roughness (Ra) 
and mean surface roughness depth (Rz), being able to pre-
dict them over a wide range of cutting parameters requires 
some other approaches. Response Surface Methodology 
(RSM) (Del Prete et al. 2010a) and ANOVA (Saffioti et al. 
2021b) were commonly applied to generate empirical mod-
els and assess the most influential parameters. In broach-
ing, Makarov et al. (2008) and Arrieta et al. (2017) showed 
that surface roughness was also highly dependent on the 
microstructure of the material especially due to the small 
uncut chip thickness compared to the grain size. Whereas 

caused by thermal effects. Thus it was proposed that in order 
to achieve high cost effectiveness, a favorable surface qual-
ity and high compressive stresses, grinding strategies with 
low feed and high in-feed values should be preferred.

Umbrello analyzed trough experimental testing the influ-
ence of working conditions in surface integrity in Ni-based 
alloys such as Inconel 718 and Waspaloy (Umbrello 2014). 
For instance, he concluded that in the case of Waspaloy the 
wear rate increases with the increasing of both feed rate and 
cutting speed, surface roughness in machining Waspaloy 
alloy are comparable with those obtained by grinding pro-
cess and that the grain size on the machined surface cannot 
be revealed by an optical microscope even when the largest 
magnification was used and XRD observations highlighted 
that there is a phase change on the machined surface for 
tests carried out at 70 m/min. Similar observations were 
found for Inconel 718 (Umbrello et al. 2012). However, the 
appearance of the featureless layers formed under machin-
ing underlined that significant grain refinement occurred 
due to dynamic recrystallization and XRD observations 
highlighted that there is a phase change on the machined 
surface for several tests.

Klocke et al. (2018a, b) observed that when machin-
ing AISI 304 steel, the resulting microstructure strongly 
depends on the cooling condition. They concluded that it 
is possible to achieve a nanocrystalline surface layer in 
turning when using a cutting tool with a large cutting edge 
radius under finish cutting conditions and the use of cryo-
genic coolant. Also, he observed that refined surface layer 
can enhance properties in terms of the surface hardness only 
to an extent, but has its downside on the surface quality, 
where numerous built-up edges were found.

Fig. 10 Papers focusing on 
surface integrity in ESAFORM 
since 2007

 



activated by the rapid heating and quenching on the 
machined surface. Applying a cryogenic fluid is able to 
modify the thermal loadings and thus to limit the white layer 
thickness and reduce the associated hardness (Umbrello et 
al. 2011b). On the other side, an increase in the tool flank 
wear induces thicker white layers according to Cappellini 
et al. (2010).

Whereas these layers are called “white” or “dark” layers 
due to the color they exhibit optically once etched, many 
studies endeavored to precisely characterize them. Schulze 
et al. (2013) performed SEM analyses and showed that 
these layers consisted in severely refined grains when cut-
ting AISI 4140 steel. Umbrello (2013, 2014) connected the 
grain size and the affected depth to the cutting parameters 
and especially emphasized the dependency to the cutting 
speed. The depth and grain size can, however, be potentially 
controlled depending on the selected cooling lubrication 
strategy, i.e. dry, cryogenic or MQL (Klocke et al. 2018a, b). 
In milling Inconel 718, Rinaldi et al. (2019) specified that 
the near surface can be divided into a highly refined layer 
formed above a deformed one. Dynamic recrystallization 
was supposed to occur below the worked surface involv-
ing a thick layer and affecting the material hardness. They 
also observed an increase in the thickness of the affected 
layer and micro-hardness when increasing the cutting 
speed. Whereas these mechanisms can be hard to investi-
gate in machining, Imbrogno et al. (2017) tried to correlate 
the microstructure generated on the machined surface to the 
one obtained in the Equal Channel Angular Pressing pro-
cess (ECAP). Even if, based on hardness and grain size, the 
microstructure after machining is deformed significantly 
more than in ECAP process, this first experimental approach 
highlighted the existence of similar physics phenomena and 
laid the foundation for further research.

