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Abstract

The direct proportionality between the flow rate and the pressure gradient of creeping flows
was experimentally discovered by H. Darcy in the 19th century and theoretically justified a
couple of decades ago using upscaling methods such as volume averaging or homogeniza-
tion. X-ray computed micro-tomography (CMT) and pore-scale numerical simulations are
increasingly used to estimate the permeability of porous media. However, the most gen-
eral case of non-periodic anisotropic porous media still needs to be completely numeri-
cally defined. Pore-scale numerical methods can be split into two families. The first family
is based on a direct resolution of the flow solving the Navier-Stokes equations under the
assumption of creeping flow. The second one relies on the resolution of an indirect prob-
lem—such as the closure problem derived from the volume averaging theory. They are
known to provide the same results in the case of periodic isotropic media or when deal-
ing with representative element volumes. To address the most general case of non-peri-
odic anisotropic porous media, we have identified four possible numerical approaches for
the first family and two for the second. We have compared and analyzed them on three-
dimensional generated geometries of increasing complexity, based on sphere and cylinder
arrangements. Only one, belonging to the first family, has been proved to remain rigorously
correct in the most general case. This has been successfully applied to a high-resolution 3D
CMT of Carcarb, a carbon fiber preform used in the thermal protection systems of space
vehicles, The study concludes with a detailed analysis of the flow behavior (streamlines
and vorticity). A quantitative technique based on a vorticity criterion to determine the char-
acteristic length of the material is proposed. Once the characterized length is known, the
critical Reynolds number can be estimated and the physical limit of the creeping regime
identified.

Keywords Porous media - Permeability tensor - Pore-scale numerical simulations -
Micro-CT image - Calcarb - Characteristic length scale

Latin Letters
K Permeability tensor [m?]
d Velocity deviation tensor [m s™']
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Identity tensor

Pressure deviation term [Pa]

Position vector [m]

Darcy-scale velocity [m s~']

Pore-scale velocity [m s~']

Pore-scale vorticity [s~']

Interface area [m’]

Artificial compressibility coefficient [m'/?s~'/?)

Reference length [m]

Total number of values predicted by the strategies
1]

P Pore-scale pressure [Pa]

% Volume [m°]
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Greek Letters

) Thickness of the lateral fluid layer used in strategies B and D [m]
Porosity of the medium

Rotation angle

Dynamic viscosity [Pa 5]

Pore-scale density [kg m™)

Kinematic viscosity [ms~"]
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€« s o m

Symbols
* Non-dimensional variable
~ Deviation term

Subscripts and Superscripts

art Artificial
avg Average
cl Cluster
dg Diagonal
! Fluid

s Solid
Acronyms

CMT  Computed Micro-Tomography
PATO  Porous material Analysis Toolbox based on OpenFoam
REV  Representative Element Volume

Adimensional Groups
Re Reynolds number

1 Introduction

At the pore scale, the flow of a Newtonian and incompressible fluid in a solid porous
medium is described by the Navier-Stokes equations. Under the assumption of steady-state
flow and negligible volume forces. these equations become



Table 1 Non-dimensional

variables for making Eq. (1) Quantity Dimensionless variable
dimensionless Length rt=rjf andV* = £V
Velocity u =ufl
Pressure Pt =ptff(ul)
V-u=0
V-(pu@u)—V-(uVu)=-Vp (1)

BC:u=0 atA,

where p and p denote the density and the dynamic viscosity of the fluid, u and p the pore-
scale velocity and pressure, and Ay the fluid-solid area interface. The above system of
equations may be written in a non-dimensional form by introducing the dimensionless var-
iables reported in Table 1. In order to completely define them, three reference values need
to be chosen. In porous media, the reference velocity., U, is taken as the magnitude of the
average velocity in the domain Agnaou et al. (2017). For the reference length. #, the choice
is not trivial as porous micro-structures are very diverse and better characterized by differ-
ent lengths. The most widely adopted in the modern literature is the porous medium grain
diameter Wood et al. (2020). Once the dimensionless variables have been introduced, Eq.
(1) can be written as

Vo-u' =0
ReV* - (u* @u*) — V2iu* = -V"p* 2)
BC:u" =0 atAg

where Re is the Reynolds number defined as

oVt
Re = P (3)
The Reynolds number characterizes the relative importance of inertial and viscous
forces within a fluid. For Re << 1, viscous forces dominate and the flow is said to be in the
creeping regime, also known as the Darcy regime. In this regime, a generalized form of
Darcy’s law finds its validity at the macroscopic scale and the system of Eq. (2) becomes
Whitaker (1986)

V-U=0

v=-1g.vp @

”:

where P and U are the macroscopic pressure and velocity (see "Appendix 1") and K is the

permeability tensor. However, when increasing the Reynolds number, inertial forces are no
longer negligible and Darcy’s law loses its validity. Extensions to Darcy’s law have been
proposed to capture the physics of inertial Forchheimer (1901); Kumar and Topin (2014):
Whitaker (1996), transition (unsteady laminar) Agnaou et al. (2017), and turbulence
regimes Wood et al. (2020).
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For most engineering applications related to transport processes in porous media, mac-
roscopic models are used to evaluate the macroscopic pressure and velocity fields Ashari
et al. (2010); Derossi et al. (2019); Gerke (2006); Lachaud et al. (2017); Sahimi (2011);
Tranter et al. (2018); Xiong et al. (2015). In this way, the physics of the problem are greatly
simplified as shown in Fig. 1.

