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Abstract
Due to its capacity to evolve in a large solution space, the Simulated Annealing (SA) algorithm has shown very promising 
results for the Reverse Engineering of editable CAD geometries including parametric 2D sketches, 3D CAD parts and assem-
blies. However, parameter setting is a key factor for its performance, but it is also awkward work. This paper addresses the 
way a SA-based Reverse Engineering technique can be enhanced by identifying its optimal default setting parameters for the 
fitting of CAD geometries to point clouds of digitized parts. The method integrates a sensitivity analysis to characterize the 
impact of the variations in the parameters of a CAD model on the evolution of the deviation between the CAD model itself 
and the point cloud to be fitted. The principles underpinning the adopted fitting algorithm are briefly recalled. A framework 
that uses design of experiments (DOEs) is introduced to identify and save in a database the best setting parameter values 
for given CAD models. This database is then exploited when considering the fitting of a new CAD model. Using similar-
ity assessment, it is then possible to reuse the best setting parameter values of the most similar CAD model found in the 
database. The applied sensitivity analysis is described together with the comparison of the resulting sensitivity evolution 
curves with the changes in the CAD model parameters imposed by the SA algorithm. Possible improvements suggested by 
the analysis are implemented to enhance the efficiency of SA-based fitting. The overall approach is illustrated on the fitting 
of single mechanical parts but it can be directly extended to the fitting of parts’ assemblies. It is particularly interesting in 
the context of the Industry 4.0 to update and maintain the coherence of the digital twins with respect to the evolution of the 
associated physical products and systems.

Keywords Sensitivity analysis · CAD model parameters · Simulated annealing · Reverse engineering · Digital twins

1 Introduction

Today, being able to reconstruct or update 3D representa-
tions of existing products and systems has become main-
stream to support the creation and exploitation of digi-
tal twins in the context of Industry 4.0 [1]. The relative 
ease of access to more or less sophisticated 3D acquisi-
tion devices has certainly accelerated the demand while 
extending the range of possible applications. However, 
point cloud processing and Reverse Engineering (RE) of 
CAD models are not yet fully automatized. The resulting 
models are not fully exploitable by CAD software and the 
patch-by-patch reconstructions do not meet the Industry 
4.0 requirements [2]. Most of the existing tools for RE 
ends up with non-editable dead models in which the struc-
ture and shape of the CAD models are frozen without any 
possibility to act on their parameter values that are even 
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not accessible anyway. Only the position and orientation 
of the constitutive parts can be updated. Commercial soft-
ware like CATIA V5, DesignX or SpaceClaim mostly rely 
on patch-by-patch reconstruction, with some capabilities 
to reconstruct a limited number of features like revolves, 
extrusions, etc. However, this possibility is limited when 
the part is complex with many features. The capabilities 
of dealing with the reconstruction of complete assemblies 
while satisfying constraints are hardly supported. The 
chosen references at the beginning of the reconstruction 
process normally go all along the way in the traditional 
RE and do not allow any modification at the end of the 
process, thus limiting the users to go back to any step 
during the reconstruction process. Even through a direct 
modeling strategy offered by some of those tools, the 
modification and update are still time-consuming as they 
act at a rather low-level, i.e., the patches. Some research-
ers are also working directly on the patches. For instance, 
Borhen Louhichi et al. [3] presented an approach to fit 
the B-Rep surfaces to the deformed meshs resulting from 
Finite Element Analysis (FEA). This approach allows for 
rebuilding the CAD model after analysis by extracting 
geometric information from the deformed mesh. Mesh 
partitions are paired with their underlying CAD topology 
prior to the FEA (Triangles to B-Rep Faces, segments to 
B-Rep edges). The approach is limited to basic primitive 
(i.e., sphere, plane and cylinder, etc.) to update the B-Rep 
by fitting primitive surfaces to the deformed mesh. Thus, 
current approaches fail to answer the update problem, and 
this is a major limitation which prevents the fast update of 
digital twins with respect to the evolution of the physical 
ones in the scope of the Industry 4.0. Moreover, not only 
they can be used to solve the update problem, but editable 
reverse engineered CAD geometries can also be modified 
in the later stages of the product development processes 
(PDP). In this paper, the update problem is transformed in 
a fitting problem for which the optimal parameter values 
of CAD models have to be found in order to minimize the 
deviation between the digital twins and the point clouds 
coming from the digitization of the physical twins.

There are few methods to reconstruct editable CAD 
geometries. Among them, metaheuristic algorithms like 
Simulated Annealing (SA), Particle Swarm Optimiza-
tion (PSO) and Genetic Algorithm (GA) have been cleverly 
used to optimize the parameters of the CAD geometries to 
fully fit in the point cloud obtained from data acquisition 
devices [4–7]. These metaheuristic algorithms try to find 
global optimal solutions by both diversifying and inten-
sifying the search in a large solution space. Even if such 
algorithms proved to be very beneficial to support the RE 
process, the tuning of their setting parameters is not an easy 
task. This paper addresses the way SA-based reconstruc-
tions can be enhanced by identifying optimal default setting 

parameters for the fitting of CAD geometries to point clouds 
of digitized parts.

The RE process described in [4] considers as inputs the 
digitized point cloud, the CAD model to be fitted and the set 
of its parameters to be modified to minimize the deviation 
between the two. The applied metaheuristic SA algorithm 
has a stochastic behavior [8], with few knowledge on how 
the CAD parameter values are to be changed throughout the 
optimization. Therefore, if the SA setting parameters are not 
properly chosen, the fitting process may end up with either 
under or over-fitting of the CAD parts. Figure 1a shows 
a bad fitting of a pneumatic pump consisting of multiple 
parts. Some control parameters of the CAD models that 
drive the shapes are under fitted (e.g. l3 ) while other are 
overfitted ( l1 , l2 , d1 and d2). To avoid bad quality fitting of 
CAD models and assemblies, a tuned SA-based fitting algo-
rithm is used with setting parameters obtained following the 
tuning strategy proposed in this paper (Fig. 1b).

