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Highlights
A note on the spheroidal modes vibration of an elastic sphere in linear viscoelastic fluid
A. El Baroudi

• Exact theory for predicting spheroidal vibration of a sphere in a compressible viscoelastic fluids, is proposed.
• Complex eigenfrequency equation is established in order to quantitatively analyze the sphere vibration behavior.
• Complex eigenfrequency equation reveals a very good agreement with those in the literature in some particular cases.
• Obtained results are fundamental and can serve as benchmark solution in design of liquid sensors.
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ABSTRACT
Vibration characteristics of elastic nanostructures embedded in fluid medium have been used for bio-
logical and mechanical sensing, and also to investigate the materials mechanical properties. An ana-
lytical approach based on the exact theory has been developed in this paper, to establish a new accurate
and simple generalized frequency equation to predict spheroidal vibration of an elastic nanosphere, in
a compressible viscoelastic fluid using linear Maxwell fluid model. To demonstrate the accuracy of
the present approach, a comparison is made with the published theoretical results in the literature in
some particular cases, which shows a very good agreement. Thus, the obtained frequency equation
can be very useful to interpret the experimental measurements of vibrational dynamics of nanospheres
and can serve as benchmark solution in design of liquid sensors.

1. Introduction
During recent years, owing to various applications, espe-

cially in designing biological and mechanical sensors, and in
characterizing material properties, vibration analysis of em-
bedded nanoparticles in fluid medium has attracted signifi-
cant attention [1, 2, 3, 4, 5, 6]. The damping level present
in these applications can be defined by its quality factor. A
high quality factor that describes low damping is desirable
for better detection sensitivity. Consequently, it is of interest
to understand the damping phenomenon due to transfer of
energy or energy dissipation to the surrounding medium. In
addition, incited by the idea to destroy biological nanopar-
ticles such as viruses using resonance concept of an ultra-
sonic wave, the elastic spheres models have also been used
to study the vibration characteristics of viruses in different
media. [7, 8, 9, 10, 11].

The dampingmechanism and resonant frequencies of nanos-
tructureswith different shapes have beenmeasured by amany
experimental techniques [5, 12, 13]. From the modeling per-
spective of the vibration characteristics of these nanostruc-
ture, vibrations of elastic structures are classical problems
in continuum mechanics. For example, Lamb [14] proposed
a theoretical aspect to investigate the spheroidal modes of a
dry elastic sphere. In spheroidal modes, the volume or shape
of the sphere subjected to vibration is not constant. In addi-
tion, there are a number of works that have considered the
vibration modes of elastic structures with different geome-
tries [6, 9, 15, 16, 17].

Low frequency inelastic Raman scattering and far-infrared
spectroscopy are very interesting to study the geometry and
the elastic properties of nanoparticles. It was shown that the
vibration of spherical nanoparticles which are visible by Ra-
man scattering are spheroidalmodes: breathing and quadrupo-
lar [18, 19, 20, 21, 22]. By far infrared spectroscopy, only the
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dipolar spheroidal mode can be observed. Furthermore, in-
vestigations on the dynamical properties of viruses through
inelastic Brillouin light-scattering [23] highlight also spheroidal
modes: breathing and quadrupolar. The dipolar spheroidal
mode is the only to directly interact with microwaves [24,
25]. However the free sphere model used to interpret the
experimental results is an approximation of the actual envi-
ronmental conditions of nanoparticles.

A recent theoretical study based on the purely radial vi-
brationmode (Breathingmode) of a gold nanospherewas de-
veloped to predict a viscoelastic response in water-glycerol
mixtures [26]. This study demonstrates that an increase in
glycerolmass fraction, the non-monotonic variations of qual-
ity factor are displayed and not captured by Newtonian fluid
model. However a viscoelastic fluid model highlights the
non-monotonic behavior. Nevertheless, the spheroidal vi-
brations modeling (quadrupolar and dipolar mode) is still
lacking. Different vibration modes of nanosphers have been
experimentally observed [23, 24, 25], and hence it is very
important to establish a generalized eigenfrequency equa-
tion based on the exact theory in order to characterize the
general vibration behavior other than the breathing mode
[26, 27]. In this paper, a more general theory for predicting
the spheroidal vibrations of an elastic sphere is proposed, in
a compressible viscoelastic fluid using the Maxwell model.

