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When modeled within the unsteady Reynolds-Averaged Navier-Stokes framework, the

shock-wave dynamics on a two-dimensional aerofoil at transonic buffet conditions is char-

acterized by time-periodic oscillations. Given the time series of the lift coefficient at different

angles of attack for the OAT15A supercritical profile, the sparse identification of nonlinear dy-

namics (SINDy) technique is used to extract a parametrized, interpretable and minimal-order

description of this dynamics. For all of the operating conditions considered, SINDy infers

that the dynamics in the lift coefficient time series can be modeled by a simple parametrized

Stuart-Landau oscillator, reducing the computation time from hundreds of core hours to sec-

onds. The identified models are then supplemented with equally parametrized measurement

equations and low-rank DMD representation of the instantaneous state vector to reconstruct

the true lift signal and enable real-time estimation of the whole flow field. Simplicity, accuracy

and interpretability make the identified model a very attractive tool towards the construction

of real-time systems to be used during the design, certification and operational phases of the

aircraft life cycle.

Nomenclature

a = [01, 02] = features space vector; features space components

AoA = angle of attack
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2 = airfoil chord

28 = parameters of the identified lift measurement equation

� 5 = skin friction coefficient

�! = lift coefficient

�% = pressure coefficient

4 = specific total energy

5 = frequency

" = Mach number

A = oscillations’ amplitude

'4 = Reynolds number

q = [d, dD, dF, d4, d`C ] = conservative variables vector

C = time

u = [D, F] = velocity vector; streamwise and wall-normal velocity components

v = complex DMD mode amplitudes

G, I = streamwise and wall-normal coordinates

i = oscillations’ phase

`C = turbulent eddy viscosity

` = complex DMD eigenvalues

f, V, l = parameters of the identified model

d = density

I. Introduction

In commercial transonic aviation, the interaction between shock-waves and boundary-layers has significant conse-

quences on aerothermodynamic performances and aircraft emissions, and represented one of the most important

topics within the aeronautical scientific community for the past seventy years [1]. A specific type of shock-wave and

turbulent boundary-layer interaction is the so-called transonic buffet, whose associated unsteady loads can originate

wing vibrations, or buffeting. Degradation of performances, potential failure to fatigue and pilots and passengers’

discomfort are some of the main repercussions of the buffeting conditions. To circumvent these complications, standard

certification procedures impose the use of safety design margin that effectively limit the flight envelope. For both

industrial and academic reasons, understanding, predicting and modeling transonic buffet are therefore of fundamental

importance.

Turbulent transonic buffet consists of two distinct instabilities: a two-dimensional (2D) instability, related to
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the streamwise oscillations of the shock-wave forming on the wing suction side, and a three-dimensional (3D) one,

characterized by the cross-flow propagation of the commonly named buffet cells.

Early investigations on turbulent transonic buffet mostly focused the attention on the 2D streamwise shock-oscillations.

The experiments of McDevitt and Okuno [2] and Benoit and Legrain [3], later confirmed by Jacquin et al. [4], identified

characteristic Strouhal numbers ((C, based on the free-stream velocity*∞ and chord length 2) between 0.06 and 0.07.

Confirming the robustness of this 2D turbulent instability, the same frequencies were recovered when the boundary-layer

over the laminar OALT25 airfoil was tripped to induce transition to turbulence [5]. From a numerical point of view, the

literature is prevalently based on 2D Reynolds-Averaged Navier-Stokes equations (RANS) studies [6–13]. Although a

considerable sensitivity to numerical schemes and turbulence models exists [6], the 2D RANS calculations can recover

the experimental frequencies associated with the chordwise shock-oscillations. The extensive reviews on turbulent

transonic buffet [14, 15] reveal two widely accepted but conflicting interpretations of this 2D mechanism. On the one

hand, these oscillations are believed to be the consequence of a feedback loop involving downstream traveling pressure

waves emanated from the shock foot and upstream traveling pressure waves generated at the trailing edge that provide

energy back to the shock [4, 16]. On the other hand, the streamwise shock oscillations are interpreted as a global

instability localized on the shock-foot that produces pressure perturbations in the direction normal to the profile and

directly transfers energy along the shock [8, 10]. Despite the large body of both experimental and numerical studies, a

definite explanation is still lacking.

Due to the complexity of the phenomenon and thanks to modern experimental measurement techniques, more

attention could only recently be given to describing the 3D aspects of buffet [17–21]. Wing-body aircraft configurations

showed that besides the characteristic frequencies of 2D shock-oscillations, a broadband energy content exists in

the (C = 0.2 − 0.6 range. This energy content has been associated with the convection of buffet cells towards the

wingtip. With the increasing access to large computational resources, also the numerical interest could shift towards

the investigation of fully 3D geometries. Made exception of a few large-eddy simulations (LES) [22, 23] and direct

numerical simulations [24–26], RANS or hybrid RANS/LES remain nonetheless the most popular approaches due

to their relative inexpensiveness. Calculations on both 2.5D (extruded wings with spanwise periodicity) [27–34]

and full-aircraft [35–42] configurations are proliferating and, although a strong sensitivity to the numerical grid and

turbulence modeling prevents satisfactory quantitative comparisons, new light is being shed on 3D buffet.