It is well known that good parameter settings have a sig-
nificant effect on the performance of an algorithm [9]. For 
example, SA algorithm is sensitive to the cooling factor, 
while a tabu search algorithm relies on a good choice of the 
tabu tenure [10]. A possible way to understand the influence 
between the output and parameters’ evolution is sensitivity 
analysis [11, 12]. It has been used in various contexts, as, 
for example, for the parameter choices of SA for continuous 
network design [13], and various indices have been speci-
fied [14–16]. Robinson et al. [17] proposes an approach to 
determine which parameters defining the features in a CAD 
model need to be modified, and by what amount, to opti-
mize component performance. It uses sensitivities computed 
for the parameters to determine the change required in each 
to optimize the component by first calculating the change 
of the objective function due to the perturbation of a CAD 
parameter. In this approach, design velocities refer to the 
rate of boundary surface movement due to a parameter per-
turbation, which is closely related to a shape fitting problem 
and the CAD parameter’s sensitivity. The overall approach 

Fig. 1  Fitting of a CAD assembly on the point cloud of a digitized 
pneumatic pump: coarse result without tuning the parameters of the 
SA-based fitting algorithm (a); and good-quality result after tuning 
(b)



is unaffected by the topology changes and the complex-
ity of the CAD model. The sensitivity analysis allows the 
evolution of the influence of the CAD model parameters 
to be monitored throughout the fitting process. Comparing 
the obtained sensitivity evolution curves to the changes of 
the parameters directly imposed by the SA algorithm pro-
vides hints to improve the fitting process. Some basic and 
advanced parameters are required by the SA-based fitting 
algorithm to reverse engineer CAD models and, in this 
paper, a new framework is proposed that couples sensitivity 
analysis of the CAD parameters to SA algorithm and identi-
fies the default parameters configurations with the help of 
a design of experiments (DoEs). Within this framework, a 
database is created to store together the CAD models with 
their best SA parameters configuration. Later, if a new CAD 
template is to be reverse engineered following this SA-based 
fitting technique, a case-based approach can be applied for 
the setting of the SA parameters by reusing the values stored 
for the most similar CAD model in the database.

The contribution of this paper is threefold: (1) a new 
framework using design of experiments (DoEs) for the crea-
tion of a database of CAD models stored together with their 
best SA-based fitting configurations; (2) sensitivity analy-
sis to study the influence of SA on the parameters of CAD 
models during the fitting process; (3) identification of the 
default setting parameters for SA-based fitting to obtained 
best-fitted geometries using DoEs. The proposed strategy for 
tuning the SA parameters is generic in the sense that it could 
be also applied to other problems where SA is needed, and 
for which a database of best configurations could be set up 
for case re-use through similarity check.

The paper is organized as follows. Section 2 reviews 
some works related to sensitivity analysis as well as to the 
way SA parameters can be tuned to improve its overall per-
formance. SA-based fitting of CAD models is briefly dis-
cussed in Sect. 3. Section 4 details the overall framework 
for the identification of best setting parameters to be used 
by the adopted SA-based fitting algorithm. The results are 
discussed in Sect. 5 and the approach is validated on several 
examples including local and global fitting on real-scanned 
and virtually-generated point clouds. Lastly, Sect. 6 con-
cludes the paper and discusses future works.

2  Related works

Studies and experimentations have shown that the SA set-
ting parameters, e.g. initial temperature, initial starting 
position and maximum number of iterations have a clear 
effect on the final fitting quality. Many attempts have been 
made to optimize the SA algorithm by tuning its setting 
parameters. For instance, Yang Jin et al. [13] studied the 
effects of parameters choice on the performance of SA 

algorithm to solve the continuous network design prob-
lem, but their findings and focus were mostly towards the 
temperature decrease rate and iteration number, without 
considering other parameters that also affect the quality of 
their SA-based optimization. Shi-hua Zhan et al. [18] pro-
posed a new List-Based Simulated Annealing algorithm 
(LBSA) to solve the Traveling Salesman Problem (TSP) in 
which LBSA requires a novel list-based cooling schedule 
to control the decrease of temperature. In their method, 
the temperature list is adopted iteratively according to 
the topology of the solution space of the problem. The 
effectiveness and the sensitivity of the parameter of the 
list-based cooling schedule are illustrated on the TSP 
benchmark problem. In this method, a list of initial tem-
peratures are generated and tested but again only tempera-
ture is considered to optimize the SA action towards the 
final solution.

Bellio et al. [19] used a single-stage SA optimization to 
solve the Curriculum-Based Course Timetabling (CB-CTT) 
problem. They proposed an extensive and statistically prin-
cipled methodology for the parameters tuning procedure to 
model the relationships between the most relevant param-
eters of the solver and the features of the instance under 
consideration. The method tackles the parameters selec-
tion as a classification problem and builds a rule for choos-
ing the set of parameters most likely to perform well for a 
given instance on the basis of given features. However, their 
study was limited to fewer instances to improve the previous 
results and out of 21 instances only 10 were improved. Some 
specific research has been devoted by Atiqullah et al. [20] to 
augment the convergence and related behavior of annealing 
algorithms by modifying its parameters, otherwise known 
as cooling schedule. They introduced an approach to tune 
the SA algorithm by combining algorithmic and parametric 
augmentations. They used a simpler cooling algorithm as 
compared to the complex schedules for designing a welded 
beam using their tuned up SA. Here again, a limited number 
of parameters is taken into account for the improvement of 
the SA algorithm, especially the cooling schedule.

In conclusion, it is obvious from the previous studies 
that SA-based optimization algorithms require some tuning 
of their setting parameters to get good-quality results in an 
efficient way. This is true for a wide range of applications, 
including the ones related to the RE of parametric CAD 
models. This paper presents a method to identify the best 
configuration of SA setting parameters when considering the 
optimization of CAD templates (e.g. parametric sketches, 
CAD parts and assemblies) to be fitted into point clouds 
of digitized parts. A framework is introduced to create a 
database of CAD parts stored together with their best SA 
parameters configuration. Then, when a new part is to be 
reconstructed using the SA-based fitting algorithm, the user 
can extract the best configuration settings from the available 



database using similarity checks between the CAD model to 
be fitted and the ones available in the database.

3  Simulated annealing‑based fitting of CAD 
models

Recently, following a part-by-part rather than a patch-by-
patch strategy, a breakthrough has been achieved for the 
reverse engineering of editable CAD models fitting point 
clouds of digitized mechanical parts or assemblies [4]. The 
idea is to work directly at the level of the part whose param-
eters are modified by an optimization algorithm until a good-
quality fitting is obtained. To address this, a metaheuristic 
algorithm was required to handle a large solution space.

3.1  Simulated annealing algorithm

Simulated Annealing has been widely used in different appli-
cations to solve optimization problems. The algorithm was 
designed for a stochastic search problem that successfully 
avoids local minimum during the search process. It uses a 
probabilistic approach to move from one point to another in 
search of global optima. This transition process of finding 
the optimal solution in a large search space depends on the 
temperature and the change in the objective function. SA 
optimization algorithm mimics the physical process of heat-
ing a material and then slowly reducing its temperature that 
decreases the overall energy of the system (annealing) to 
remove the defects in the material. SA-based fitting of CAD 
models also works on the same principle where the overall 
energy (sum of the square of distances between the tessel-
lated CAD part M⊳ and the point cloud PC) is minimized as 
shown in Eq. (1). Other metaheuristics have been tested but 
have demonstrated a lower efficiency than SA. For instance, 
Particle Swarm Optimization (PSO) generates candidate 
solutions that can be significantly different from the initial 
position. This optimization strategy may result in configura-
tions that are hard for the CAD modeler to update, and may 
even cause the software to crash.