2. Compressible viscoelastic fluid
We begin by briefly reviewing the conservation equa-

tions for a general fluid. Throughout, we assume that the
flow exhibits small-amplitude acoustic oscillations so that
all nonlinear convective terms can be neglected. Hence, the
velocity field, v, is governed by the linearized Navier-Stokes
equation for compressible flows

�f)tv = ∇ ⋅ T(f ) (1)
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where �f is the fluid density at equilibrium. The total stress
in a compressible fluid, T(f ), can be written as

T(f ) = −pI + � + � (2)
where p is the thermodynamic pressure and I is the iden-
tity tensor. For a compressible Newtonian fluid, � and � are
the compressional and shear contributions to the deviatoric
stress tensor, respectively, and which are related to the de-
formation by the following constitutive equations

� = � (trD) I , � = 2�
(

D − trD
3
I
)

(3)
where � and � are respectively, the bulk and shear viscosi-
ties of the fluid, and D = [

∇v + (∇v)T
]

∕2 is the strain rate
tensor. In order to describe the fluid viscoelasticity, the lin-
ear Maxwell model is employed. In this case, the relation
between force and deformation can be written as [27]

�c)t� + � = � (trD) I

�s)t� + � = 2�
(

D − trD
3
I
) (4)

where �s and �c are respectively, the shear and compres-
sional relaxation time. In a Maxwell fluid, the viscoelas-
tic behavior is modeled as a purely viscous damper and a
purely elastic spring connected in series. Note that more de-
tails about tensor representations of constitutive equations
for viscoelastic fluids can be found in [28, 29].

The linearized Navier-Stokes equation (1) must be com-
pleted by the continuity equation. Because the small-amplitude
acoustic oscillations are considered, the continuity equation
for a compressible fluid is given by

)t� + �f∇ ⋅ v = 0 (5)
where � represents the density fluctuation. In addition, the
equation of state relating the density fluctuation to the ther-
modynamic pressure is given by p = c2f�, where cf is the
speed of sound in the fluid [30]. In other words, for small-
amplitude acoustic waves, one can assume that a small change
in fluid density induces small changes in pressure by fast adi-
abatic process.
2.1. Velocity potential formulation

Equation (1) can be transformed into simple scalar equa-
tions by introducing the velocity potentials. Any sufficiently
smooth vector field can be written as the sum of the gradi-
ent of a scalar field and the curl of a vector field. This is
called the Helmholtz representation [31]. For the velocity
field considered here, that representation is

v = vp + vs (6)
where each component has specific properties : (i) Potential
component with curl-free component, i.e. ∇ × vp = 0, soit stems from a scalar potential � : vp = ∇�. This com-
ponent describes the compressible part of the velocity field.
(ii) Solenoidal component with divergence-free component,

i.e. ∇ ⋅ vs = 0, so it stems from vector potential  : vs =
∇ ×

(

r er
). This component describes the incompressible

part of the velocity field. Substitution of Eq. (6) into Eq. (1)
and taking into account Eq. (4), yields the acoustic pressure
in terms of the velocity potential

p =
[

�
(

1 + �c)t
)−1 +

4�
3
(

1 + �s)t
)−1

]

∇2�−�f)t� (7)

In the same way, one can easily demonstrate that the poten-
tial  satisfies the following equation

�f
(

1 + �s)t
)

)t = �∇2 (8)
Concerning the potential �, combination of Eq. (5), equa-
tion of state and Eq. (7) yields

)tt� =
{

c2f +
[

�
(

1 + �c)t
)−1 +

4�
3
(

1 + �s)t
)−1

]

)t
�f

}

∇2�

(9)
The determination of the potentials � and  requires the
resolution of the Helmholtz equation (9) and the diffusion
equation (8), respectively. In this work time-harmonic de-
pendence ej!t is assumed. Therefore, using previously de-
veloped techniques [31], the potentials � and  take the fol-
lowing forms

� =
∞
∑

n=0

n
∑

m=−n

√

�
2kcr

[

A1Jn+ 12
(

kcr
)

+ B1Yn+ 12
(

kcr
)

]

× sin(m')Pmn (cos �)