Simplifications come from the introduction of macroscopic properties, such as the per-
meability tensor, that enclose information about the microscopic interactions between the
flow and the material. The counterpart is a loss of information: the pore-scale approach
provides the detailed velocity and pressure fields from the direct resolution of Eq. (1),
whereas the macro-scale one only provides averaged (macroscopic) values of these two
fields from the resolution of macroscopic models, such as the Darcy model presented in
Eq. (4). One important advantage that emerges from the micro-scale studies is the possibil-
ity of visualizing the flow behavior in digital images. The study of streamlines and pressure
gradients throughout the domain brings very rich insight. This quantitative microscopic
information can be used to better define the characteristic length # as well as to introduce
physical parameters as transition criterion, such as the maximum local vorticity. This quan-
tity will be used in this article to derive a new criterion for the validity of Darcy's law.

The objective of this work is to establish and validate a numerical strategy to estimate
the anisotropic permeability tensor. This tensor is an essential input to the macroscopic
models. It can be determined in several ways. Obviously, experiments can be performed
to infer the effective properties. To date, this remains the most reliable and preferred way
Antohe et al. (1997): Moreira et al. (2004); Panerai et al. (2016); Renard et al. (2001);
Straatman et al. (2007). With the generalization of super-computers during the last two
decades, on the one hand the developing of pore-network models and the possibility to
perform lightweight simulations on common laptop on the other hand numerical simula-
tions have progressively gained popularity for the computation of effective properties
Gerke et al. (2020, 2018); Khan et al. (2020): Valvatne and Blunt (2004). They are particu-
larly useful to study conditions not accessible in the laboratory Borner et al. (2017). Digi-
talized geometries of porous media can be obtained either by an idealized mathematical



representation or by a reconstructed digital image. In the first case, the pore structure is
described from a statistical point of view Gerke et al. (2012) and then reconstructed by
means of small primitive objects within a finite domain Vu and Straatman (2018). Finally,
numerical simulations can be performed in order to obtain approximation of the effective
properties Davy and Adler (2017); Dyck and Straatman (2015); Jobic et al. (2019); Van
Doormaal and Pharoah (2009); Vu and Straatman (2018). In the second case, actual digital
images are obtained, typically by X-ray CMT Ali et al. (2019): Landis and Keane (2010).
and simulations can be performed on the precise geometries. Porous ceramic Gerke et al.
(2015); Haussener et al. (2010); Petrasch et al. (2008), metal foams Bodla et al. (2010):
Ranut et al. (2014), fibrous materials Borner et al. (2017); Panerai et al. (2017), and rock
samples Piller et al. (2009): Soulaine et al. (2016). are just some examples of the materials
that have already been analyzed using this approach.

Regardless of the method used to produce the digital image, pore-scale numerical simu-
lations need to be defined in terms of computational domains and boundary conditions.
In this article, we denote as strategy a generic numerical setting in terms of the consid-
ered domain (sample) and the boundary conditions of a pore-scale simulation. It is a well-
known fact Gerke et al. (2019); Guibert et al. (2016); Pickup et al. (1994) that the latter
need to be chosen carefully as they strongly impact the results if the sample scale is not
a representative element volume (REV). The strategies proposed in the literature are pre-
sented in Fig. 2

where computational domains are represented in two dimensions for an easier compre-
hension. Different comments on the strategies may be made:

— The strategies can be split into two families: strategies A Jaganathan et al. (2008);
Masad et al. (2007); Petrasch et al. (2008); Wiegmann (2007), B Guibert et al. (2016).
C. and D1 Andri et al. (2013); Bernard et al. (2005); Gerke et al. (2012); Guibert et al.
(2016), which aim to determine the permeability tensor from Darcy’s law where pres-
sure and velocity terms are obtained by solving the Navier-Stokes equations with
Re << 1 and then properly averaged; strategies D2 Guibert et al. (2016) and E Bernard
et al. (2005); Gerke et al. (2012); Guibert et al. (2016) which aim to determine the
tensor by solving the closure problem derived from upscaling techniques Barrere et al.
(1992); Whitaker (1986);

— In strategies B, C, D1/2, and E, periodic boundary conditions are imposed on the pres-
sure deviation (see "appendix 1") and on the velocity field Guibert et al. (2016);

— In strategies A, B, and C, the effective domain is enclosed between two buffer domains
in order to avoid inlet/outlet boundary effects. The averaging of the flow properties is
performed only inside the effective domain;

— In strategies B, DI, and D2, a layer of pure fluid of a thickness é is added between
the effective domain and the boundaries in order to enforce periodic boundary condi-
tions. The thickness, 4, should be large enough to make the domain periodic, but small
enough to avoid any possible influence on the problem. To be noticed that for periodic
domains & could also be set equal to zero.

~ In strategy E, the domain is made periodic by means of three symmetry operations (one
for each axis): in strategy C. the domain is made symmetric on the direction orthogonal
to the flow (in the figure, planes with normal vectors in the y and z directions).

The choice of the strategy to adopt depends on the studied porous medium. This aspect has
been highlighted numerous times in the literature. Pickup et al, 1994 Pickup et al. (1994).
investigated the impact of several flow models on the calculation of the permeability
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tensors for sedimentary structures. They demonstrated that periodic boundary conditions
are reliable in the example problems considered and that in many cases the differences
between various methods were slight. However, periodic boundary conditions can be con-
sidered only for periodic media or when dealing with volumes large enough to be consid-
ered as REV. For the other cases, a non-periodic strategy needs to be defined. Manwart
et al, 2002 Manwart et al. (2002), analyzed and compared the accuracy of two different
numerical algorithms (one based on the lattice-Boltzmann method and the other on finite-
difference techniques) for computing the permeability of three-dimensional porous media.
They argued in favor of the finite difference code for different reasons. A relevant study on
the estimation of the effects of the boundary conditions on the numerical simulations has
been proposed by Guibert et al, 2016 Guibert et al. (2016). They selected strategy A with
fixed pressure boundary conditions as the most suitable one in the case of 2D periodic
synthetic porous media. A further step in this analysis has been proposed by Gerke et al.
2019 Gerke et al. (2019). where they investigated possible strategies to capture the tenso-
rial nature of the permeability tensor when dealing with periodic stochastic reconstructions
of porous media. They came to the conclusion that strategy D was the only way to obtain
symmetric permeability tensor that preserved traversal fluxes.