While the mechanisms related to both instabilities need further scrutiny, it is worth to bring attention to the associated

dynamics. By considering a 2D flow and using a RANS approach to model turbulence, the present contribution

aims at showing that, despite the complexity of the physical mechanisms coming into play, the dynamics of transonic

buffet within such a framework is relatively simple. For this purpose, techniques from system identification can

be used to obtain low-dimensional models that describe the full-state dynamics in a computationally efficient way.

Reduced-order modeling (ROM) is nowadays applied to a wide spectrum of scientific and industrial applications
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as well as to economic processes. The techniques can be very diverse and range from physical reductions [43] to

data-driven algorithms [44]. The limitations of the most commonly used approaches, like those based on proper

orthogonal decomposition(POD)-Galerkin methods [43, 45] or dynamic mode decomposition (DMD) [46], pushed

the scientific community to develop new models applicable to a wider range of flow conditions. In the present work,

a system identification method is trained on a dataset consisting of the lift coefficient time-series, �! (C), obtained at

different angles of attack (AoA). The identification method makes use of the sparse identification of nonlinear dynamics

(SINDy) [47, 48] to identify a parametrized minimal-order model that best describes the system dynamics over the

range of operating conditions considered. These models are then supplemented with an equally parametrized DMD

representation of the instantaneous state vector to enable on-the-fly estimation of the whole flow field around the airfoil

directly from its lift measurements.

The paper is organized as follows: details of the 2D RANS simulations performed to calculate the lift coefficient time-

histories along with a description of the system identification and DMD methods are given in Sec. II. A comprehensive

description of the training dataset and the results obtained by system identification are presented in Sec. III. The

identified system is tested over a case not present in the training data set in Sec. IV, and the physical implications of the

findings are also discussed. Conclusions and perspectives on the future work are summarized in Sec. V.

II. Numerical Methodology
This section presents the numerical details of the unsteady RANS simulations used to obtain the training data set

consisting of the time series of the lift coefficient at various angles of attack. In a second time, the system identification

framework, consisting of the joint use of a preprocessing of the lift coefficient time-series using the Broomhead-King

embedding technique and the SINDy method for the subsequent model identification, is presented. Finally, a brief recall

on DMD used for the full-state estimation is given.

A. 2D Steady and Unsteady RANS Simulations

For a compressible perfect gas, the 2D unsteady Reynolds-Averaged Navier-Stokes equations can be written as

mq
mC

= '(q), (1)

where ' is the differential nonlinear Navier-Stokes operator in Cartesian coordinates and q = [d, du, d�, d`C ]) is the

conservative quantities vector with, d, u, � and `C being the fluid density, velocity vector, total energy and turbulent

viscosity, respectively. All numerical simulations in this paper are run with an in-house code solving the compressible

Navier-Stokes equations on multi-block fully-parallelized structured grids in a finite-volume fashion. While the mean

convective fluxes are calculated using a Jameson-Schmidt-Turkel third-order scheme with artificial dissipation, a
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second-order scheme with Harten’s correction is used for the turbulent ones. All viscous terms are differentiated with

a second-order centered scheme. The temporal discretization is based on a dual time-stepping method [49] using a

second-order extrapolation for the derivatives with respect to the physical time. The boundary conditions used for both

the steady or unsteady nonlinear calculations are: no-slip velocity, adiabatic temperature, and pressure extrapolation

on the profile walls; the AoA is applied on the imposed uniform velocity at the inflow of the numerical domain;

characteristic boundary conditions are set at the domain lateral boundaries and outflow to minimize wave reflections.

The Spalart-Allmaras turbulence model [50] with Edwards modification [51] and quadratic constitutive relation (QCR)

2000 version [52] is used to close the RANS equations. Each simulation is started with the solution of the steady RANS

equations and evolved in time until it reaches a fully-established nonlinear regime. During this whole evolution, the lift

coefficient is monitored and will serve as an input for the system identification task.

B. Feature extraction

This work aims at identifying low-order models of the transonic buffet using solely the time-evolution of the lift

coefficient and instantaneous flow fields obtained from URANS simulations. To do so, the measurement first needs to be

augmented into a higher-dimensional latent space where the dynamics is easy to model. Leveraging Taken’s embedding

theorem [53], such an embedding can be obtained using the algorithm proposed by Broomhead and King [54]. For each

angle of attack considered herein, a : × (= − :) Hankel matrix is first constructed based on the recorded evolution of the

lift coefficient, i.e.

H =



B0 B1 B2 · · · B=−:

B1 B2 B3 · · · B=−:+1

...
...

...
. . .

...

B: B:+1 B:+2 · · · B=


(2)

where B: = B(:ΔC) is the value of the lift coefficient recorded at the : th time step and = is the length of the recorded

signal. The number : of time delays considered to construct this Hankel matrix defines the embedding window. It is

usually taken to be of the order of the dominant time-scale in the signal.

As a second step, this Hankel matrix is decomposed via its economy-sized singular value decomposition, i.e.