 =
∞
∑

n=0

n
∑

m=−n

√

�
2ksr

[

A2In+ 12
(

ksr
)

+ B2Kn+ 12
(

ksr
)

]

× cos(m')Pmn (cos �)

where
kc =

!

cf

√

√

√

√1 +
j!
�f c2f

[

�
1 + j!�c

+
4�

3
(

1 + j!�s
)

]

ks =

√

j!�f
�

(

1 + j!�s
)

(10)

andA1, B1, A2 andB2 are arbitrary constants, Jn+ 12 and Yn+ 12are Bessel functions of the first and second kind and In+ 12and Kn+ 12 are modified Bessel functions of the first and sec-
ond kind, Pmn (cos �) are associated Legendre polynomials.
In addition, the time factor ej!t is omitted for simplicity.
Hence, introducing the parameter �∗ = �∕

(

1 + j!�s
), the

components of the velocity field and stress tensor that will
be further used in boundary conditions are given by

vr =
)�
)r
+
)2(r )
)r2

− k2sr 

v� =
1
r
)
)�

[

� +
)(r )
)r

] (11)
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T (f )rr
2�∗

=
)2�
)r2

+

(

k2s
2
+ k2c

)

� + )
)r

[

)2(r )
)r2

− k2sr 
]

T (f )r�
2�∗

= )
)�

{

1
r2

(

r
)�
)r
− �

)

+ )
)r

[

1
r
)(r )
)r

]

−
k2s 
2

}

(12)

3. Elastic sphere
In this section, the constitutive equation Eq. (4) for a

compressible viscoelastic fluid is used to study the fluid-
structure interaction of a submerged elastic sphere. The aim
here is to demonstrate how mode shape affects the result-
ing flow dynamics. This solution also finds direct applica-
tion in practice, because these particles are often measured
using ultrafast laser spectroscopy to probe their dynamics
[5, 32, 33, 34, 35]. Therefore, it has been established that
nanometer-sized solid particles obey the continuum hypoth-
esis [6, 12, 36, 37] with their dynamics being governed by
Navier’s equation

)ttu = C2s
(

∇2u − ∇∇ ⋅ u
)

+ C2c∇∇ ⋅ u (13)
where u is the displacement field and, Cc =

√

(� + 2�) ∕�s
and Cs =

√

�∕�s are the propagation velocities of compres-
sional and shear waves in the elastic sphere, respectively. �sis the solid density and � and � are the Lamé parameters.
As before, it is assumed that the particle undergoes small-
amplitude oscillations, and thus the usual assumption of lin-
ear elasticity is applicable. In a similar manner that fluid
velocity potential, the Navier’s equation (13) can be easily
transformed into the following form in terms of the scalar
potentials

C2c∇
2Φ − )ttΦ = 0 , C2s∇

2Ψ − )ttΨ = 0 (14)
The solution of Eq. (14) can, of course, be expressed in
terms of Bessel functions

Φ =
∞
∑

n=0

n
∑

m=−n

√

�
2Kcr

A3Jn+ 12
(

Kcr
)

sin(m')Pmn (cos �)

Ψ =
∞
∑

n=0

n
∑

m=−n

√

�
2Ksr

B3Jn+ 12
(

Ksr
)

cos(m')Pmn (cos �)

whereA3 andB3 are arbitrary constants andKc = !∕Cc and
Ks = !∕Cs are the compressional and shear wavenumbers.
Also, according to the generalized Hooke’s law, the radial
stress in terms of displacement potential, that will further
used in boundary conditions is expressed

T (s)rr
2�

= )2Φ
)r2

−
�K2

c
2�

Φ + )
)r

[

)2(rΨ)
)r2

+K2
s rΨ

]

In addition, to obtain the displacement components and tan-
gential stress, the velocity potentials (�,  )must be replaced
by the displacement potentials (Φ,Ψ) in Eq. (11), and vis-
cosity �∗ by shear modulus � in Eq. (12).