The main objective of this work is to define for the first time a complete numerical pro-
cedure to estimate the permeability tensor of non-periodic anisotropic porous media when
dealing with volumes not large enough to be considered as REV. A mathematical descrip-
tion of the two families of approaches presented in the introduction is given in Sect. 2. In
Sect. 3, the six possible strategies are fully described and down-selected thanks to com-
parisons against well-known elementary test cases, such as beds of spheres and cylinders.
Actually, only strategy A was found to provide correct predictions in the most general case
of anisotropic non-periodic porous media. In Sect. 4, this strategy is applied to estimate
the permeability tensor of a carbon fiber preform, called Calcarb, and compared with data
from the literature. This section also introduces, verifies, and applies a microscopic crite-
rion based on the vorticity to estimate the limit of validity of the creeping regime. We show
that the study of the vorticity at the pore scale also helps to identify the proper characteris-
tic length of the domain. Conclusions of the work are finally presented in Sect. 5,

2 Mathematical Description of the Two Families of Approaches

As introduced before, there are two families of approaches that can be used to estimate the
permeability tensor.

The first family relies on direct simulations at the pore scale using Eq. (1). Pressure gra-
dients and velocity components are then averaged at the macroscopic scale and substituted
into Darcy’s law. The latter is conveniently decomposed into the following system

-

UL = _‘l‘(KJ.\ VPA + Kuvpr + KJ.‘VP-‘)

lu, =-Lk vp +k VP, +K_VP) 5)
o (K WP, +K

== —I-l‘(K:.rVPA + KI\VP‘ + K::VP:)



Following the pore-scale simulations, the components of the macroscopic velocity,
U,. U, U, are obtained as averaged values over the domain and the components of the pres-
sure gradients across the material, VP , VP  VP_ are obtained from the averaged pressure
values over the boundaries and the domain sizes in the x, v, z directions. The remaining
unknowns of the system are the nine permeability components, namely K. K ..... K.
Therefore, in order to have a closed system, it is necessary to perform a total of three simu-
lations by considering three different flow directions. In this way, a global system of nine
equations can be defined such as shown in Eq. (6),

Up VPLVPLYPL 0 0 0 0 0 0 Jrg -
U' 0 0 0 VPLVPIVPL 0 0 0 [ "
U' 0 0 0 0 0 0o vPvPvp |l g
vl VPEVPEVPE 0 0 0 0 0 0 (K.
vil=- o o o veveve 0o 0o o [k, )
U2 o000 0 0 VPRV VP |K,
u‘ VPPVPIPVPE 0 0 0 0 0 0 ||K,
Us 0 0 o0 VPVPIVPP 0 0 o [K
U‘ 00 0 0 0o o veveve K]

where the exponents 1, 2, 3 refer to the first, second, and third numerical simulations. For
simplicity, those simulations can be done such that the inlet flow is aligned with the x, y,
and finally z directions. Once K is determined from this system, the symmetry conditions
Liakopoulos (1965) on the ex-tra-diagonal components need to be applied in order to
enforce the equality of two components which may differ slightly from each other. To be
noted that even if the real unknowns of the tensor are six, three simulations are required to
fully compute them. In order to solve Eq. (6), the matrix of the pressure gradients should
be invertible, that is, its determinant should be different from zero. In the creeping regime.
an equivalent condition for that is

(U'xU”)-U"#0 M

The second family of strategies is based on upscaling theories to evaluate the permeability.
As long as the same physical hypotheses are used, results coming from different techniques
are the same Cushman et al. (2002); Quintard (2015). In this work, we have chosen to
adopt the volume averaging theory. The method leads to the definition of the following clo-
sure problem Barrere et al. (1992); Whitaker (1986)

Ve-Vid=1 inV

V.d=0 inV

BCT:d=0 atA, ®
BC2 : dir+1)=d(r).e(r+1) =e(r) i=123

where e is the pressure deviation term (see "Appendix 1") and d the velocity deviation ten-

sor. BC2 enforces periodic boundary conditions for the two deviation components, and the
permeability tensor is a function of the velocity deviation tensor as follows
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where € is the porosity of the medium and V the volume of the flow.

In this work, both volume averaging upscaling and direct simulations at the pore scale
are addressed using OpenFoam [57] for the simulations and Paraview Ahrens et al. (2005)
for the post-processing. Navier-Stokes equations are solved with SIMPLE Issa (1986):
Patankar and Spalding (1983), a steady-state solver for incompressible flow. The closure
problem (Eq. (20)) is solved with KclosureSolver (more information in Appendix 2), a
solver that we have implemented and that is released in the Open Source in the Porous
material Analysis Toolbox based on OpenFOAM (PATO) Lachaud and Mansour (2014);
Lachaud and Meurisse (yyyy).

3 Down-Selection of the numerical strategy

We have implemented the six different strategies shown in Fig. 2 with the objective of
verifying their validity on simple test cases to select the most suitable one. The simple test
cases considered are shown in Fig. 3 and presented in the following sections. Reference
values are available in the literature for configurations (a), (b) and (¢) Chamsri and Ben-
nethum (2015); Rocha and Cruz (2010).