The previously cited studies focused on the experimental 
investigations of the surface integrity features in different 
configurations. However, the state of the art issue nowa-
days for industry is to be able to predict such component 
properties. Innovative approaches such as metamodeling 
and genetic algorithms were already proposed eleven years 
ago to predict surface roughness in machining (Del Prete 
et al. 2010b). Simulations of residual stress generation also 
significantly progressed with several studies proving the 
prediction capability. Caruso et al. (2010) or Rizzuti and 
Umbrello (2011) reported a good correlation between the 
predicted surface residual stresses computed using a FE 
model and the experimentally measured ones when machin-
ing AISI H13 tool steel or titanium alloy respectively. Riz-
zuti et al. (2010a, b) demonstrated that the reliability of a 
numerical model is strictly related to its ability to properly 
predict both mechanical and thermal loadings applied onto 
the machined surface. 3D models were also developed to 

this parameter is relatively well controlled in general, it 
may require the use of alternative lubrication methods in 
machining such as High-Pressure-Jet-Assisted-Machining 
(HPJAM) when cutting duplex stainless steels (Braham-
Bouchnak et al. 2010), cryogenic fluid when cutting tita-
nium alloys (Bellin et al. 2017) or even recently (Bertolini 
et al. 2021) on ultra-high-molecular weight polyethylene.

Residual stresses remain a key component of the surface 
integrity as they can at the macro scale lead to critical part 
distortions (Segurajauregui et al. 2007; Fergani et al. 2016). 
On a local scale, a residual tensile state can exist (Germain 
et al. 2008) which may promote the formation and propaga-
tion of cracks, drastically affecting the fatigue resistance of 
dynamically loaded components. Being mainly governed by 
the thermal dissipation and thermal gradient in the near sur-
face, several research groups tried to limit the phenomenon 
by cooling the machined surface using a cryogenic fluid. 
Caruso et al. (2014) applied liquid nitrogen when cutting a 
AISI 52,100 bearing steel. They showed that it significantly 
affects the in-depth residual stresses profiles but tended 
to induce more tensile stresses compared to cutting in dry 
conditions. On the contrary, Chaabani et al. (2020) recently 
proved that it was possible to reduce the tensile stress state 
by using carbon dioxide when cutting Inconel 718. When 
conventional machining processes, even with any type of 
assistance, are limited, it becomes necessary to use alter-
native finishing techniques. Belt finishing can be success-
fully employed to improve the surface roughness but also 
the residual stresses if the local pressure and lubrication is 
perfectly ensured (Rech et al. 2008). Burnishing is another 
relevant alternative to induce deep and intense compressive 
stresses, especially with the more advanced double duplex 
burnishing presented by Patyk et al. (2018).

Processes such as machining or burnishing not only 
affects the residual stresses state but also the subsurface 
microstructure due to the severe plastic deformations. The 
first observable parameter is the near surface hardness. 
Thamizhmanii and Hasan (2012) showed that multiple pass 
burnishing could progressively increase the surface hard-
ness whereas Bordin et al. (2014) measured a 33% increase 
when cutting additively manufactured titanium alloy. They 
also noted a 20 μm layer with a highly deformed material. 
Indeed, several authors observed the generation of a highly 
deformed layer with elongated grains when burnishing of 
steels (Kulakowska et al. 2018) but also when cutting CrCo 
alloys (Bruschi et al. 2013) or even additively manufactured 
titanium alloys (Imbrogno et al. 2016b). Deeper investiga-
tions started to be conducted on these layers especially in 
hard machining where the so-called dark and white layers 
were reported (Habak et al. 2007; Ambrogio et al. 2012; 
Umbrello et al. 2011a) showed using a XRD phase analy-
sis that white layers withstood a martensitic transformation 



surface integrity plays a major role such as in the nuclear, 
aircraft or energy industry.

Summary and future direction

Among all the published papers in the last fifteen years of 
the ESAFORM conference, turning seems to be one of the 
most studied operation as far as the macroscopic level in 
concerned; micro milling is the other machining operation 
investigated in the ESAFORM community. Regarding the 
materials, steels are by far the most studied, followed by Ti 
alloys, Ni-based alloys and composites.

achieve better prediction in milling confirming the potential 
of such approaches (Desmaison et al. 2011). The growing 
developments in numerical simulation also invited research 
groups to model microstructural evolution. Manco et al. 
(2010) successfully modelled the generation of white and 
dark layers whereas Imbrogno et al. (2016a) even predicted 
the top surface grain size and associated hardness. Their 
work was recently extended to predict lamellae thickness 
reduction and nano-hardness modifications when cutting 
an additively manufactured titanium alloy (Imbrogno et al. 
2018b).