4. Sphere-fluid interaction
The vibration frequencies of the coupled system shall be

obtained by application of the appropriate boundary condi-
tions. Therefore, the following relations are suitable : (i)
Flux continuity that describes mass conservation and equi-
librium of the normal forces at the sphere-fluid interface

vr =
)ur
)t

, v� =
)u�
)t

, T (f )rr = T (s)rr , T (f )r� = T (s)r� (15)
(ii) The nonslip boundary condition for the outside surface
of viscoelastic fluid is assumed

vr = 0 , v� = 0 (16)
Eqs. (15)-(16) give for each mode number n the follow-
ing equation of the spheroidal vibrations (or vibrations of
second-class [14])

[S] {y} = 0 , {y} =
{

A1, B1, A2, B2, A3, B3
}T (17)

In spheroidal vibrations, the volume of the sphere subjected
to vibration is not constant and the displacement vector must
be defined by two independent components ur and u� . In
spheroidal modes, n = 0 corresponds to purely radial vi-
bration mode, the so-called breathing, n = 2 occurs at fre-
quencies lower than n = 0 and is characterized by an oscilla-
tion of the field between the forms of an oblate spheroid and
a spheroid elongated at the poles (oblate-prolate). Further-
more, S is a 6 × 6 matrix whose elements are designated as
Sij and are given in Appendix A. For a non-trivial solution,the determinant of the matrix Smust be equal to zero, which
leads to the following eigenfrequency equation

det S = 0 (18)
where

S =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

S11
√

kc

S12
√

kc

S13
√

ks

S14
√

ks
−j!

S15
√

Kc
−j!

S16
√

Ks
S21
√

kc

S22
√

kc

S23
√

ks

S24
√

ks
−j!

S25
√

Kc
−j!

S26
√

Ks
�∗S31
√

kc

�∗S32
√

kc

�∗S33
√

ks

�∗S34
√

ks
−
�S35
√

Kc
−
�S36
√

Ks
�∗S41
√

kc

�∗S42
√

kc

�∗S43
√

ks

�∗S44
√

ks
−
�S45
√

Kc
−
�S46
√

Ks
S51
√

kc

S52
√

kc

S53
√

ks

S54
√

ks
0 0

S61
√

kc

S62
√

kc

S63
√

ks

S64
√

ks
0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

Eigenfrequency equation (18) constitutes an implicit tran-
scendental function of n and !. The roots ! may be com-
puted for a fixed n. It is interesting to note that this eigen-
frequency equation is independent of the values of m due to
the spherical symmetry. It should be pointed out that in the
eigenfrequency (18), dipolar mode corresponds to n = 1 and
quadrupolar mode to n = 2.
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4.1. Some particular cases
For the general analytical approach developed in this pa-

per for spheroidal modes of vibration, it is very important
to check its accuracy in some particular cases. In the case
of radial vibration mode, it is easy to show that the equation
(18) takes the following simple form

K2
c a
2
⎡

⎢

⎢

⎣

�f
�s

(

1 − jkca
) +

(

Kca
tan

(

Kca
) − 1

)−1
⎤

⎥

⎥

⎦

+
4j�Kc

�sCc
(

1 − j!�s
) + 4

(

Cs
Cc

)2
= 0

(19)

Thus, when compressional relaxation time is neglected (�c = 0
),

the equation (19) becomes

K2
c a
2
⎡

⎢

⎢

⎣

�f
�s

(

1 − jk∗ca
) +

(

Kca
tan

(

Kca
) − 1

)−1
⎤

⎥

⎥

⎦

+
4j�Kc

�sCc
(

1 − j!�s
) + 4

(

Cs
Cc

)2
= 0

(20)

which was previously obtained by Galstyan et al. [26] and
k∗c = kc

(

�c = 0
)

= !

cf

√

√

√

√1 −
j!
�f c2f

[

� +
4�

3
(

1 − j!�s
)

]

A comprehensive review of radial mode of a vibrating sphere
in Newtonian and linear Maxwell fluids can be found in [26,
27].