We have chosen simple domains with increasing complexity thus allowing us to pro-
gressively discard inaccurate strategies. Strategies needed to be defined in terms of bound-
ary conditions for pressure and velocity. Different combinations may be considered. There-
fore, to be as thorough as possible seven sub-strategies have been defined in order to take
all combinations into account, They are summarized in Table 2,



Table 2 List of all the strategies considered determining the permeability
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Velocity and pressure settings are indicated, respectively, in blue and red. For the pressure, zero gradient
means that the pressure gradient normal to the wall is set o zero. For the velocity. the slip condition pre-
serves the velocity tangential to the wall and sets to zero the normal component

In the following sections, strategies are compared between each other and to reference
solutions. For such purpose, the following relative error is defined

n

.
. o 1 % Kl(,’/l -K .
Relative error = N ,Z —100 (10)

K

ref

where K is a generic permeability value resulted from the simulation and N is the total
number of values predicted by the strategies. As generic indication, strategies will be dis-
carded when their relative error is higher than 25%.

3.1 Periodic Cubic Arrangement of Spheres: 1-Sphere Unit Cell

The unit cell of this domain consists of a solid sphere and a cubic fluid zone (Fig. 3a) thus
leading to an isotropic porous medium for which the permeability tensor reduces to a diag-
onal tensor with equal components (K = K, = K = K_ ). Four cases are considered, each
one characterized by a different sphere radius, hence a different porosity.
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Fig.4 Dimensionless permeability estimations for the periodic cubic arrangement of spheres obtained by
applying different strategies defined in Table 1, compared to the reference values Chamsri and Bennethum
(2015); Rocha and Cruz (2010). One-sphere unit cell has been considered with increasing radius, thus with
different porosity values. Permeability values have been made non-dimensional by the square of the unit
cube dimension

The permeabilities computed with strategies A (including the 7 sub-strategies). B, DI,
and D2 are plotted in Fig. 4.

Strategies C and E are not necessary here as the domain is already symmetric. Perme-
ability values are conveniently made dimensionless with the square of the unit cube dimen-
sion. Mesh refinement has been selected after a convergence analysis (see Appendix 3).
Several observations can be made:

e Since the domain is symmetric, strategies B, D1, and D2 have been set with 6 = 0.
Moreover, always because of the symmetry of the domain, strategies C and E are iden-
tical to B and D2, respectively:

The relative error between the reference and strategy D1 and D2 is less than 1%;
Results from strategies Al and A2 differ by less than 0.01%. The only difference
between them is that strategy A2 displays a longer convergence time (doubled). For this
reason strategy A2 is discarded in what follows;

® Boundary conditions defined for strategies A3, A5, and A7 are not able to provide
accurate predictions in terms of permeability (relative error higher than 25%). They are
then discarded.

3.2 Periodic Array of Parallel Cylinders With a Face-Centered Square Arrangement

The unit cell of this periodic orthotropic structure is presented in Fig. 3b. In this case, the
permeability tensor is characterized by two different values, K, = K, and K_, whereas
all the extra-diagonal components are equal to zero. Ten different cases are defined, each
characterized by a different value of porosity. The permeability components are estimated
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using strategies Al, A4, A6, B, D1, and D2. After being made dimensionless by the square
of unit cube dimension, they are compared with the reference values in Fig. 5,

The domain is symmetric, so strategies C and E are not considered and é = 0 for strate-
gies B, DI, and D2. Strategies D1 and D2 lead again to a similar description of the prob-
lem. Their results differ by 0.1%, and that is why, we decided to group them under the
generic name of Strategy D. Results from strategy D are very accurate, the relative error
with the reference is always lower than 5%. Due to its boundary conditions and in particu-
lar to the forcing of the periodicity in one direction only, strategy B is not able to accu-
rately capture the orthotropic tensor (relative error around 30%). For this reason it has been
discarded.

3.3 Periodic Cubic Arrangement of Spheres: Multiple-Sphere Unit Cell

This arrangement of spheres is produced by cloning several times the single-sphere unit
cell along each direction. Theoretically, the permeability of the domain is the same regard-
less of the number of single spheres considered. However, due to the effects of the bound-
ary conditions the estimated permeability values differ as it has been observed above,
Indeed, by increasing the domain size, hence the number of spheres, the effect of the
boundaries should reduce and the difference between the true and the estimated permeabil-
ity should tend to zero.

The porosity of each unit is constant and equal to € = 0.875, closer to the porosities
expected for the applications we are targeting. Different cases are analyzed, each defined
by a different number of unit cells along each direction. In order to make a reasonable
comparison, the mesh discretization of a single cell is kept the same regardless of the total
number of cells. This makes the size of the mesh to exponentially increase every time a
unit cell added and we have stopped after 6 unit cells per direction because of the compu-
tational cost. Strategies Al, A4, A6, and D (with 4 = 0) are used to estimate the perme-
ability. Once made dimensionless with the square of the unit cube dimension, the results
are plotted in Fig. 6.
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Table 3 Relative errors between strategies A with respect to strategy D for the periodic cubic arrangement
of spheres by increasing the number of unit cells

1-Cell (%) 2-Cells (%) 3-Cells (%) 4-Cells (%) 5-Cells (%) 6-Cells (%)

Strategy Al 48 1.3 0.22 0.31 045 048
Strategy A4 1.17 16.3 228 164 18.0 10.4
Strategy A6 36.5 26.5 19.6 139 10.4 8.1

By increasing the number of unit cells, the relative errors for different strategies decrease

Strategies C and E are not considered since the domain is symmetric. Different
observations on the results can be made:

Strategy D provides constant results with increasing unit-cell numbers, as expected;
As expected, strategies Al, A4, and A6 have the tendency to converge to the results
of strategy D, with relative errors given in Table 3;

e Strategy A4 has a non-monotonous converging rate. A possible explanation is that
this boundary condition forces the flow to be aligned to the inlet-outlet axis leading
to a wrong velocity field, thus wrong results Gerke et al. (2012). By increasing the
unit cells in the domain the effects of the boundaries start to affect less the field and
the estimated permeability converges to the correct value, This strategy has been
discarded.