H = UΣV) (3)

withU ∈ R:×: a unitary matrix,Σ ∈ R:×: a diagonal matrix whose entries are the singular values ofH andV ∈ R(=−:)×: .

From a physical point of view, the 8th column of U can be understood as a temporal convolution kernel extracting specific

features of the original signal. The singular value f8 then characterizes how important this feature is to reconstruct the
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original signal while the 8th column of V corresponds to the (scaled) signal resulting from this convolution. As for

principal component analysis, the optimal dimension of the desired latent space can be inferred from the distribution of

the singular values f. Because of the close connection of this time-delay embedding with principal component analysis,

the signals in V are linearly uncorrelated and sometimes called principal component trajectories. For more details about

this decomposition, interested readers are referred to the recent work of Kamb et al. [55].

C. SINDy - System Identification

Having lifted the single measurement signal into a higher-dimensional latent space, a model of the dynamics in this

latent space can be obtained using system identification techniques. To do so, the sparse identification of nonlinear

dynamics (SINDy) framework originally proposed by Brunton et al. [47] is considered. For the sake of simplicity, the

presentation of the method is restricted to the case of a 2D state vector a(C) = [01 (C), 02 (C)]) (as is the case in the rest

of this paper) albeit the method readily generalizes to higher-dimensional systems. SINDy relies on the observation that,

for many systems modeled as
da
dC
= f (a) (4)

the unknown function f (a) : R= → R= is sparse in the space of possible right-hand side functions.

To identify f (a), time-series data is first collected and formed into the data matrix

A =

[
a(C1) a(C2) · · · a(C<)

])
. (5)

A similar matrix ¤A of time derivatives is formed. As a second step, a possibly over-complete library (or dictionary) Θ

of candidate nonlinear functions is constructed, e.g.

Θ(A) =
[
1 A %2 (A) · · · %3 (A)

]
. (6)

Here %3 (A) denotes a matrix with columns vectors given by all possible time-series of 3th degree monomials in the

state a, e.g.

%2 (01, 02) =
[
02

1 0102 02
2

]
. (7)

Note that any basis function may be included in the library Θ albeit polynomials have proven to work well for fluid

dynamics [47, 48, 56–58]. The unknown dynamical system may now be represented in terms of the data matrices as

¤A =Θ(A)Ξ. (8)

Each column Ξ: is a vector of coefficients determining the active terms in the equation governing the dynamics of 0: (C).
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A parsimonious model will provide an accurate model fit with as few non-zero terms as possible in Ξ. Identifying this

sparsity pattern may be formulated as the following optimization problem

minimize
Ξ:

card(Ξ: )

subject to ‖ ¤A −Θ(A)Ξ: ‖22 ≤ f
(9)

where card(Ξ: ) = ‖Ξ: ‖0 is the cardinality (or ℓ0 pseudo-norm) of Ξ: , i.e. its number of non-zero entries, and the

constraint ‖ ¤A −Θ(A)Ξ: ‖22 ≤ f quantifies the fidelity of the model with respect to the data. The above minimization

problem is however a combinatorially complex optimization problem. Various convex relaxations to this problem have

been proposed over the years, most of them replacing the ℓ0 with the ℓ1 norm such as in LASSO regression. In this

work, the simple hard-thresholded least-squares algorithm proposed in [47] was however found to be sufficient. Note

finally that, since its introduction, numerous extensions of SINDy have been proposed, see for instance [56, 59–68] and

references therein.

D. Dynamic Mode Decomposition

Fluid flows are characterized by high-dimensional nonlinear dynamics giving rise to rich structures. Despite this

apparent complexity, the dynamics often evolve on a low-dimensional attractor defined by a few dominant coherent

structures [69]. Over the years, being able to leverage these coherent structures has proven instrumental for real-time

control or estimation of these complex spatio-temporal systems. Since the introduction of POD in the fluid dynamics

community by Lumley [70] in the late sixties, various other such techniques have been proposed to extract these coherent

structures. In the present work, DMD is selected and here briefly discussed.

Given a sequence of evenly sampled high-dimensional snapshots {q(x, C: )}:=1,= related by

q:+1 = f (q: )

where q: = q(x, C: ) and f : R< → R< (with < � 1), DMD aims at finding a low-rank operator G ∈ R<×< that best

approximates the unknown function f in the least-squares sense. While the original idea has been proposed by Rowley

et al. [71] and Schmid [46], the well-posed optimization problem leading to the optimal identification of this low-rank

operator has only been recently put in the limelight by Héas and Herzet [72] and the proof of its optimality has been

simplified in Loiseau [58]. Introducing the data matrix

^ =

[
q1 q2 · · · q=−1

]
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and its time-shifted counterpart

_ =

[
q2 q3 · · · q=

]
,

this optimization problem reads

minimize
G

‖_ − G^‖2�

subject to rank G = A

where A the rank of the desired approximation. Because of the rank constraint, this optimization problem is highly

non-convex. It admits nonetheless a closed-form solution. Factorizing the unknown low-rank operator as G = VW)

with V and W ∈ R<×A two rank-A matrices, this optimization problem can be recast as

minimize
V,W

‖_ − VW) ^‖2�

subject to V) V = OA

where OA is the A × A identity matrix. As shown in [72] and [58], the matrix V solution to this problem is formed by

leading eigenvectors of the following eigenvalue problem

V� = IyxI
−1
xxIxyV

while W is solution to

W = I−1
xxIxyV

where Ixx = ^^) is covariance of ^ and Ixy is the cross-covariance matrix. Once V and W have been computed, the

low-rank DMD operator can easily be factorized as

G = �S	�

where �,	 ∈ C<×A are the left and right DMD eigenmodes and S ∈ CA×A is the DMD eigenvalues matrix (i.e.