To better understand the fitting technique, the method 
is exemplified on the fitting of a rectangular flange as 
shown in Fig. 2. The input is the point cloud PC to which 
a parameterized CAD model M0 is to be fitted. The point 
cloud is composed of N points PC[i], with i ∈ [1..N] , and 
the CAD model is parameterized by Np control parameters 
pk , with k ∈ [1..Np]. Here, there are 8 control parameters 
overall:  the lengths l1 to l4 , and the radii r1 to r4. Dur-
ing the prearrangement step, the user locates in a coarse 
manner the part inside the point cloud, and choses the 
control parameters of the CAD part to be optimized by 
the SA algorithm, this initializes the parameters values 
pk,0 (Fig. 2a). At each iteration j, the SA algorithm then 
tries to modify the parameters values pk,j until the updated 
CAD model perfectly fits the point cloud (Fig. 2b, c). The 
quality of the fitting is assessed thanks to an energy func-
tion that characterizes the overall deviation between the 
point cloud and the CAD model. The process stops when 
the energy function no longer decreases with respect to 
a given accuracy �s , or when a max number of iterations 
Miter is reached.

At an iteration j ≥ 0 of the SA algorithm , the energy 
function to be minimized is evaluated as follows:

wherein M⊳

j
 represents the tessellation of the CAD model 

Mj after its update by the CAD modeler at the j-th iteration 
of the SA algorithm, and d(point, mesh) is the distance func-
tion that returns the closest distance between a point and a 
mesh. Distance computation is performed using CloudCom-
pare called in batch mode to compute the nearest triangle 
distance against each point in the point cloud. Alternatively, 
point-to-point distance can also be used as an energy func-
tion if the tessellated mesh is sampled with points [5]. As 
detailed in [4], this process is further improved while allow-
ing points of the PC to be filtered step after step, so as to 
allow local fitting of a part in the point cloud of a digitized 
mechanical assembly.

(1)E(p1,j, ..., pNp,j
) =

N
∑

i=1

d2
(

PC[i],M⊳

j
(p1,j, ..., pNp,j

)

)

Fig. 2  Global fitting of a rectan-
gular flange defined by 8 control 
parameters: a initial configura-
tion after the prearrangement 
step, b fitted part after 50 
iterations of the SA algorithm, c 
final fitted part minimizing the 
deviation with the point cloud 
( �s=10−1 and Miter=1000)



3.2  Setting parameters for SA algorithm

The adopted SA algorithm is controlled by certain setting 
parameters to allow the fitting of a CAD template in a given 
point cloud. The selection of the right setting parameters 
plays an important role to achieve a high-quality solution 
and it remains the crucial step that directly affects the final 
fitting results. Setting parameters are classified into two 
groups: the mandatory parameters and the advanced ones, 
which all together define a so-called parameters configura-
tion C

�
. For instance, the parameter values used for the SA 

algorithm to reconstruct the rectangular flange of Fig. 2 are 
shown in Table 1. Each parameter is detailed in the next 
sections. On one hand, the mandatory parameters are the 
essential parameters of SA and they must be specified to 
initiate the optimization. The final fitting results are highly 
influenced by their values, and they may produce unstable 
results if not selected wisely. On the other hand, additional 
parameters are introduced and result in a set of advanced 
tuning options, namely the weighting and grouping strate-
gies. Each of them can be tuned differently depending on the 
fitting problem, and this can be tricky. Thus, in this paper, 
a methodology is developed to support the tuning of those 
parameters and the identification of a proper configuration C

�

. The idea is to build a database of best configurations known 
to produce quality results on several fitting examples, and 
then make use of a similarity assessment approach to find 
out the most similar fitting configuration with respect to a 
new CAD model to be fitted.

3.3  Description of the setting parameters

The setting parameters are briefly explained below, whereas 
the values they can take are presented when detailing the 
Design of Experiments that has been set up.

Regarding the mandatory parameters, annealing func-
tion (AnnealingFcn) is used by SA to generate a random 
trial point for the next point. The algorithm chooses the 

distance of the trial point from the current point by a prob-
ability distribution with a scale depending on the current 
temperature. Temperature function (TemperatureFcn) is 
used to update the temperature. The algorithm systemati-
cally lowers the temperature, storing the best point found so 
far. Maximum stall iterations (StallLimit) is used as one of 
the stopping criteria. SA keeps track of the average change in 
the function value for StallLimit iterations and the optimiza-
tion process stops if the SA does not find any better solution 
point within the StallLimit. Function tolerance (FuncToler) 
is another stopping criterion of SA according to which 
algorithm runs until the average change in the value of the 
objective function is less than the value of FuncToler. Initial 
temperature (InitialTemp) controls the overall search results 
for the next candidates of parameters pk. For each dimen-
sion, the temperature is used to limit the extent of search 
in that dimension. Finally, the InitialPosition of the CAD 
model also has influence on the final result as SA chooses 
the distance of the trial points from the initial values of the 
parameters pk by a probability with a scale depending on the 
initial temperature.

As for the advanced parameters, a weighting strategy 
for the parameters pk can be used to avoid under and over-
fitting of small features like fillets and chamfers which in 
some cases are neglected by the SA algorithm due to a small 
contribution in the overall energy (see Sect. 4.5). In addi-
tion, a grouping strategy of parameters pk can be selected 
as another mean of avoiding under and over-fitting of small 
features especially when there are many parameters control-
ling the CAD geometry. Grouping of parameters pk can be 
done according to their sensitivities (Sect. 4.3) or according 
to the type of features they refer to (Sect. 4.4). For the cases 
where the number of parameters is small, one single group 
can be considered.

4  Framework for the selection of default 
configuration for SA‑based fitting

This section introduces the framework developed to support 
the identification of the best configuration C

�
 for a given 

CAD model to be fitted in a point cloud. The idea is to first 
build a database of fitting examples storing both the CAD 
models together with their associated best parameter con-
figurations. Then, for a new CAD model to be fitted, it is 
possible to refer to the database by means of a similarity 
assessment [21], to find out and then use the best configura-
tion associated to the most similar fitting example.