e Strategy Al has the fastest convergence. This strategy is the one that less affects the
simulations and hence the results.
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Fig.7 Dimensionless permeability estimation of the periodic cubic arrangement of tilted cylinders as a
function of the orientation angle (@) for the unit cell of Fig. 3d estimated by different strategies and com-
pared with results of strategy D

3.4 Periodic Cubic Arrangement of Tilted Cylinders

The unit cell of the periodic porous medium, Fig. 3d, consists of a solid cylinder placed in
the middle of the unit cube. It is progressively tilted along the y axes until a full rotation of
90 degrees. It is the simplest periodic test case capable of providing extra-diagonal terms in
the permeability tensor. Indeed, the latter is characterized by the three diagonal terms plus
the extra-diagonal K. = K, components.

Ten different cases are defined, each characterized by a different rotation angle ¢. The
dimensionless tensors inferred from strategies A1 and A6 have been plotted and are com-
pared in Fig. 7. Results from the closure problem (strategy D with 6 = () are considered
here as reference results.

Different observations can be made:

® All the strategies correctly predict (error below 10%) the constant values of the K,
component during the rotations;
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Fig.8 Dimensionless permeability estimation of the non-periodic cubic arrangement of tilted cylinders as
a function of the orientation angle () for the unit cell of Fig. 3e estimated by strategies Al and A6, while
strategy D is used as reference only for the three periodic cases 8 = 0°,45°, and 907

e Strategy Al predicts diagonal components with a maximum error of 5% and extra-diag-
onal terms within 10% of error. The error has been observed to remain almost constant
for all the rotation angles,

e Strategy A6 correctly predicts the extra-diagonal term (error less than 1%) but not the
diagonal ones (higher relative errors with respect of Al). The symmetric condition
for the velocity field on the lateral boundaries strongly reduces the anisotropy features
inside the domain;

e Strategies C and E lead to a good prediction of the three diagonal components (espe-
cially strategy E), but they completely cancel the non-diagonal term: by construction
both of them annihilate the transverse flow and kill any anisotropy features inside the
domain. So, the use of symmetry operations allows us to use the periodic boundary
conditions but at the price of losing the ability to predict extra-diagonal components.
For this reason, these two strategies have been discarded.

3.5 Non-Periodic Cubic Arrangement of Tilted Cylinders

The last basic test case consists of a non-periodic cubic arrangement of tilted solid cylin-
ders, Fig. 3e. The case is similar to the previous one, with the only difference that now the
domain is non-periodic for most of the values of @: thus, it has been possible to check the
strategies on a non-periodic domain in order to be relevant for fibrous media.

As in the previous case, ten different values of the rotation angle are considered and
dimensionless permeability results are plotted and compared in Fig. 8. Strategies Al and
A6 are considered and results are verified by means of strategy D with é = 0 only for those
angles that make the domain periodic: # = 0°,45°, and 90°. The generic strategy D with
4 # 0is found to be unsuitable in this study. When having small domains (as in this article)



Fig.9 Volume rendering of the
CMT of Calcarb

the value of 6 to make it periodic becomes too big with respect to the domain size to avoid
any influence on the results, This strategy has to be discarded for non-periodic media.

Again, strategy Al leads to a prediction with less than 5% of error in the three periodic
cases, while the other two lead to errors above 40%.

Thanks to these six cases it has been possible to compare different strategies. Strategy
Al has been proven to be the only suitable one for generic non-periodic porous materials,
It is the only one to predict with a good accuracy both diagonal and extra-diagonal terms of
the permeability tensor. The boundary conditions used in this strategy are the ones that less
affect the numerical simulations.

4 Selected Strategy Applied to an Anisotropic Non-Periodic Medium

Now that strategy Al has been selected to estimate the permeability tensor, let's apply it
to a real case. The geometry considered is a sample of virgin Calcarb, illustrated in Fig. 9.

Carbon fiber preforms, such as Calcarb Brochure (2017), are used as skeleton in heat-
shield materials Mustard et al. (2013); Stackpoole et al. (2008); Wright et al. (2014) with
average porosities higher than 85 %. Its micro-structure is generally characterized by fibers
preferentially aligned at about + 15 degrees with one of the planes and this gives transverse
isotropic properties to the material. The digital representation of its micro-structure has
been acquired at the Advanced Light Source at Lawrence Berkeley National Laboratory
and more details can be found in Borner et al, 2017 Borner et al. (2017). The resulting
dataset (Fig. 9) has a resolution of 200 X 200 X 200 voxels, with a voxel size of 2.6 um.
Moreover, the dataset has been characterized in terms of volume fraction as a function of
the pore size in the through-thickness direction, computed using a granulometry method in
Geodict. Fig. 10

shows the results of this analysis and in particular the average pore-size in the through-
thickness direction for the domain can be estimated to be equal to £, = 135 um. We can

avg
conclude that the Calcarb dataset analyzed in this paper (Fig. 9) is too small to be a REV
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Fig. 10 Granulometry analysis done in Geodict Borner et al. (2017). The average pore size in the through-

thickness direction for the domain can be estimated to be equal to £, , = 135um

of the material: the size of 520 gm leads to an average of 4 pores for each direction, not
enough to guarantee the domain to be representative.