5. Comparison studies
For the general analytical approach developed in this pa-

per, it is very important to check its accuracy and numerical
robustness in some particular cases. Firstly, a comparison
study is performed for a first breathing mode of a sphere sub-
merged in a compressible linear Maxwell fluid. To compare
the results derived from the equation (19) (or Eq. (18) for
n = 0) with other theoretical established results, the same di-
mensionless parameters that used by Chakraborty and Sader
[27] are introduced

Des = �s!, Dec = �c!, � =
!a
cf
, � =

�f!a2

�
, � = �

�

where De is the Deborah number. Morever, the quality fac-
tor Q = −

√

!2r + !
2
i ∕

(

2!i
), and the vibration frequency

f = !r∕ (2�) are the same as those adopted by [26, 27],
where !r and !i are, respectively, the real and imaginary
parts of the angular frequency. Figure 1 shows the quality
factor versus normalized frequency � for various Deborah
numbers Des. Compressible and incompressible Newtonian
fluids (i.e. Des = 0) predict that the quality factor increases
monotonically with increasing �. For large values of �, a

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

β

10
0

10
1

10
2

10
3

10
4

Q

Des = 1

Des = 0

10

100

Figure 1: Quality factor of the �rst breathing mode of a gold
nanosphere; e�ect of viscoelasticity and �uid compressibility.
Results for radius a = 50 nm, Poisson's ratio � = 0.44, density
ratio �s∕�f = 20, viscosity ratio � = 1, and Deborah numbers
are chosen so that Dec = Des and normalized wavenumber
� = 1. Compressible �uid (solid lines); Incompressible �uid
(dashed lines).

difference between the compressible and incompressible re-
sults was observed. The behavior changes completely for
non zero values of Des. First, the elasticity results in qual-
itatively different behavior in the low �-regime. The qual-
ity factor increases monotonically with decreasing �. For
� > 1 the scenario is different, the quality factor converges
to a constant value as � increases while the incompressible
solution gives a monotonically increasing quality factor. In
addition, the results in the Figure 1 predected by Eq. (19)
(or Eq. (18) for n = 0) agree exceptionally well with those
obtained by Chakraborty and Sader [27].

A second and last comparison can be drawn between the
present solution and that of Galstyan et al. [26] in the case
of the first breathing mode vibration of a sphere submerged
in a Maxwell fluid without compressional relaxation process
(i.e. Dec = 0). Quality factor variation versus glycerol mass
fraction in both compressible Maxwell and Newtonian flu-
ids are investigated. Figure 2 shows that the Newtonian fluid
highlights a monotonically decreasing correlation between
the quality factor and glycerol mass fraction. However, the
Maxwell fluids predicted a non monotonically behavior of
the quality factor and glycerol mass fraction. Thus, the re-
sults in the Figure 2 agree exceptionally well with those ob-
tained by Galstyan et al. [26].

6. Numerical results
Having established the accuracy through the comparison

study illustrated in Figures 1 and 2, further numerical re-
sults are given in this section. The material properties used
by Galstyan et al. [26] were taken to construct this numeri-
cal example. Thus, effect of different parameters, including
sphere radius, fluid compressibility, viscosity and viscoelas-
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Figure 2: Quality factor of the �rst breathing mode of a gold
nanosphere with radius a = 40 (nm) as a function of glycerol
mass-fraction � .

ticity on the vibrations characteristics of the sphere are in-
vestigated.

In this work, the generalized eigenfrequency equation
(18) is solved employing Mathematica software. After find-
ing the real part !r and the imaginary part !i of the angu-lar frequency, the frequency and quality factor can be cal-
culated. First ten vibration frequency and quality factor of
the spheroidal modes are given in Table 1 for Newtonian and
Maxwell fluids with compressional relaxation process. For
simplicity, Deborah numbers with Dec = Des is a good ap-
proximation for some real fluids [27]. It can be seen that
the frequencies of the spheroidal vibrations corresponding
to the angular mode number 1 ≤ n ≤ 6 are lower than the
frequency of the radial mode. Different vibration modes of
nanosphers have been experimentally observed [23, 24, 25],
and hence it is very important to establish an eigenfrequency
equation in order to characterize the general vibration behav-
ior other than the radial mode.