Thus, the framework can be decomposed in two parts: the 
one used for the generation of the database (Fig. 3), and the 
one used to look for a similar configuration when a new 
CAD model is to be fitted (Fig. 9). This two-part framework 
is generic and could be used in other contexts. To create 

Table 1  Values of the setting parameters split in two categories and 
gathered together in a so-called configuration C

�
 used for fitting the 

rectangular flange

Categories Parameters Values

Mandatory AnnealingFcn annealingfast
TemperatureFcn temperatureexp
StallLimit 25
FunctionToler 1.00E−01
InitialTemp 10
InitialPosition Position-02

Advanced Weighting pk NoWeight
Grouping pk NoGroup



such a database, CAD models are fitted using SA annealing 
algorithm while playing with each setting parameter to get a 
good quality fitting and identify the associated best param-
eters configuration. Various parts are globally and locally 
fitted to their respective point clouds, obtained either from 
a laser scanner or virtually generated to get as-scanned point 
clouds [22]). Many possible configurations of the setting 
parameters for the SA algorithm are tested using DoEs to 
identify and store the best configuration in the database of 
CAD models. For simplicity, the first part of the framework 
has been explained on the fitting of a rectangular flange 
(Fig. 2). Thus, Sects. 4.1–4.7 explain how to identify best 
configurations and populate the database, whereas Sect. 4.8 
details how to use the database, in a second step and for 
an unknown CAD model to be fitted, to retrieve the best 
configuration associated to the most similar fitting example.

4.1  Selection, prearrangement and cropping

Following the framework of Fig. 3, the process of adding an 
instance to the database starts with the selection of the initial 
parameterized CAD model M0 to fit in a given point cloud 
PC obtained after data acquisition. The models to be fitted 
can come from an existing database available in the company 
when considering for instance the need to either update the 
DMU of a system/product or control its assembly. They can 
also be roughly and rapidly sketched and parameterized start-
ing from scratch using the CAD modeler. Here, it is assumed 
that the CAD models are parameterized at the level of the 
parts (e.g., lengths, diameters and angles parameterizing the 
features) and/or at the level of the assemblies (e.g., lengths and 
angles parameterizing the relative positions and orientation of 
the parts the ones with the others). These are user-specified 
parameters that have a functional meaning. A preprocess-
ing step could be performed to decrease the interdependency 
between the parameters, keeping in mind not to break any 
design rule. In random order, all the parameters pk control-
ling the shape of the CAD model are selected for the optimi-
zation. Next, the CAD model is manually prearranged with 
the given point cloud PC (Fig. 2a) as close as possible. This 
is an important step as this method is not robust if the prear-
ranged CAD model is not in the close vicinity of the final 
solution. The point cloud can optionally be segmented if the 
intended optimization case is for the local fitting. This happens 

when treating assemblies, where the template corresponds to 
a sub-part of the acquired object and thus only a segment of 
the point cloud take part in the optimization process, other-
wise, the whole point cloud is utilized for the global fitting 
as required when the template geometry corresponds to the 
whole object acquired.

4.2  Evolution of parameters pk during SA‑based 
fitting

In order to understand how SA algorithm modifies the values 
of the parameters step after step, the evolution of the param-
eters is tracked throughout the fitting process. This can be done 
either in an absolute or relative manner, as follows:

Thus, the value �pk,j characterizes the absolute evolution 
of the parameter pk between iterations j and j + 1 , whereas 
Δpk,j refers to its relative evolution. At each iteration j of 
the SA algorithm, it is therefore possible to study the evolu-
tion of each parameter pk , and see the decision taken by the 
SA algorithm on how to modify the parameter value for the 
next step j + 1. This is illustrated in Fig. 4 for the fitting of 

(2)�pk,j = pk,j+1 − pk,j

(3)Δpk,j =
�pk,j

pk,j

3D Point 
cloud 

Prearrange-
ment Cropping* Sensitivity analysis at 
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Reorder 
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Fig. 3  Overall framework used to populate a database of CAD models stored together with their best configurations C
�
 for the SA
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Fig. 4  Changes of �pk,j imposed by the SA algorithm at each iteration 
j of the fitting process on the rectangular flange



the rectangular flange and using setting parameters for the 
SA listed in Table 1. From these evolution curves, it can be 
seen that all the parameters are modified more or less in the 
same manner.

Following the configuration C
�
 of Table 1, the final abso-

lute �pF
k
 and relative deviations ΔpF

k
 of the parameters are 

computed and the results are listed in Table 2:

where pF
k
 are the final values of the parameters controlling 

the fitted CAD model, and pD
k
 are the original values of the 

ground truth CAD model that has been used to virtually 
generate the given point cloud [4]. The deviations of some 
parameters are higher, e.g., the two radii r3 and r4. This is 
due to the fact that SA neither takes into account the type 
of parameters nor how much they contribute to the over-
all energy of Eq. (1). To tackle this problem a sensitivity 
analysis of parameters is required, which is detailed in the 
next section.

4.3  Sensitivity analysis

The SA algorithm used for fitting of CAD models works 
as a black box and neither takes into account the semantics 
associated to the various parameters pk nor the way their 
variations may influence the evolution of the energy func-
tion step after step. Indeed, while acting on the variables 
to be optimized, the SA algorithm does not distinguish for 
instance parameters like length, width, thickness and radius 
that characterize the features, and all the variables are con-
sidered in the same way. It also does not take into account 
the fact that the influence of a parameter variation on the 
energy may vary a lot depending on whether the parameter 
is associated to a structural feature (e.g., the length l1 of the 
rectangular flange in Fig. 2b) or to a detail feature (e.g., the 
radius r4).

To better compare the influence of the parameters, a 
sensitivity estimator Sk,j is here introduced to compute at 

(4)ΔpF
k
=

∣ �pF
k
∣

∣ pD
k
∣
=

∣ pD
k
− pF

k
∣

∣ pD
k
∣

each step j of the optimization process the sensitivity of 
the energy function with respect to each parameter pk:

Since the energy function is computed using the nearest 
point algorithm, it cannot be differentiated. Thus, the sensi-
tivities are approximated using a first-order finite difference 
scheme (either forward or backward) directly controlled by 
the step hk chosen for the corresponding parameter pk:

Here, the term O(hk) represents the order of magnitude of the 
approximation. More specifically, performing such a sensi-
tivity analysis using all the parameters of the CAD model 
at the prearranged position ( j = 0 ) returns the sensitivities 
Sk,0 of each parameter. This shows how much each parameter 
pk affects the change of the overall energy. For example, 
the sensitivity analysis of the rectangular flange having 8 
control parameters is performed at its prearranged position 
(Fig. 2a) and the resulting forward sensitivity against each 
parameter pk is shown in Fig. 5. Thus, parameters l2 , l3 , r1 
and l1 are the ones that modify the global energy E the most, 
while the influence of r2 , l4 and r4 is almost negligible. It 
can also be seen that sensitivities are independent of the 
magnitude of the parameter values pk,0 at prearranged posi-
tion. After the computation of the sensitivities, parameters 
are rearranged in a decreasing order according to their sen-
sitivity level (Fig. 5), and this helps grouping the parameters 
as discussed in Sect. 4.4.