4.1 Mesh Convergence Analysis

The mesh has been created by means of the OpenFoam utility snappyHexMesh. This tool
can be considered as a mesh sculptor since it requires an already existing base mesh (usu-
ally created with the blockMesh utility) to chisel it into the desired mesh. The quality of the
resultant mesh strongly depends on the tuning of different parameters. For the purpose of
this simulation, the parameters are tuned in order to produce a good-quality mesh (small
values of skewness and non-orthogonality, and aspect ratio close to one) and to define a
mesh as homogeneous as possible. Once the parameter configuration process is over, a con-
vergence analysis is required in order to check that the defined mesh does not influence
the results. In order to do that, the behavior of a physical quantity should be monitored
by repeating pore-scale numerical simulations with increasingly fine meshes. The pressure
ditference between the inlet and the outlet is considered as an appropriate criterion to study
the convergence, since this quantity is strictly related to the permeability estimation. At this
stage, these cases will be distinguished by the value of the input velocity and Re values will
not be given, A further analysis will allow the proper choice of the characteristic length for
the definition of the Reynolds number, Three different inlet velocity values (correspond-
ing to three different Reynolds numbers) are considered in order to include in the mesh
analysis both the creeping and the inertial regimes. Indeed, to detect the limit of validity of
Darcy’s law we need a good mesh in both regimes. The mesh convergence study has been
made with pressure residuals lower than 10~ and velocity residuals lower than 107*. The
results of this study are shown in Figs. 11 and 12.
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Fig. 11 Mesh convergence analysis of the digitalized Calcarb domain Fig. 9 characterized by three differ-
ent inlet velocity values. The pressure difference between the inlet and the outlet is studied as the number
of cells within the domain increases, Due to a different scaling in the pressure difference, cases (a) and (b)
correspond to the creeping regime, whereas case (¢) to the inertial one
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Fig. 12 Relative error convergence analysis of the digitalized Calcarb domain Fig. 9 characterized by three
different inlet velocity values, Cases (a) and (b) correspond to the creeping regime, whereas case c) to the
inertial one. Lines with first-order slopes have been plotted to show the convergence order of the numerical
method

In Fig. 11 it is possible to observe how the monitored quantity converges by refining the
mesh, Moreover, for small velocities, cases a) and b), a creeping flow regime is expected
thus, the pressure difference results are similar and just scaled between the two different
velocities due to the linearity of the Stokes problem. However, as the velocity increases,
case ¢), the appearance of inertial effect leads to different pressure difference relationships,
thus scaling the value is no longer sufficient (see detailed investigation for numerous inlet



Fig. 13 Some details of the meshed geometry. The final mesh accounts about 25 million cells

velocities in the next section). Simulations a) and b) capture the creeping regime: simula-
tions ¢) captures the inertial regime. The mesh convergence analysis is then performed for
both regimes. Figure 12 shows the behavior of the numerical error between two consecu-
tive simulations

AP!H-I - APII

c:‘l'l‘07'=AP_'Hl (“)

where the index n + | indicates the numerical simulation with more mesh refinement. In
the figure the green lines have first order slopes. The numerical methods is then first order
with respect to the discretization. The errors decay until they stabilize around 10~ and 10~#
when the grid-size reaches the image resolution (2.6 gm). Based on this observation we
have decided to select the 2 million cells-mesh to proceed with the computation of the per-
meability tensor, Some details of the meshed geometry are shown in Fig, 13

4.2 Permeability Tensor

The objectives of this section are twofold: compute the permeability tensor of the Calcarb
sample and investigate the validity of Darcy’s law corresponding to the creeping regime
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Fig. 14 Permeability components of the digitalized Calcarb domain by varying the inlet velocity

at the pore scale. The strategy Al, chosen from the analysis detailed in Sect. 3, has been
applied for different values of the inlet velocity. The computed permeability components
are presented in Fig. 14

It is possible to notice that when the inlet velocities are higher than 0.1 m/s, the com-
ponents of the permeability start to decrease. This is due to the appearance of non-linearity
effects. As said in Section 2.1, in order to take those effects into account at the macroscopic
scale, the Forchheimer correction should be considered. However, for velocities lower than
0.1 m/s, the flow is in the creeping regime and the predicted tensor is constant and equal to

156107 1.39107'"  1.0210°"
K=|139107"" 1.63107"" —~54107"* |w’ (12)
= | 1021071 =541072 1151071

. K 4K, K_+K., K_+K,
where the average of the extra-diagonal terms ( —, and —; ) have been con-

2 " 2 2
sidered to force tensor symmetry, The obtained permeability tensor characterizes just the
domain considered and not the whole material and this makes really difficult to check the
results. However, this domain has already been studied by Borner et al, 2017 Borner et al,
(2017), by using a different approach' and by making several simplifications, reducing the
tensor to just two scalars: in-plane and through-thickness components, In order to compare
results of Eq. (12) a diagonalization procedure is required in order to write the tensor
aligned to the principal axes of rotation

1741071 0 0
K = 0 149107 0 n’ (13)
— 0 0 L1107

! The computation of the permeability is based on Monte Carlo simulations.



and results have a relative difference around 42% with respect to the prediction obtained by
Borner et al, 2017 Borner et al. (2017).

4.3 Characteristic Length of the Domain

As seen before, the relative importance between inertial and viscous forces within a fluid
is characterized by the Reynolds number (Eq. (3)). Once defined, this parameter allows the
determination of the flow regime hence which equations must be considered for its resolu-
tion. The problem is that a characteristic length # needs to be defined and this choice is not
trivial Wood et al. (2020). Both macroscopic and microscopic information can be consid-
ered for its determination and in this article we propose a new method based on the latter.
This new technique is based on the vorticity vector, which is defined as

o=VxXu (14)

It describes the tendency of a flow to rotate. For an incompressible flow this field is gov-
erned by the following equation’

Do 2

E-(w-V)u+vV(o (15)
Vorticity is therefore generated close to boundaries where velocity gradients contribute to
the stretching/tilting term (the first source term at the second-hand side). Once generated,
the vorticity diffuses into the entire domain due to the diffusion term. Due to the lincar
behavior of the velocity, the vorticity increases proportional to the magnitude of the veloc-
ity in the creeping regime since the source term remains the same. However, as soon as the
creeping regime falls, non-linearities in the velocity field change this simple trend. So, a
simple way to check the validity of the creeping regime is to keep under observation the
mean value of the vorticity over the whole domain. To investigate the loss of proportional-
ity of the velocity (linear dependence on velocity) which exists in the creeping regime, it is
possible to consider the dimensionless vorticity, defined as

£
@ —wU (16)

whose mean value remains constant in the creeping regime.