To highlight the difference between the spheroidal vi-
bration modes and the compressional relaxation effect, the
quality factor of the gold nanosphere with 40 nm radius vi-
brating in water (� = 0) and in water-glycerol mixture (� =
0.56 and � = 0.71) are summarized in Table 2 for New-
tonian and Maxwell fluids with (Dec = Des) and without
(Dec = 0) compressional relaxation process. This Table
shows a significant reduction in the quality factor due to the
fluid viscosity whenwater is replaced bywater-glycerol mix-
ture. Table 2 also shows a sensitivity of the breathing mode
to the compressional relaxation process. However, the dipo-
lar and quadrupolar modes are not affected by this compres-
sional relaxation process. Therefore, to reasonably predict
the quality factor, the compressional relaxation effect should
be considered for the breathing mode. In other words, the
Maxwell fluid with compressional relaxation process pro-
posed by Chakraborty and Sader [27] is more appropriate
for breathing mode and, the Maxwell fluid without compres-

Mode n !r × 1011 !i × 109 Q f

1 2 0.7819 2.6353 14.8439 12.4449

2 1 1.1184 2.0315 27.5317 17.8004

3 3 1.1761 3.1861 18.4649 18.7196

4 4 1.5181 3.5985 21.0997 24.1619

5 2 1.5871 3.1856 24.9152 25.2598

6 5 1.8399 3.9674 23.1927 29.2829

7 3 2.0758 4.0805 25.4412 33.0383

8 6 2.1519 4.3087 24.9770 34.2493

9 0 2.3739 3.8636 30.7254 37.7820

10 7 2.4585 4.6208 26.6071 39.1286

Table 1

Quality factor, Q and vibration frequency, f (GHz) of the
gold nanosphere with 40 nm radius vibrating in water-glycerol
mixture with � = 0.56.

� = 0.00 n = 0 n = 1 n = 2
Newtonian 52.581∗ 91.513 25.329

Maxwell (Dec = Des) 51.211 89.255 25.070

Maxwell (Dec = 0) 52.221∗ 89.233 25.338

� = 0.56 n = 0 n = 1 n = 2
Newtonian 33.380∗ 27.864 14.378

Maxwell (Dec = Des) 30.725 27.531 14.444

Maxwell (Dec = 0) 34.474∗ 27.467 14.473

� = 0.71 n = 0 n = 1 n = 2
Newtonian 18.763∗ 10.008 9.175

Maxwell (Dec = Des) 25.804 17.289 11.294

Maxwell (Dec = 0) 32.090∗ 16.879 12.162

Table 2

Quality factor of the gold nanosphere with 40 nm radius vi-
brating in water-glycerol mixture. ∗ same value predicted by
Galstyan et al. [26].

sional relaxation process presented by Galstyan et al. [26] is
more suitable for dipolar and quadrupolar modes.

The quality factor of a gold nanosphere vibrating inNew-
tonian and Maxwell fluids with and without compressional
relaxation effect as a function of angular mode number is
depicted in Figure 3. On the one hand, Figure 3 shows that
for the low glycerol mass fraction (i.e. small viscoelastic-
ity effect) such as � = 0.36, and lower modes, the differ-
ence between the Maxwell and Newtonian fluids is not very
significant. However, increasing angular mode number, this
difference increases gradually. Moreover, for high glycerol
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Figure 3: Quality factor of a gold nanosphere with radius a =
40 (nm) versus angular mode number. � = 0.71 (solid lines);
� = 0.36 (dashed lines).

mass fractions (i.e. important viscoelasticity effect) such as
� = 0.71, the obtained quality factor by the two fluid mod-
els is different over the entire mode range. As the angular
mode number increases, the quality factor predicted using
Maxwell fluids increases almost linearly, while that based on
the Newtonian model monotonically decreases for increas-
ing values of the angular mode number. On the other hand,
in Figure 3 it can be seen that, for low mass fractions, the
compressional relaxation effect on the higher-order modes
is less significant. For high mass fractions, the quality fac-
tor strongly depends on the compressional relaxation process
over the whole mode range.

The variations of the quality factor of the quadrupolar
and dipolar modes of a gold nanosphere with the glycerol
mass fractions in bothMaxwell and Newtonian fluids are de-
picted in Figure 4. Increasing the glycerol mass fraction con-
sidering a Newtonian fluid, an increase in the glycerol mass
fraction causes a monotonic reduction in the quality factor.
However, a Maxwell fluids predicted a non-monotonic be-
havior due to the intrinsic viscoelastic properties of fluids.