S88 = -8). These eigenmodes and associated eigenvalues may provide valuable insights into the dynamics of the

spatio-temporal coherent structures identified. Alternatively, the low-rank DMD operator may also be factorized using

its singular value decomposition

G = [G�G\
�
G .

It must be noted that other variants of DMD have been proposed in the literature [46, 71, 73–80], each with its pros and

cons. To the best of the authors’ knowledge, however, none of these techniques can easily be recast in this seemingly

natural framework of reduced-rank regressions.
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III. Results
Steady and unsteady RANS solutions forming the training set for the system identification are described in detail in

Sec. III.A along with some comparisons with the literature. Results on the system identification are instead discussed in

Sec. III.B.

A. Training Dataset: Unsteady RANS Lift Coefficient Time-Histories

The training dataset consists of the lift coefficient time-histories at different AoA in the transonic buffet regime. For

each AoA, the lift coefficient time evolution covers the whole transient and post-transients dynamics, from the steady

solution to the fully-developed buffet shock-oscillations. Thus, the results concerning both the steady and unsteady

calculations are presented in this section and compared with some studies present in the literature.

1. Numerical Setup

Eleven simulations have been carried out by spanning the AoA from 3.00o to 5.50o by an increment of 0.25o. The

flow conditions are set to correspond to those in Sartor et al. [10], where an OAT15A airfoil with a sharp trailing edge

and chord of 2 = 0.23 < was considered. The same geometry used in Sartor et al. [10] was kindly provided by Dr.

Sartor, ONERA. The stagnation pressure and temperature are 101325 %0 and 300  , respectively. The Mach number is

" = 0.73 and the Reynolds number based on the chord length is '4 = 3.2 × 106.

Fig. 1 Numerical grid used for the steady/unsteady RANS calculations. Whole domain showing the C-type
grid topology and far-field boundaries (left) and zoom around the airfoil (right). The airfoil section is colored
in red in both plots.

The same 2D C-type structured grid obtained by normal extrusion around the airfoil has been used for all AoA and it

is shown in figure 1. The numerical domain extends 302 upstream of the profile and 402 above, below, and downstream.

The grid counts about 149,000 cells: 160 in the profile-normal direction (about 60 cells in the boundary-layer and
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a H+F < 5 for all first points off the profile), 300 along the suction side, 165 along the pressure side, and 232 in the

horizontal wake direction. The grid has been refined in the shock region between G/2 = 0.25 and G/2 = 0.55 where the

grid spacing is about Δ G/2 = 0.002.

Fig. 2 Left plot: RANS pressure coefficient distributions for the AoA = 3.50o (blue), AoA = 4.50o (red) and
AoA = 5.50o (black). Present results (solid lines) are compared against those of Deck [27] (empty circle symbols)
and Sartor et al. [10] (full circle symbols). Right plot: sonic (black solid line) and zero-streamwise velocity
(white solid line) iso-lines superimposed to the RANS dimensional streamwise-velocity contours.

2. RANS Solutions

The pseudo-unsteady temporal integration with a Courant-Friedrichs-Lewy (CFL) number equal to 10 is used to

filter the unsteadiness. Steady solutions are converged until the residuals of the state variables in the ℓ2-norm are lower

than 10−8. Distribution of the pressure coefficient �? for the AoA = 3.50, 4.50 and 5.50o are compared against those of

Deck [27] and [10] in figure 2 (left plot) and show good agreement on both airfoil sides and in terms of shock positions.

Contours of the dimensional streamwise velocity for the steady solution at AoA = 4.50o are plotted in figure 2 (right

plot) along with the sonic (black solid line) and zero-streamwise velocity (white solid line) iso-lines, showing the

supersonic flow region, shock position, and separation, respectively. Figure 3 shows the pressure, �? , and skin-friction,

� 5 , coefficient distributions for all the AoA examined. Some transparency has been added to the monochromatic lines

representing the distributions. Hence, regions where the pressure and skin friction distributions become darker indicate

a weak dependency on the incidence angle. The �? distribution on the upper side of the airfoil is flat upstream of the

shock position and very weak dependency on the AoA can be seen on the lower airfoil surface. The � 5 shows that the

region between normal shock and trailing edge is fully separated for all cases examined. The separation point moves

upstream for increasing AoA and, for high incidence (above AoA = 4.25o) the � 5 distribution is nearly independent of

the AoA for G/2 > 0.5.