In order to illustrate this concept, let’s apply it to the I-sphere unit cell case shown in
Fig. 3a with a high porosity value (¢ = 0.875) to simulate the case of flow around a sphere.
This is a well-known case and according to a Reynolds number computed with respect
to the diameter of the sphere, the limit for the creeping regime is usually set between 0.1
and 0.5 according to different authors Almedeij (2008); Bagheri and Bonadonna (2016);
Mikhailov and Freire (2013). As done in section 4.2 for the Calcarb geometry, let’s first
evaluate the permeability value of the high porosity I-sphere porous medium for differ-
ent Reynolds numbers. Then, based on those values, a limit for the creeping regime can
be indirectly estimated by plotting the evolution of the estimated permeability or of the
drag. A change in the slope indicates the appearance of inertial effect Almedeij (2008);
Bagheri and Bonadonna (2016); Mikhailov and Freire (2013). The limit can be inferred
by directly evaluating for each simulation the mean vorticity value in the domain. This

* The vorticity equation has been derived by taking the curl of the transient momentum equation,



Table 4 Results for the high porosity 1-sphere porous medium case (Fig. 3a) with different Reynolds num-
ber in terms of permeability and mean vorticity over the domain. The A values refer to the quantity differ-
ence with respect to the lowest inlet Reynolds case

Re 0.001 0.01 0.1 0.3 1 10 100

AK* 0.09911 0.09911 0.09912 0.09918 0.09939 0.11471 0.17641

K* ! 0.00 % 0.010 % 0.071 % 0.283 % 15.74 % 7799 %
[w| 3985e+06  3.985c+06  3.985¢+06  3.984e+06  3.982¢+06  3.801e+06  3.2116e+06
Alw*] / 0.00 % 0.003 % 0.025 % 0.070 % 463 % 1942 %

Table 5 Permeability and mean vorticity variation for the Calcarb geometry as function of different inlet
magnitude velocities

Re,, 0.01 005 0.1 0.3 1 5 10 50 100
AK* ! 0.00 0005 % 0008 %  0.1% 1.2% 352% 240% 47.1 %
Alw|* 0.00 0005 % 0.009%  0.11% 0.65 % 097 % 393 % 751 %

The A values refer to the quantity difference with respect to the lowest inlet Reynolds case

technique has the additional advantage of requiring fewer simulations. Results are shown in
Table 4. where the diameter of the sphere has been considered as the characteristic length
of the domain for the Reynolds numbers.

As it is possible to see, both the permeability and vorticity start to change for Re = 0.1,
but a significant variation can be really appreciated after Re = 1. So, depending on the pre-
cision desired, the creeping regime limit could be set at different Reynolds. One of the
main advantages of this method is the fact that it is possible to identify in the domain the
area where the vorticity presents its maximum values, that is, where non-linearity effects
affect more the flow. In other words, it points to the area of the domain that is first subject
to a transition to a different flow behavior. This area could be considered as the physics-
based characteristic length of the domain. In this case of the high porosity I-sphere porous
medium, the vorticity technique identifies the sphere area, leading to a characteristic length
equal to the sphere diameter, as expected.

Let’s now apply the same method to the Calcarb geometry. Results are shown in Table 5.

The average pore-size length presented in Sect. 4, £, . = 135 um, has been considered
as the characteristic length for the computed Reynolds number denoted Re,,,.. In the table A
is taken as the difference of the quantity between a given simulation and the lowest Reyn-
olds case. Based on the A values it is possible to set the limit for the creeping regime as
Re,, . between 1 and 5, depending on the acceptable tolerance. As previously done, the vor-
ticity can be now used to locate the portions of the domain where non-linearities effects are
dominant. By progressively increasing the velocity in the domain it is possible to observe
that the dimensionless vorticity field assumes its maximum values mainly inside a specific
area in the domain®. This area is shown in Fig. 15 where on the right it is enlarged and the
first obstacle found in the upwind direction is highlighted in red: a cluster of fibers with
diameter 7, ~ 80 pm.

* For the moment the method is based on a qualitative analysis of the vorticity field. More analysis with
different geometries should be performed to make the analysis more rigorous,
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Fig. 16 Strcamlines visualization in the domain and zoom on the characteristic area of the domain with
flow behavior at different Reynolds number. Streamlines are colored based on the velocity magnitude

A verification on the vorticity analysis is given by a direct observation of the flow
behavior. By referring to the left of Fig. 15, let's assume a flow is coming along the x direc-
tion. About halfway through the domain, the flow faces the big cluster of fibers highlighted
in red in Fig. 15. When velocities are small enough, the flow overtakes the cluster with-
out any particular problem and therefore continues toward the outlet; with the increase in



velocities, a part of the flow close to the right boundary (¥ = 0) starts to move toward the
center of the domain. This behavior becomes more and more marked with increasing Reyn-
olds as shown in Fig. 16; when Re,, ~ 10, two counter-rotating vortices are formed in the
area downstream of the cluster. So, the flow close to the right boundary, first overtakes the
cluster, then feeds the vortices, and finally spreads toward the center of the domain; by
further increasing Reynolds, the high-vorticity flow from the back of the cluster spreads
the non-linearity effects all over the domain and this leads to the formation of different
vortices. Therefore, the area downstream of the cluster is found to trigger the transition to
inertial regime for the whole domain. This cluster of fibers is the same found through the
vorticity field analysis, with a diameter of £, ~ 80 um. By recalling the average pore-size
length 7, . = 135 pm presented in Sect. 4, it can be easily noticed that the red box is char-
acterized by a cluster size that is nearly half of the pore domain average.