(5)Sk,j =
�E

�pk
∣(p1,j,...,pNp,j )

with j ≥ 0

(6)

S+
k,j

=
E(p1,j, ..., pk,j + hk, ..., pNp,j

) − E(p1,j, ..., pk,j, ..., pNp,j
)

hk

+ O(hk), with j ≥ 0

(7)

S−
k,j

=
E(p1,j, ..., pk,j, ..., pNp,j

) − E(p1,j, ..., pk,j − hk, ..., pNp,j
)

hk

+ O(hk), with j ≥ 0

Table 2  Results for the global 
fitting of rectangular flange 
following the configuration C

�
 

of Table 1

Groups pk p0
k
 (mm) pD

k
 (mm) pF

k
 (mm) �pF

k
 (mm) ΔpF

k

G1 l2 5 7 6.8313 0.17 0.0241
l3 15 20 19.975 0.02 0.0012
r1 4 6 6.0901 − 0.09 0.0150
l1 35 40 39.719 0.28 0.0070
r3 2 5 3.4563 1.54 0.3087
r2 2 3 3.1657 − 0.17 0.0552
l4 2 3 3.0214 − 0.02 0.0071
r4 2 5 3.6982 1.30 0.2604



4.4  Grouping strategies for parameters pk

As part of the advanced SA settings, parameters pk can 
optionally be clustered in several groups. Actually, group-
ing the parameters allows for a better and more stable fit-
ting, and it also reduces the risk of getting the optimization 
process stuck in a local minimum. Conversely, considering 
all parameters in a single group may result in under or 
overfitting of small features. Thus, three grouping strate-
gies are proposed:

• Grouping according to sensitivity level can be per-
formed in an automatic manner using the K-means
clustering technique. In this case, the sensitivity values
are directly used as input of the K-means clustering
algorithm that partitions the points into a number K
of clusters. The resulting partitions minimize the sum,
over all clusters, of the within-cluster sums of point-
to-cluster-centroid distances.  By default, K-means
uses squared Euclidean distances. For the rectangular
flange, this grouping strategy then returns three groups
as shown in Fig. 6. The max value for the number K of
clusters is assumed as:

• Grouping according to the level of details of the shape
can be performed in a semi-automatic manner using
a three-level organization, and following the com-
monly adopted CAD modeling strategies: G1 groups
the parameters of the assembly structure as well as the
ones driving the structural features (e.g. pockets, revo-
lutions), G2 gathers the parameters of the detail features

(8)K = min {3;Np}

(e.g. holes, ribs) and G3 includes the parameters used 
to finalize the shapes (e.g. fillets, chamfers).

• NoGroup strategy can be adopted by considering all the
parameters in a single group.

4.5  Weighting strategies

As part of the advanced SA settings, different weighting 
strategies can be followed to allow heterogeneous scaling on 
the parameter values as the SA algorithm goes on. Indeed, 
the trial points generated by annealingFcn basically apply 
the same scale of distribution of distances on all parameters 
pk , independently of the type of feature they refer to. This 
is considered as a NoWeight weighting strategy. As a con-
sequence, in some cases, due to small contributions in the 
overall energy, the energies related to small features like 
fillets and chamfers are neglected by the SA algorithm and 
this may cause under and overfitting of such features. To 
avoid this, weights can be put on the parameters at each 
iteration j of the fitting process. Thus, after performing the 
sensitivity analysis at the prearranged position (Sect. 4.3), 
the parameters are rearranged according to the decreasing 
order of their sensitivity levels (first parameter being the 
most sensitive and the last as the least one). Then, the idea 
is to cleverly change the scale distribution of annealingFcn 
that is generally uniform with equal weightage for all the 
parameters. To do so, two strategies are here proposed. To 
give more weightage to the least sensitive parameters, Lin-
earWeights can be applied to all the parameters. The first 
parameter being the highest sensitive is given a weightage 
value of 1 (no weight) and for the trailing parameters 5% 
increment is added (i.e. 1.05 weight for the second parameter 
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and 1.10 for the third and so on). In this way, the last param-
eter (least sensitive) has the highest weight, which helps the 
evolution of the parameter not to remain blocked at the local 
minimum. Alternatively, individual weights or Selected-
Weights can be provided to the least sensitive parameters. In 
the proposed method, SelectedWeights are only given for 
fillets and chamfers, which weight 50% more than the other 
parameters to avoid local minimum.

4.6  Design of experiments set up

A configuration of settings C
�
 is composed of 8 setting 

parameters (6 mandatory and 2 advanced), each of which 
influencing the final quality of fitting. Thus, for a given CAD 
model to be fitted, testing all possible combinations of those 
parameters would result in a significantly large number of 
experiments to be conducted. To overcome this issue, a lim-
ited number of experiments is conducted by setting up a 
Design of Experiments (DoEs) that focuses on a restricted 
set of configurations C

�
 , among which the best configuration 

is to be identified for each sample of the database. Taguchi 
orthogonal array technique has been used to conduct a mini-
mum number of experiments [23]. All the setting parameters 
with three possible levels are listed in Table 3. One of the 
parameter, namely AnnealingFcn, has 2 levels (21 ) whereas 
the others have 3 levels (37). According to the number of 
parameters and the number of levels, the L 18 (21 , 3 7 ) table 
of Taguchi orthogonal array has been chosen [24]. During 
each batch of 18 experiments, the quality of the fitting is 
observed on the basis of three criteria introduced in the next 
subsection.

More precisely, to help SA in setting the trial points dis-
tance distribution, AnnealingFcn can rely on two options, 
either annealingfast or annealingboltz [25, 26]. Annealing-
fast function generates a point equal to the current point plus 
a random step of size equal to the current temperature. While 
annealingboltz function generates a point based on the current 

point and the current temperature using a multivariate normal 
distribution. The TemperatureFcn can be customized with 
three options: temperatureexp, temperaturefast or temperature-
boltz [25, 26]. In the temperatureexp scheme, the temperature 
at any given step is 0.95 times the temperature at the previous 
step. This causes the temperature to go down slowly at first 
but ultimately get cooler faster than other schemes. If another 
scheme is desired, e.g., boltzman schedule or fast schedule 
annealing, then temperatureboltz or temperaturefast can be 
used respectively. For the termination criteria, StallLimit is 
provided with three values of 10, 25, and 50 iterations. For all 
three values, the SA algorithm will be tested if it can find the 
next better solution of parameters pk from the current position, 
within given limits without spending too many iterations. For 
instance, 10 iterations will provide a small window for the SA 
to find the next best solution, while 50 iterations will provide 
sufficient time but it also increases the overall optimization 
time. FunctionToler is a second stopping criterion that can also 
be customized with three input values as shown in Table 3. The 
values are closed to zero to force the algorithm to find new best 
values of parameters pk until the overall energy returned by the 
objective function is equal to one of these three values.