As a summary, the Fig. 11 shows the materials that 
were investigated. Besides steel, efforts were put on hard 
to machine materials commonly used in applications where 

Table 3 Interested variables and outputs of the material removal processes investigated in the last fifteen years within ESAFORM conferences
Material modelling Chip Formation Thermal Aspects Tool Wear Surface Quality Surface Integrity

2007 3 2 1 1 3 2
2008 2 2 1 5 7 5
2009 1 - - 2 2 2
2010 8 3 1 7 9 5
2011 - 1 - 3 5 4
2012 2 1 1 3 5 2
2013 1 - 3 4 5 3
2014 4 - 2 4 4 3
2015 1 1 - 4 4 1
2016 1 2 - 2 4 3
2017 - 1 1 1 5 2
2018 1 3 - 5 7 4
2019 2 3 2 7 2 1
2020 1 2 1 1 3 1
2021 3 1 2 5 4 2
TOT. 30 22 15 54 69 40

Fig. 11 Materials discussed on 
surface integrity in ESAFORM 
since 2007

 



As far as the material modeling is concerned, with the 
growing computational power, approaches based on crys-
tal plasticity could be used to a larger extent and especially 
concerning data at the micro scale. This could be relevant 
to face challenges when modelling finishing technologies, 
small uncut chip thickness processes or micro machining. 
Such numerical models can be used as an advanced way to 
generate virtual data to be used for covering a wide ranges 
of inputs parameters, geometries, conditions, etc. Future 
trends are oriented on developing digital twins-based mod-
els which could be connected in real time to the actual 
machining operation.

Finally, better information about three dimensional pro-
cesses have to be provided where new manufacturing pro-
cesses or even for conventional processes not well studied, 
need to be investigated. Some examples could be machining 
(reaming) of flexible components with slender tools, gear 
hobbing, machining of near net shape components, etc. Pro-
viding in agile way customized solutions will be a must to 
reduce costs and as well lower environmental impact.

As overall, experimental and numerical study of material 
removal processes still represents a key issue for the future. 
In the case of experimental data, information gathered not 
only at laboratory level but as well in production plants 
could help developing robust models data driven. Develop-
ment of such technologies in the future, also considering 
the additive and subtractive hybrid processes could repre-
sent a remarkable breakthrough. Especially for this new 
hybrid process, but also for the micro and nano technolo-
gies, scientific research in this field is still complex. Aspects 
such machinability for multimaterials o functionally graded 
materials will need to be considered, and optimized working 
conditions will need to be provided. Additionally, aspects 
dealing will microstructure will need to be considered, 
trying to better define the current uncertainty observed in 
some industrial outcomes for the conventional materials in 
aspects such as chip morphology, surface roughness, etc.
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Table 3 gives a synthesis overview as far as the meso-
scopic level is concerned. In particular, contributions for 
each of the most interested outputs to be considered for 
correctly studying the material removal processes and pre-
sented in the Minisymposium on Machining and Cutting in 
different years are reported. Table 3 also demonstrates the 
relevant growth of interest associated to the experimental 
and numerical studies of the material removal processes.

In particular, the evolution of studies on chip forma-
tion in recent years shows that this theme develops around 
two distinct axes: (i) traditional and conventional study of 
chip formation at the macro-meso scale for new materi-
als, or for new machining configurations, such as cutting 
assistance. These studies make it possible to optimize the 
process parameters to improve the industrial process; (ii) 
study of chip formation zones by rapid imaging observa-
tion and numerical simulations. The local observation of 
deformation zones by high-speed cameras makes it possible 
to see machining no longer as a process, but as a means 
of deforming the material in extreme conditions. The sci-
entific problem is to calculate the strain and strain rate in 
these areas (generally done by digital image correlation), 
but also to measure geometric values (shear angle, shape of 
the elementary chip, etc.) automatically by image analysis 
using machine learning or deep learning algorithms. This 
approach by observation is limited to the surface of the 
workpiece although it permits to carry out numerical simu-
lations more reliable in order to know the mechanical and 
thermal fields over the entire cutting volume.

Also, the analysis of thermal fields in machining has 
always been difficult due to the very high temperatures 
and the very strong gradient of the chip formation zone. 
The evolution of past work shows that future studies are 
developing around a coupled approach between non-contact 
observation by thermal cameras and numerical simulations. 
The scientific problem is to have reliable local thermal mea-
surements, which is not easy because the observation area is 
very restricted and the involved phenomena very fast.

Control of tool wear is also a critical issue in terms of 
the product quality and production efficiency. The tool wear 
has been discussed with abrasive, adhesion and diffusion 
models so far. However, the actual tool wear mechanism 
depends on many physical/chemical phenomena. New mod-
els will include the other effects on the wear progress to pro-
mote prediction accuracy and describe the tool wear in the 
scientific discussion. High computational power will be also 
required for simulation of the tool wear. It is well known that 
the tool wear is associated with the temperature distribution 
on the tool face. The accurate temperature analysis should 
be done with consideration of the coolant effects, the fixtur-
ing conditions, and so on. The performance of the tool wear 
prediction will be improved with the temperature analysis.
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