3. Unsteady RANS Solutions

For each AoA, an unsteady RANS calculation is started from its corresponding steady solution with a physical time

step fixed to ΔC∗ = 6.85 × 10−7 B. For the AoA at which transonic buffet occurs, the time evolution of the lift coefficient
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Fig. 3 RANS pressure (left plot) and skin-friction (right plot) coefficient distributions for all cases between
AoA = 3.00 : 0.25 : 5.50o. The arrows indicate the evolution of the AoA.

is recorded from the steady solution up to non-linear saturation, when the shock-oscillations due to buffet are fully

developed. In agreement with Sartor et al. [10], buffet onset occurs around AoA = 3.5o. Some differences exist in terms

of buffet offset (AoA > 5.00o in the present study against AoA > 6.25o in Sartor et al. [10]) but some scattering in the

literature [11] suggests that cases at high AoA may present separations too large to be correctly simulated in a RANS

framework. The lift coefficient time evolution for AoA = [3.50o, 4.75o] and 0.25o step is reported in figure 4, where it

is possible to appreciate the exponential instability as the flow transitions from a steady solution to a limit cycle. In

agreement with Sartor et al. [10], for increasing incidence, the buffet frequency does not vary significantly (between 74

and 77 �I), the mean (time-averaged) �! value decreases, and the oscillation amplitude increases. This ensemble of lift

coefficient time-histories is selected as a database for the training of the system identification method presented in the

following sections.

Fig. 4 Lift coefficient time-histories at different AoA constituting the training dataset for the system identifica-
tion method.

An important feature to discuss concerning the evolution of the lift coefficient in the case of transonic buffet is the

“asymmetric" nature of the oscillations around its corresponding steady value. The baseflow-subtracted lift coefficient

evolution normalized with the maximum of the oscillations amplitude, 01, is plotted against time and its temporal
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Fig. 5 Baseflow-subtracted lift coefficient normalized with the maximum of the oscillation amplitude against
time (left) and its time derivative (right) for the AoA = 4.75o. The colored dots correspond to different flow states:
nearly-steady state (green), transient (magenta), most upstream shock position (blue) and most downstream
shock position (red).

Fig. 6 Sonic (black solid line) and zero-streamwise velocity (white solid line) iso-lines superimposed to the
dimensional streamwise-velocity contours for the nearly steady (left plot), most upstream position (middle plot)
and most downstream position (right plot) states at AoA = 4.75o. The different colored dots correspond to the
same states indicated in figure 5.

derivative, 02, in figure 5 for AoA = 4.75o. The colored dots indicate a nearly steady-state (green), transient (magenta),

most upstream shock position (blue), and most downstream shock position (red). The phase plot shows that the limit

cycle has a non-circular shape because the shock slows down when reaching its most upstream position, causing the

high-lift phase to be at a higher absolute value with respect to the low-lift counterpart. The nearly steady (left plot),

most upstream position (middle plot), and most downstream position (right plot) states are reported in figure 6, where

the sonic (black solid line) and zero-streamwise velocity (white solid line) iso-lines are superimposed to the contours of

the streamwise velocity.

4. DMD Analysis

For each AoA, 512 snapshots are collected at saturation. About 16 snapshots per shock-oscillation period were

sampled, for a total of 32 periods. The snapshots are 2D flow fields consisting of density, velocities, energy, and

turbulent viscosity for each domain cell.

While some differences exist between each AoA, the DMD results are qualitatively similar and only those for AoA

= 4.75o are shown here for illustrative purposes. Figure 7 (left plot) reports the imaginary and real part of the DMD

eigenvalues. The four eigenvalues, and their complex conjugates, resting on the unit circle (dashed gray line) are
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indicated by black full symbols and the streamwise velocity contours of the corresponding eigenfunctions are reported

on the right part of the figure (the correspondence between eigenvalues and eigenfunctions is denoted by the letters

indicated). While the top left subplot in figure 7 corresponds to DMD mode at the buffet frequency, the remaining plots

are simply its higher harmonics. The eigenfunction is localized on the shock and shear-layer regions, as already seen in

the DMD analysis by Poplingher et al. [81]. It is interesting to emphasize that a similar eigenmode structure is given by

linear global stability analysis [8, 10], suggesting that the mechanisms that govern buffet are fundamentally linear. While

linear global stability analysis is performed around a RANS (steady base flow solution) and the eigen-perturbations are

concentrated on the shock, the DMD analysis is done around the mean flow and the eigenfunction appears to be smeared

around the shock.

Fig. 7 DMD eigenvalues and corresponding streamwise eigen-velocity contours (indicated by the letters) for
the AoA = 4.75o case.

B. System Identification

Given the time series of the lift coefficient at various AoA, the aim is now to identify a relatively simple dynamical

system capable of describing accurately the observations made in the previous section, namely the exponential instability

of the base flow and the subsequent transition to a limit cycle, as well as the asymmetry in the oscillation (i.e. high-lift

vs low-lift).

1. Latent space

As discussed in Sec. II.B, time-series of the lift coefficient obtained from URANS simulations are augmented lifted

into a higher-dimensional latent space using the method proposed by Broomhead and King [54]. For that purpose, a

window of ΔC ≈ 0.013 B is considered, i.e. approximately one period of oscillation. Figure 8 depicts the corresponding

distribution of singular values, with all cases superimposed. Evidently, these Hankel matrices can be well approximated
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Fig. 8 Singular value distribution of the Hankel matrix. For all cases, these distributions indicate that a 2D
latent space is sufficient.