The selection of the initial temperature T0 follows the 
method suggested by [4], i.e. while looking for the optimal 
initial temperature within a given window of temperatures, and 
the one which provides the least energy is chosen. For all the 
CAD models added in the database, 10 is identified as the best 
initial temperature, and to conduct DoEs, two more values are 
chosen around the best-identified temperature by putting a 5 ◦ 
change on the positive and negative sides to test different tem-
peratures. Hence, three initial temperatures are chosen for the 
DoEs, i.e., 5, 10, and 15. Analogously, for the initial position, 
three initial values are selected for the DoEs. All three initial 
positions are chosen by roughly positioning the CAD model 
close to the point cloud and by modifying the control param-
eters pk of the rectangular flange to have a percentage volume 
difference of roughly 20%, 15% and 10% for Position-01, Posi-
tion-02 and Position-03 respectively. This also initializes the 
values of the control parameters of the CAD models at initial 
position p0

k
 , values that are then used for the initialization of 

the optimization process. Because of the random nature of the 
SA, the results obtained from DoEs can be biased. Indeed, a 
SA run with a certain set of parameters can produce excep-
tional results compared to what it would produce most of the 
time. In order to smooth this effect, for each DoE, SA is run 
three times and the mean of the three output measurements is 
finally computed.

4.7  Scoring DoEs results for the best configuration 
selection

To identify the best possible configuration for the SA-based 
fitting algorithm, a scoring approach is used to rank the 18 

Table 3  List of setting parameters with corresponding three levels 
(level1−3 ) used for setting up the DoEs

Parameters level1 level2 level3

AnnealingFcn annealingboltz annalingfast –
TemperatureFcn temperatureexp temperature-

boltz
temperaturefast

StallLimit 10 25 50
FunctionToler 0e+00 1e−01 1e−06
InitialTemp 5 10 15
InitialPosition Position-01 Position-02 Position-03
Weighting pk LinearWeights Selected-

Weights
NoWeight

Grouping pk Group (Sensi-
tivity)

Group (Fea-
tures)

NoGroup



configurations involved in the DoEs. Table 4 shows all the 
configurations and their corresponding input values used 
for the SA-based optimization. Each of the 18 configura-
tions C

�
 is evaluated on the basis of three criteria: (1) the 

number of iterations jmax taken by SA to find the optimal 
solution, (2) the final energy E∣j=jmax

 obtained at the end of 
the optimization, (3) the sum of the final absolute deviations 
Δpk,jmax

 of all parameters. Figure 7 shows the results obtained 
when running the 18 configurations on the rectangular flange 
example. For sake of clarity, the results for the three criteria 
are normalized and represented as a percentage using C1 as 
a reference. Thus, for C1 , each criterion is evaluated as 100% 
and the rest of the configurations are compared to it for nor-
malization. It can be clearly seen that each configuration C

�
 

( � ∈ [1..18] ) has different outcomes. For example, the result 
of C7 shows a smaller sum of absolute deviations, with less 
number of iterations but with a higher final energy. While 

C17 shows opposite results where it took more iterations to 
complete the fitting, with better results in terms of absolute 
deviations and final energy.

Then, to identify the best configuration among the 18 for 
a given fitting example, the three quality criteria, i.e. Final-
Energy, Sum Abs.Dev and Iterations are ranked in an ascend-
ing order starting from the lowest to the highest value. To 
compute the final score of a configuration, the independent 
ranks of the three quality criteria are then sum up, and the 
configuration depicting the minimum score is considered as 
best configuration for this fitting example. Figure 8 shows 
the scores related to each configurations of the DoEs run on 
the rectangular flange.

For the rectangular flange, configuration C6 appears to 
be the best configuration as it shows the lowest score of 12 
with its setting parameters highlighted in green in Table 4. In 
this particular case, annealingboltz with temperatureboltz 

Table 4  Fitting of rectangular flange for 18 configurations C
�
 ( � ∈ [1..18] ) of DoEs using L 18 table of Taguchi orthogonal array

Fig. 7  Results of the DoEs for 
the rectangular flange normal-
ized taking C1 as a reference
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for SA annealing produced the best result of the fitting. The 
StallLimit is 50 which means the algorithm will have about 
50 iterations to look for new best values of parameters, 
otherwise the algorithm will terminate. StallLimit with 
50 iterations will give sufficient time to the algorithm to 
search for the next best set of parameters pk. Furthermore, 
as this example is rather simple, NoWeight and NoGroup are 
needed, and Position-02 is sufficient to start the optimiza-
tion process.

Finally, once this framework defined, a database can be 
created and populated while storing CAD models together 
with their best configurations. Hence, as discussed in the 
next subsection, the values stored in the database can be 
used as references to configure the SA setting parameters 
when considering a new CAD model to be fitted in a point 
cloud using the adopted SA-based fitting technique.

4.8  Fitting new CAD template reusing an acquired 
knowledge

As introduced at the beginning of Sect. 4, once created a 
database gathering CAD models together with their best 

configurations for point cloud fitting, if the user wants to 
reconstruct a new CAD model, the second framework illus-
trated in Fig. 9 should be followed. The idea is to make use 
of a similarity assessment tool to identify the CAD model 
of the database which ressembles the most to the new fitting 
case, and then use its best configuration to tune the SA set-
ting parameters. The most suitable tool for this work would 
be a method capable of retrieving parts with similar shapes 
and similar parameterization. However, not being aware of 
the availability of such a tool and being outside the scope 
of this work to define new methods for similarity assess-
ment, the tool of Giannini et al. [21] has been used here to 
assess the similarity. As terms of results, this tool returns 
a similarity matrix that helps in the identification of the 
CAD model that has the closest geometric description with 
the new CAD geometry to be fitted. Once the most similar 
geometry identified from the database, the associated best 
configuration can be used for the new fitting. The user still 
needs to specify which control parameters pk of the new 
CAD model should be considered as variables of the opti-
mization process. At the end, using this best configuration 
extracted from the database, the SA-based fitting algorithm 

Fig. 8  Scores of DoEs result for 
the rectangular flange
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will tend to produce results depicting low deviations for the 
parameters pk , low overall final energy as well as a limited 
number of iterations.

5  Results and discussion

The core of the fitting algorithm has been implemented in 
MATLAB®, which is able to call the built-in functions of 
SolidWorks® to perform the successive CAD model updates 
and ensure the consistency of the resulting B-Rep model 
during the optimization loops. It also handles the tasks of 
performing the sensitivity analysis of parameters and their 
grouping using K-mean clustering technique. For the ease 
of users, a prototype software created in VB script has been 
integrated as a plugin in SolidWorks® 2017 Education Edi-
tion [5] that allows efficient implementation of the proposed 
fitting technique.