The variations of the quality factor of the quadrupolar,
dipolar and breathing modes with the elastic sphere radius
for a glycerol mass fraction of � = 0.56 are illustrated in
figure 5 using the Maxwell and Newtonian fluids. The pre-
dicted quality factor by the Newtonian fluid monotonically
decreases with decreasing radius for all modes due to the
increasing viscous dissipation effect. For the quadrupolar
mode, a monotonic increase with the radius has been ob-
served for the Maxwell fluid. Thus, the compressional re-
laxation effect on the quality factor is less significant. The
same behavior for the dipolar mode has been highlighted.
However, for the breathing mode, by varying the sphere ra-
dius, the compressional relaxation process strongly affects
the quality factor because of its compressional motion be-
havior. A nonmonotonic variations of the quality factor with

0 0.2 0.4 0.6 0.8
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Dipolar mode

Figure 4: Quality factor of the �rst mode vibration of a gold
nanosphere with radius a = 40 (nm) versus glycerol mass-
fraction.

the radius has been observed for the maxwell fluid without
the compressional relaxation process. In addition, for the
quadrupolar mode, the viscoelasticity effect occurs for ra-
dius values less than 25 nm, 35 nm for the dipolar mode and
50 nm for the breathing mode using Maxwell fluid without
the compressional relaxation process.

7. Conclusion
In the this paper a generalized eigenfrequency equation

has been established in order to characterize the vibration
behavior of spherical particles which execute for example a
dipolar, quadrupolar and breathingmodes, and the following
concluding remarks could be drawn :

∙ The obtained eigenfrequency equation (18) using the
general constitutive equation (4) exhibits all the re-
quired features of a linear Maxwell fluids at low fre-
quencies (fluid-like behavior) and at high frequencies
(solid-like behavior). Therefore, this equation provides
a general formalism to characterize the fluid-structure
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Figure 5: Quality factor of the �rst mode of a gold nanosphere
with glycerol mass-fraction � = 0.56 versus gold nanosphere
radius. Maxwell �uid Dec = 0 (red), Maxwell �uid Dec = Des
(green) and Newtonian �uid (blue).

interaction of vibrating spheres inMaxwell fluids. This
should be very useful to interpret the experimentalmea-
surements of vibrational dynamics of spheres.

∙ The eigenfrequency equation (18) can highlight that
the combined effects of fluid compressibility and vis-
coelasticity can strongly affect the dynamics of spheres
embedded in Maxwell fluids.

∙ The vibrational dynamics of nanospheres in compress-
ible and incompressible viscoelastic fluids can changes
dramatically, and this can be due to the effects of com-
pressional and shear elasticity.

∙ The proposedmodel highlights by solving analytically
the fluid-structure interaction of an elastic sphere ex-
ecuting spheroidal vibrations in fluid, the importance
of combined effects of fluid compressibility and vis-
coelasticity on nanoscale flows.

∙ A significant reduction in the quality factor due to the
fluid viscositywhenwater is replaced bywater-glycerol
mixture is observed for the spheroidal modes.

∙ A sensitivity of the breathing mode to the compres-
sional relaxation process is also highlighted. How-
ever, the dipolar and quadrupolar modes are not af-
fected by this compressional relaxation process. There-
fore, to reasonably predict the quality factor, the com-
pressional relaxation effect should be considered for
the breathing mode. In other words, theMaxwell fluid
with compressional relaxation process is more appro-
priate for breathingmode and, theMaxwell fluid with-
out compressional relaxation process is more suitable
for dipolar and quadrupolar modes.

∙ For low mass fractions, the compressional relaxation
effect on the higher-order modes is less significant.

For high mass fractions, the quality factor strongly de-
pends on the compressional relaxation process over
the whole mode range.

∙ The predicted quality factor by the Newtonian fluid
monotonically decreases with decreasing radius for all
modes due to the increasing viscous dissipation effect.
For the quadrupolar mode, a monotonic increase with
the radius has been observed for the Maxwell fluid.
Thus, the compressional relaxation effect on the qual-
ity factor is less significant. The same behavior for
the dipolar mode has been highlighted. However, for
the breathing mode, by varying the sphere radius, the
compressional relaxation process strongly affects the
quality factor because of its compressional motion be-
havior. A non monotonic variations of the quality fac-
tor with the radius has been observed for the Maxwell
fluid without the compressional relaxation process.