Fig. 9 The two leading convolution kernels learned using the Broomhead & King embedding technique for the
various angles of attack.

by a rank 2 model, consistent with the fact that, for the range of parameters considered, the flow is characterized

by an oscillatory behavior. Figure 9 shows the convolution kernels learned by the method while figure 10 presents

the trajectory of the system in the corresponding 2D latent space for the different angles of attack. Looking at the

latter figure, it can be seen that the oscillatory behavior of the transonic buffet is nicely captured by this embedding.

Additionally, comparing these embeddings with the naïve one in figure 5, it can be seen that azimuthal invariance is

restored in this latent space. In the next section, we will leverage this azimuthal invariance to obtain a simple dynamical

model expressed in terms of the oscillation’s amplitude A (C) and its phase i(C).

Fig. 10 Trajectories in the latent space. Only a subset of the different AoA considered herein is shown.
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2. Dynamical modeling using SINDy

As stated, the key features of the transonic buffet’s dynamics (when modeled using URANS) can be captured by a

2D latent space. Moreover, in this latent space, figure 10 shows that the corresponding phase portraits are invariant in

the azimuthal direction. In order to identify a simple model, we can thus work in the polar coordinates

A (C) =
√
02

1 (C) + 0
2
2 (C)

i(C) = arctan(02 (C), 01 (C))

where the phase i(C), initially in [−c, c[ is additionally unwrapped. Figure 11 shows the corresponding time-series (in

black) that will be used for the system identification.

The oscillation’s amplitude being independent of its phase, one can identify a low-order model independently for

both of them. To do so, two libraries are constructed for each angle of attack, namely

ΘA (A) =
[
1 A A2 A3

]
and

Θi (i) =
[
1 i i2 i3

]
.

SINDy models are then fitted for each angle of attack. In all cases, the structure of the identified model is

¤A = fA − VA3

¤i = l.

The coefficients f, V, and l are reported in table 1 for each AoA. Figure 11 provides a comparison of the ground

truth evolution (black solid lines) of the oscillations’ amplitude and phase with that predicted by the identified models

(gray dashed lines). Figure 12 provides a comparison of the growth rate and oscillation frequency predicted by the

models against those obtained in the linear transient of the URANS equations. For all angles of attack considered herein,

excellent agreement is obtained. This comparison can serve to infer a physical meaning to the identified parameters.

While f and l correspond to the growth rate and oscillation frequency, the V parameter is the cause for the nonlinear

saturation and attainment of the limit cycle.

Despite the complex physical mechanisms at play, the identified models thus show that, from a dynamical point of

view, the transonic buffet can be reduced to a simple Stuart-Landau oscillator. It should be noted that this finding is

consistent with what concluded by Bouhadji and Braza [82] for the Reynolds number effect on zero-incidence transonic

aerofoils. Additionally, we have f > 0 and V > 0 for all angles of attack, highlighting that the oscillatory dynamics of

the transonic buffet arise due to a supercritical Hopf bifurcation of the underlying steady base flow. These observations
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Fig. 11 Comparison of the ground truth and modeled evolution of the system (in terms of the oscillation’s
amplitude and its phase). Only a subset of the different AoA considered herein is shown.

Fig. 12 Comparison of the identified growth rates and frequencies with those measured from the URANS
numerical simulation.

are consistent with recent results available in the literature [8, 10].

3. Estimating the lift coefficient from the latent space

The dynamical systems identified in the previous section can be augmented with a measurement equation relating

the instantaneous state of the system in the latent space to the corresponding lift measurement. Based on physical

arguments, this measurement equation can be expressed as

�! (A, i) = 20 + 21A + 22A cos(i) + 23A
2 cos(2i). (10)

AoA 3.5o 3.75o 4o 4.25o 4.5o 4.75o

f 4.34 18.3 25.93 22.24 17.71 11.55
V 377.23 264.86 205.68 129.86 86.05 52.35
l 465.78 465.62 466.31 466.60 467.30 469.34

Table 1 Parameters of the models identified using SINDy for the various angles of attack considered.
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Fig. 13 Comparison of the ground truth and modeled evolution of the lift coefficient time history for AoA =
3.75o (top plot) and 4.75o (bottom plot).

AoA 3.5o 3.75o 4o 4.25o 4.5o 4.75o

20 0.968 0.966 0.963 0.959 0.953 0.947
21 0 0 0 0.003 0.008 0.12
22 0.246 0.244 0.245 0.245 0.245 0.245
23 0 0.008 0.025 0.034 0.041 0.047

Table 2 Identified parameters of the lift measurement equation for the different angles of attack.