5.1  Creation of a database of CAD models

To create the database and start populating it with CAD 
models, 17 CAD models have been selected (Fig. 14). Due 

to space limitation, in this paper, only four test cases from 
the database are detailed, but the similarity assessment is 
performed on all of them. A rectangular flange, a gland, a 
chain link and a round flange, all of them being fitted several 
times to their respective point clouds using our SA-based 
fitting algorithm through DoEs (Sect. 4.6). The considered 
CAD templates before and after the fitting with their best 
configurations are shown in Fig. 10. The point clouds for 
the rectangular flange, chain assembly and the gland are 
virtually generated using as-scanned point cloud genera-
tion technique [22]. The proposed approach starts by gen-
erating a triangle mesh wrapping the CAD assembly model 
to be reverse-engineered. The resulting watertight mesh 
is then sampled to obtain a more realistic distribution of 
points. The occlusion phenomenon is then simulated using a 
hidden point removal algorithm launched from several view-
points. A misalignment procedure can optionally be used 
to simulate the fact that in real-life acquisitions the posi-
tion and orientation of the laser scanner and/or real object 
would have been changed to get a different scanning view-
point. The virtual scanning process ends by generating noise 
and by inserting outliers. Global fitting is to be considered 
for the rectangular flange, and local fitting for the gland and 

Fig. 10  Four CAD models before and after the fitting with their best 
configuration resulting from the DoEs:  (a1 ) coarse pre-arrangement 
of the rectangular flange in the virtually-generated point cloud; ( a2 ) 
globally fitted rectangular flange; ( b1 ) pre-arrangement of the gland; 
( b2 ) locally fitted gland in the virtually-generated point cloud; ( c1 ) 

pre-arrangement of the chain link; ( c2 ) locally fitted chain link in the 
virtually-generated point cloud of a chain assembly; ( d1 ) pre-arrange-
ment of the round flange; ( d2 ) locally fitted round flange in the real 
scanned point cloud of a gearbox assembly



chain link. The fourth example considers the local fitting of a 
round flange into a real point cloud obtained from scanning a 
gearbox assembly (Fig. 11a). Here, the point cloud has been 
acquired using a ROMER Absolute Arm 7520 SI, and while 
scanning the assembly as a whole, i.e. without disassem-
bling it prior to its digitalization. The raw point cloud has 
been pre-processed before entering the reconstruction steps 
(i.e. noise and outliers removal, registration, filtering). By 
the end of this step, a clean point cloud having about 180k 
points is obtained (Fig. 11b).

Once the CAD models are pre-arranged (Fig. 10a1 , b1 , c1
), their sensitivities are computed at prearranged position 
according to steps detailed in Sect. 4.3. All the steps hk used 
to compute the sensitivities are equal and only depend on 
the type of parameter they are associated to. Thus, step hk = 
0.3 mm in case pk is a length, and hk = 0.3◦ in case it is an 
angle. Those values have been chosen in coherence with the 
accuracy of the adopted CAD modeler. For the sensitivities 
at prearranged position Sk,0 , the forward finite difference 
scheme S+

k,j
 has been used. After sensitivity analysis at the 

prearranged position, the control parameters pk are rear-
ranged in a decreasing order starting from the most sensi-
tive to the least sensitive one (Fig. 5), and this is repeated 
for all the CAD models at the prearranged positions. Then, 
the parameters are grouped according to the different crite-
ria detailed in Sect. 4.4. For all the CAD models used for 
the creation of the database, Table 5 shows the grouping of 
parameters according to either the level of sensitivities or 
the type of features they belong to.

The next step is to fit the CAD models with the SA-based 
fitting algorithm using DoEs to test the 18 configurations 
of setting parameters and identify the best configuration C

�
 

for each CAD model. The rectangular and round flanges 
have 8 control parameters that drive their shape during the 
optimization process, while the gland and the chain link are 
controlled by 7 parameters each, as visible in Fig. 10 that 
also shows the fitting results using best configurations. All 
the configurations C

�
 of parameters used for the fitting are 

listed in Table 4. After completing all the experiments, the 
best configuration of each CAD model is identified by select-
ing the configuration with the lowest sum of scores between 
the resulting final energy, the sum of absolute deviations of 
parameters pk and the total number of iterations. Obtained 
results are depicted in Fig. 12 and clearly show the stochastic 
behavior of SA that is not very consistent for the fitting of 
all four models and cannot be correlated. To smooth this 
effect, each set of DoEs has been run three times and mean 
scores are taken. The average final obtained values, the aver-
ages absolute deviation and the average relative deviation 
between the point cloud and the CAD models are listed in 
Table 6. All the identified best configurations 6, 12, 14, and 
9 are stored in the database together with the related CAD 
models. The corresponding setting parameters are listed in 
Table 4.

5.2  Fitting new CAD templates using stored 
configurations of similar parts

This section details how a new CAD template can be fit-
ted using the stored best configuration of the most similar 
part retrieved by performing a similarity analysis. This is 
illustrated on the fitting of a bend joint (Fig. 13). The global 
similarity assessment has been performed between the 

Fig. 11  Point cloud b obtained while scanning a real gearbox a with-
out disassembling it and using a ROMER Absolute Arm 7520 SI 
laser scanner

Table 5  Grouping of parameters pk according to their sensitivity lev-
els and to the types of feature they refer to

Groups According to sensitivi-
ties using K-means

According to features

Rectangular flange
G1 l2 , l3 , r1 l2 , l3 , r1 , l1
G2 l1 l4 , r2
G3 r3 , r2 , l4 , r4 r3 , r4
Gland
G1 l3 , l2 , r2 , r1 , l1 l3 , l2 , r2 , r1 , d3
G2 d3 , d2 l1 , d2
Chain link
G1 r1 , r4 , l2 r1 , r4 , l2 , l1 , l3
G2 l1 , l3 , r2 r2 , r3
G3 r3 −
Round flange
G1 h1 , r1 , h2 , r2 h1 , r1 , h2 , r2
G2 r4 , r5 r4 , r5 , r6 , d1
G3 r6 , d1 −



bend joint (considered as query model) and the 17 models 
in the database using the tool of Giannini et al. [21]. They 
adopted an attributed graph containing both geometrical 
and topological information to represent a model. A cor-
respondence among two models is found by the identifica-
tion of the maximum common subgraph between the two 
attributed graphs representing the models. This problem is 
solved transposing to the maximum clique (MC) problem 

employing an association graph in which the arcs linking the 
associated faces vary according to the search objectives. To 
detect the MC, a simulated annealing-based minimization is 
used to minimize the function characterizing the clique prop-
erty. Figure 14 shows all the CAD models in the database 
used for similarity check and the results of this analysis on 
the new bend joint is presented in Table 7. The number of 
corresponding nodes and similarity measure for each model 
are also listed. The query model is composed of 34 faces, 
of which 10 are planar, 10 cylindrical, 10 fillets, and the 4 
are sweep parallel faces of the bend. Among the models 
in database, the rectangular flange presents the same pat-
tern and is returned with a similarity measure value of 53% 
(max = 100). The other models present only a portion of 
the specified pattern and are correctly returned with smaller 
similarity measure values.