This analysis allows taking into account the real arrangement of the fibers inside the
domain, however, it is limited to a specific case and with a different sample all the proce-
dure should be repeated.

The Reynolds number can be defined by using £, and thus the limits of the creeping
regime Agnaou et al. (2017): Dybbs and Edwards (1984) expressed as

Re ; < 0.5 — creeping regime

It should be remarked that this technique investigates the limit of the creeping regime, that
is the weak inertial regime Agnaou et al. (2017) where flows are no longer fully viscous but
still steady. Thanks to it, we are able to provide a physical limit to the applicability of this
study in the estimation of the permeability tensor. Future analysis and developing on this
technique are, however, necessary.

5 Conclusions

In this work, a numerical strategy has been defined in order to characterize the dynamic
interaction between a flow and a generic anisotropic non-periodic porous material. Spe-
cific attention was paid to the definition of the computational domain and the boundary
conditions by defining different strategies and comparing their results on simple test cases.
Both periodic and non-periodic geometries were considered in order to be as generic as
possible. The selected strategy is based on the direct resolution of the Navier—Stokes equa-
tions under the assumption of creeping flow in order to estimate the physical quantities
that appear in Darcy’s law and leave the permeability tensor as the only unknown. In order
to close the system and obtain all the components of the tensor three pore-scale numeri-
cal simulations need to be considered. Pore-scale simulations in the real geometry bring
numerous information such as pressure gradients and velocity fields. All this information
has been used in this article to introduce a criterion for delimiting the creeping regime with
the onset of the inertial regime. This criterion is based on the vorticity field, and it has been
verified and applied to the high-porosity I-sphere porous medium and to the Calcarb data-
set. As shown in the results, the limit strongly depends on the error tolerance chosen to be
acceptable, The analysis of vorticity was also adopted to define a physics-based character-
istic length in the domain which has been used to define the Reynolds number and its value
corresponding to the onset of the inertial regime, This criterion can be used to train deep
learning techniques in the process of automatic identification of the physics-based char-
acteristic length in a generic domain. The numerical framework that has been developed



during this study is available in the Porous material Analysis Toolbox based on OpenFoam
(PATO) released Open Source by NASA (www.pato.ac).

Appendix 1: Remarks on the Volume Averaging Method

This appendix has the only purpose to introduce the concepts of the volume averaging
method used in this article. Further details can be found in the literature Whitaker (2013).

The volume averaging is a technique used to derive continuum-macroscopic equations
for multiphase systems. In this way, the complexity of a porous medium is replaced with an
equivalent porous-continuum model in which each point is characterized by the properties
of a representative elementary volume (REV) centered on it. Within this, REV variables
can be averaged. Two different definitions of averages have been adopted: the phase aver-
age which in this article has been used for the pressure term

1
P=— [ pdv
Vf v, (17)
and the intrinsic average used for the velocity field
U= av
Y v - (18)

REV

Inside the REV, each variable can be decomposed (Gray's decomposition Gray (1975))
as the summation of its average plus a deviation contribution. For the pressure field, this
decomposition is as follows

p=P+p (19)

Appendix 2: KclosureSolver

KclosureSolver is a solver implemented in PATO to solve the closure problem Eq. (20). By
following the work of Anguy and Bernanrd, (1994) Anguy et al. (1994), transients terms
have been added to the system to improve its stability. The desired solution is taken at the
steady state. An artificial compressibility, ¢, and an artificial viscosity coefficient. y . are
also introduced. The modified transient problem is as follows

(od
=+ Ve - Vi(u,d) = LinV

J %+('2V-4=()inv (20)
BC1 :é:ﬁatA/,

BC2 : d(r+1) =dr).e(r +1) =e(r) i = 1,23

The two equations are solved sequentially. Each equation can be iterated in a loop. The
time integration is carried out through an implicit scheme.



Table 6 Mesh convergence analysis with strategy Al for the 1-sphere unit cell case defined in Sect. 3 with
constant porosity ¢ = 0.55

N cells 2414 11795 34099 74352 138911 233039 362489 533190
Error % 272 1.37 1.02 0.66 0.56 0.01 0.01 /
V 5431 c-4 6.8 ¢-5 20e-5 8.5¢-6 4.3 ¢-6 25¢-6 1.6 ¢-6 1.1 e-6

rario

The error® is evaluated with respect to the result of the finer mesh. V. is the ratio between the volume of

oo
the biggest finite-volume cell in the domain and the domain itself

Appendix 3: Mesh Convergence Test Cases

In Sect. 3, numerical simulations on six test cases are presented. The mesh refinement
has been selected after a convergence analysis. By considering the 1-sphere unit cell
with porosity ¢ = (.55, results of the convergence study with strategy Al are presented
in Table 6.

The error% is evaluated taking into account the permeability estimation of two con-
secutive simulations as follows

K, - K, I
Finer_Mesh Coarser_Mesh
error% = 100 — —

(21

K Finer_Mesh

The quantity V,,, is the ratio between the volume of the biggest cell in the domain and the
domain itself. From the results in the table, we can see that the convergence of the mesh
is immediately achieved since the error is always decreasing by increasing the refinement,
This trend, however, should stop when the tolerances of the simulation are reached. That
is what happens in the table for the most refined meshes. The resolution of the mesh with
233039-cells can be then selected for the analysis in Sect. 3.
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