The constant term 20 models the contribution to the lift of the linearly unstable base flow while that of the oscillatory

dynamics is captured by 22A cos(i). The term 23A
2 cos(2i) captures the contributions resulting from nonlinear

interactions giving rise to the buffet’s second harmonic. Finally, the term proportional to A is included as being the

simplest term that could break the symmetry of the reconstructed signal. Including this term is of crucial importance

to capture the asymmetry between the high-lift and low-lift phases clearly visible in figure 5. These coefficients are

estimated using a simple linear least-squares approach for all of the angles of attack considered herein. The identified

numerical values of these coefficients are reported in table 2. Given the true time-series of A (C) and i(C) for an angle of

attack of 3.75o, figure 13 (top plot) compares the true measurements of the lift coefficient against those reconstructed

from the measurement equation Eq. (10). Similar results are reported in figure 13 (bottom plot) for an angle of attack

of 4.75o for which capturing the asymmetry of the lift signal can be of utmost importance. In both cases, excellent

agreement between the true time series and the estimated one is obtained.

It should be noted finally that the evolution of these parameters with respect to the angle of attack is monotonic. As

for the parameters of the identified dynamical systems, the dependence of the measurement equation’s parameters with

respect to the angle of attack can easily be captured by a simple interpolation scheme such as cubic splines.
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4. Estimating the full state vector from the latent space

The last step in the data-driven analysis is to reconstruct the high-dimensional state vector from the 2D latent space

presented in III.B.1. Various approaches have been proposed in the literature to perform this task, from a simple locally

linear embedding [48] to advanced decoder networks [83]. In this work, a simple map will be identified to relate the

low-dimensional latent state vector to the representation of the flow in the DMD basis.

The projection of the kth snapshot onto the span of the DMD modes is given by

v(:ΔC) = �†q(:ΔC)

where q(:ΔC) is the state vector from the URANS simulation, �† is the Moore-Penrose pseudoinverse of the DMD

eigenbasis and v ∈ C4 is the complex-valued amplitude of the four complex-conjugate pairs of DMD modes retained.

As before, this complex-valued nature is leveraged to rewrite each entry of v in polar coordinates, i.e.

E= = A= exp(i=) ∀= = 1, · · · , 4.

The objective is now to find the map from the polar representation of the latent space state vector a to that of the DMD

representation v. Since the dynamics of the flow in the saturated stage are strictly periodic, one can easily show that the

simplest map is given by

A= = U=A

i= = ±=i + i (=)0

where A and i are the coordinates of the latent space state vector in polar coordinates, and U= and i (=)0 are the map’s

parameters for the =th DMD mode. These parameters are once again identified using a simple linear least-squares

procedure and are reported in table 3. The predicted evolution of the DMD modes is compared against the ground

truth in figure 14. Only the configuration at an angle of attack of 4o is presented for the sake of conciseness albeit

similar results have been obtained for all other cases. Excellent agreement is obtained for the first two pairs of complex

conjugate DMD modes while the agreement slightly deteriorates for the higher-order ones (possibly due to errors

resulting from the sampling of the dynamics used to compute these DMD modes). The orbits in these phase portraits

are reminiscent of Lissajous curves further highlighting that the higher-order DMD modes are simply harmonics of the

fundamental one.

It needs to be noted finally that this DMD-based estimation of the full velocity field provides excellent agreement

with the ground truth data only once the flow has reached its limit cycle. During the initial stages of transition, the

spatial support of the perturbation would be better captured by the instability modes [8, 10] which can differ quite

substantially from the DMD modes. Using arguments from dynamical systems theory, one can however argue that these
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Rank of the DMD mode 1 2 3 4
U= 2.12 0.65 0.34 0.23
i
(=)
0 -2.44 -8.66 -8.59 -14.52

Table 3 Parameters of the map relating the low-dimensional state vector a to the corresponding DMD repre-
sentation of v of the flow field.

Fig. 14 Projection of the dynamics onto the span of the first four DMD eigenmodes. The black lines represent
the projection of the true snapshot onto these modes while the light gray one depicts the evolution directly
inferred from the latent state vector.

instability modes are continuously deformed into the DMD modes as their amplitude increases. As such, one could use

the technique proposed in [84] wherein a parameterized reduced basis is constructed to continuously transform the

instability modes to the POD/DMD modes based on interpolation on the Grassman matrix manifold [85, 86]. A similar

procedure can be used to interpolate the DMD modes as a function of the angle of attack.

IV. Discussions

A. Identified system predictive capabilities and computational cost

To test the predictive capabilities of the identified system, an angle of attack of 4.15o, not included in the training set,

has been selected to compare the time-histories of true and predicted lift coefficients. As previously done in section III.A,

a RANS solution is first obtained and used as initial condition for a URANS calculation to generate the ground truth data.

Starting from the steady solution, the flow undergoes a linear transient and eventually saturates nonlinearly towards a

limit cycle characterized by periodic self-sustained shock oscillations.

The parameters of both the dynamical system and measurement equation identified in the previous section are

interpolated at the corresponding angle of attack using cubic splines. The resulting models are then used to generate a

prediction of the lift coefficient time-history with no additional information about the flow. The Stuart-Landau oscillator

model is first integrated forward in time starting from an initial condition close to its fixed point to generate the time

series of the latent space vector. This 2D time series is then processed by the measurement equation to generate the

estimated evolution of the true lift coefficient. A comparison of the true (solid black line) and predicted (gray dashed

19



Fig. 15 Comparisons between the true (black solid line) and predicted (gray dashed line) lift coefficients for
AoA=4.15o.

line) lift is given in the top plot of the figure 15. Since an initial value of the predicted perturbation amplitude has to

be arbitrarily selected, a phase difference between the true and predicted lift existed. This phase difference is then

corrected by shifting the predicted lift in time and locking the true and predicted signals for visualization purposes.