Having the highest similarity measure for the bend joint, 
the best configuration of the rectangular flange, i.e. C6 is 
used for the fitting of the bend joint. The bend joint whose 
shape is controlled by 8 parameters is prearranged into 
the virtually-generated point cloud to initialize the fitting 
process (Fig. 13a). Here, the control parameters pk for the 
bend are used in a single group without any weighting strat-
egy. The rest of the setting parameters of configuration C6 
are highlighted in green in Table 4. Figure 13b shows the 
fitted bend joint part that has been reconstructed using the 
best configuration C6 of the rectangular flange.
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Fig. 12  Scores obtained from averaging the results obtained from DoEs performed 3 times for the selection of best configuration of: a rectangu-
lar flange; b gland; c chain link and d round flange

Fig. 13  Global fitting of bend joint defined by eight control param-
eters: a initial configuration after the prearrangement step, b final fit-
ted part minimizing the deviation with the point cloud and using best 
configuration C6



To evaluate and validate the assumption that best con-
figurations can be used for similar parts, the bend joint is 
then fitted using the DoEs strategy to identify its best con-
figuration as previously done for the other CAD templates 
of the database. The same 18 configurations were tested 
for the bend joint and repeated three times to take the 
average of the final obtained scores. The resulting scores 
for all the configurations are shown in Fig. 15. The best 
configuration for the bend joint is also the same as for the 
rectangular flange, i.e. configuration C6. This validates the 
idea that new models to be reconstructed can make use 
of the best configuration of the similar CAD models to 
produce good quality fitting.

6  Conclusion

This paper has explored the possibility to tune the setting 
parameters of the SA-based fitting algorithm used for fit-
ting parametrized CAD models locally and globally in the 
point cloud of a digitized part or an assembly. A frame-
work integrating sensitivity analysis of the parameters has 
been proposed to understand how the shape driving param-
eters of the CAD models are modified by the SA algorithm 
and how such an approach helps to group the CAD model’s 
parameters to treat batches having comparable sensitivi-
ties. Using the DoEs approach, the framework also details 
the steps for the identification of the best configuration of 

Table 6  The average absolute 
and relative errors measured 
against the best configurations 
of four CAD models

Groups pk p0
k
 (mm) pD

k
 (mm) pF

k
 (mm) �pF

k
 (mm) ΔpF

k

Rectangular flange
G1 l2 5 7 6.8625 0.1375 0.0196

l3 15 20 20.7677 0.7843 0.0392
r1 4 6 6.0957 0.1963 0.0327
l1 35 40 39.7657 0.2343 0.0059
r3 2 5 3.6618 1.3382 0.2676
r2 2 3 3.0765 0.0994 0.0331
l4 2 3 2.8167 0.1976 0.0659
r4 2 5 4.1763 0.8237 0.1647

Gland
G1 l3 9 8 8.2922 0.2922 0.0365

l2 9 9 8.5431 0.4569 0.0508
r2 26 25 24.9621 0.0428 0.0017
r1 12 10 10.7650 0.7650 0.0765
d3 33 32 37.4636 5.4636 0.1707

G2 l1 23 24 23.2546 0.7454 0.0311
d2 9 7 6.6266 0.3734 0.0533

Chain link
G1 r1 62 63 62.6977 0.5043 0.0080

r4 35 36 35.8767 0.1233 0.0034
l2 28 27 27.0850 0.2617 0.0097
l1 68 72 72.3493 0.3493 0.0049
l3 27 27 27.0443 0.2677 0.0099
r2 16 18 18.3500 0.3500 0.0194
r3 170 162 174.1033 12.1033 0.0747

Round flange
G1 (sens) h1 7 10.1 9.8534 0.2466 0.0244

r1 42 44.5 44.8796 0.3796 0.0085
h2 30 30 30.1667 0.1667 0.0056
r2 28 30 29.9211 0.0789 0.0026

G2 (sens) r4 36 37 37.3740 0.3740 0.0101
r5 3 4 3.7290 0.2710 0.0678

G3 (sens) r6 5 5 5.5578 0.5578 0.1116
d1 3 4 5.8473 1.8473 0.4618



setting parameters for the SA algorithm that will enhance 
the quality of the fitting approach. A framework including 
the generation of a database of CAD models stored with 
their best configurations has also been presented. Such a 

database of CAD models will help the users to make use 
of those stored best configurations for the new parts to be 
fitted by performing a similarity check between the new 
models and the models in the database.

At the moment, chosen parameters are user-specified and 
are linked to functional meaning, but a preprocessing step 
could be introduced in the optimization loop to decrease the 
interdependency between the parameters. For thin parts like 
sheet metal where the thickness is too small, the number of 
as-scanned points on such features will also be fewer. Con-
sequently, such parameters will not contribute that much 
to the overall energy and may be neglected by SA for bet-
ter fitting. For such thin parts, working on the 2D sketches 
would be more appropriate. Or, the considered parameters 
could be weighted knowing that it is a sheet metal part. The 
created database is rather small and only contains few 3D 
CAD parts. However, the overall framework has been vali-
dated. For future perspectives, the database can be enlarged 
to also contain parametric models and their best configura-
tions for the fitting of 2D sketches and assemblies. Sensitiv-
ity analysis performed at the start of the optimization can be 
integrated into the SA algorithm to track the sensitivities of 
parameters all along the optimization. Keeping the track of 
the evolution of sensitivities, the system will automatically 
handle the less sensitive parameters.

Fig. 14  Similarity check between the query model and the models in database

Table 7  Similarity check for the bend part with models in the data-
base

CAD Models database Nodes Similarity (%)

Pulley 07 14
Fastener 02 03
Connecting rod 15 23
Bush 03 04
Spring pin 02 03
Key 07 27
Chain link 08 18
Gear 22 08
Elbow 02 04
Round flange 15 49
Screw 07 20
Rectangular flange 15 53
Chuck key 06 14
Sonotrode 22 46
Gland 14 52
Rivet 02 04
L-like shape 11 35
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Fig. 15  Resulting scores for the 
18 configurations used for the 
SA-based fitting of bend joint
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