While this phase difference is unavoidable due to the arbitrary choice of the initial condition, the shock oscillation

amplitudes, the linear transient growth rate (bottom left figure), and the signal frequency energy contents (bottom right

figure) remarkably match. Although the identified system is in general able to reproduce the asymmetry of the shock

oscillations in the nonlinearly saturated stage (see figure 13), in this case, the asymmetry is minimal. Note moreover that,

since only up to quadratic terms were included in the equation (10) to account for nonlinear interactions, the predicted

power spectral density (PSD) is not able to reproduce third or higher harmonics. For the prediction of the lift coefficient

time history, the contribution of these higher harmonics is however negligible.

Although not presented for the sake of conciseness, the DMD modes can be equally interpolated at this particular

angle of attack (along with an interpolation of the mean flow) and the simple map identified in section III.B.4 can be

used to obtain an estimation of the whole velocity field around the airfoil.

One final thought concerns the computational effort required to obtained both the true and predicted lift coefficient

time histories. While the cost of the CFD simulation is of the order of a few hundred core hours, the identified model

generates the predicted lift on a single process in a matter of seconds with remarkable accuracy.
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B. Physical implications

The physical mechanisms governing the turbulent transonic buffet are at the center of many academic and industrial

discussions. Being high-speed buffet a limiting cause of the flight envelope, accurate predictions are of utmost

importance during design, certification, and operational phases. Even though a better understanding of the physical

mechanisms underlying transonic buffet remains critical, this work highlights the duality of the physical interpretation

of the governing mechanisms versus the dynamical behavior of interest for engineering applications. Despite the

complexity of the problem, where turbulent boundary layers, separation, and unsteady shock waves coexist, the dynamics

of the system (as modeled in a URANS framework) is very simple. The identified system is in fact no different than

what was found for the canonical 2D cylinder flow at low Reynolds numbers [48]. To the authors’ knowledge, the model

proposed herein is currently the simplest one able to accurately predict 2D transonic buffet.

One might argue that many aspects of high Reynolds number turbulence are neglected in the current 2D RANS

framework. While this is certainly true, and the consideration of 3D effects and corresponding appearance of buffet cells

[17–21] further complexifies the dynamics of the flow, experimental and higher fidelity numerical studies have shown

that only two instabilities are dominant. At buffeting conditions, these instabilities are also robust over a relatively large

range of Mach and Reynolds numbers. A high-frequency instability (3D spanwise traveling buffet cells) superimposed

onto a low-frequency one (2D streamwise shock oscillations) are the main characters at play. In particular, looking at the

time-series generated by 3D LES computations (i.e., see figure 2a in [25]), it can be speculated that the dynamics of the

lift coefficient could be modeled using the same simple Stuart-Landau oscillator augmented with a second component

to account for high-frequency buffet cells and a third stochastic one for the small scale turbulent fluctuations. Such

a modeling strategy is currently undertaken by Callaham et al. [87] to model the temporal evolution of the center

of pressure in an experimental turbulent wake using an extension of SINDy for stochastic systems [64]. If these

speculations are confirmed by further investigations, the use of these simple models could represent a very powerful tool

for the assessment of high-speed buffet in the flight envelope. For a given geometry, only a relatively modest number of

numerical simulations or experiments would be needed to adjust the coefficients of the identified system and have an

accurate prediction in the complete buffet regime.

V. Conclusions
The sparse identification of nonlinear dynamics (SINDy) method is used to obtain a low-dimensional model to

describe the nonlinear dynamics of a 2D supercritical profile at transonic buffet conditions within a 2D RANS framework.

A simple parametrized Stuart-Landau oscillator model is identified and used to reconstruct lift time histories and full

states at different angles of attack within the buffet condition range. The identified model is tested on one case not

included in the training dataset and the predicted lift time-history from the RANS solution to nonlinear saturation

(attainment of the periodic shock oscillations in the limit cycle) agrees remarkably with the corresponding CFD
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simulation.

The findings presented here offer a few points for reflection. While the scientific efforts on the elucidation of the

buffet governing mechanisms should not diminish, the modeling of the associated flow response might prove to be

relatively less complex. The dynamics identified in this work (and the shared similarities with 3D wings and full aircraft

configurations) suggest that an accurate representation of the flow response might be achieved with simple models.

Additionally, the accuracy of the model and its rapidity in reproducing the buffet dynamics make the identified system

an attractive and powerful tool for real-time simulations in the context of design, certification and operational phases in

the life cycle of commercial aircrafts.

While further investigations should be carried out by considering 3D configurations and different levels of CFD

high-fidelity datasets, the present work poses the basis for accurate real-time buffet dynamics prediction for both

industrial and academic purposes.
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