A. Appendix
Matrix elements given in Eq. (18) :

S11 = nJn+ 12
(

kca
)

− kcaJn+ 32
(

kca
)

S12 = nYn+ 12
(

kca
)

− kcaYn+ 32
(

kca
)

S13 = n(n + 1)In+ 12
(

ksa
)

S14 = n(n + 1)Kn+ 12
(

ksa
)

S15 = nJn+ 12
(

Kca
)

−KcaJn+ 32
(

Kca
)

S16 = n(n + 1)Jn+ 12
(

Ksa
)

S21 = nJn+ 12
(

kca
)

S22 = nYn+ 12
(

kca
)

S23 = ksaIn− 12
(

ksa
)

− nIn+ 12
(

ksa
)

S24 = −ksaKn− 12
(

ksa
)

− nKn+ 12
(

ksa
)

S25 = nJn+ 12
(

Kca
)

S26 = KsaJn− 12
(

Ksa
)

− nJn+ 12
(

Ksa
)

S31 = 2kcaJn− 12
(

kca
)

− g
(

k2c
)

Jn+ 12
(

kca
)

S32 = 2kcaYn− 12
(

kca
)

− g
(

k2c
)

Yn+ 12
(

kca
)

S33 = n(n + 1)
[

(n + 2) In+ 12
(

ksa
)

− ksaIn− 12
(

ksa
)

]

S34 = n(n+1)
[

(n + 2)Kn+ 12
(

ksa
)

+ ksaKn− 12
(

ksa
)

]

S35 = 2KcaJn− 12
(

Kca
)

− g
(

−K2
s
)

Jn+ 12
(

Kca
)

S36 = n(n+1)
[

(n + 2) Jn+ 12
(

Ksa
)

−KsaJn− 12
(

Ksa
)

]
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S41 = (n + 2) Jn+ 12
(

kca
)

− kcaJn− 12
(

kca
)

S42 = (n + 2) Yn+ 12
(

kca
)

− kcaYn− 12
(

kca
)

S43 = ksaIn− 12
(

ksa
)

− f
(

k2s
)

S44 = −ksaKn− 12
(

ksa
)

− f
(

k2s
)

S45 = (n + 2) Jn+ 12
(

Kca
)

−KcaJn− 12
(

Kca
)

S46 = KsaJn− 12
(

Ksa
)

− f
(

−K2
s
)

S51 = nJn+ 12
(

kcb
)

− kcbJn+ 32
(

kcb
)

S52 = nYn+ 12
(

kcb
)

− kcbYn+ 32
(

kcb
)

S53 = n(n + 1)In+ 12
(

ksb
)

S54 = n(n + 1)Kn+ 12
(

ksb
)

S61 = nJn+ 12
(

kcb
)

S62 = nYn+ 12
(

kcb
)

S63 = ksbIn− 12
(

ksb
)

− nIn+ 12
(

ksb
)

S64 = −ksbKn− 12
(

ksb
)

− nKn+ 12
(

ksb
)

where

f
(

k2
)

= n2 + 2n + k2a2

2

g
(

k2
)

= n2 + 3n + 2 − k2a2

2

Breathing mode vibration :
For a breathing mode vibration, the nonzero component of
displacement can be denoted ur = ur(r, t). In this case the
angular dependence of the breathing mode is equal to zero
(n = 0), and the incompressible part of the velocity field
(and displacement field) are equal to zero (i.e.  = 	 = 0).
Therefore, the scalar potentials, velocity, displacement and
stress tensor components become :

� = A1
ejkcr

r

vr = A1
(

jkc −
1
r

) ejkcr

r

T (f )rr = A1

(

4�∗

r2
−
4j�∗kc
r

− j!�f

)

ejkcr

r

Φ = A3
sin

(

Kcr
)

r

ur = A3

[

Kc cos
(

Kcr
)

r
−
sin

(

Kcr
)

r2

]

T (s)rr = A3

{

4�
r

[

sin
(

Kcr
)

r2
−
Kc cos

(

Kcr
)

r

]

−
� + 2�
r

K2
c sin

(

Kcr
)

}

Hence, the matrix S given in Eq. (18) takes the following
form

S =
(

vr j!ur
T (f )rr −T (s)rr

)

r=a

It can be shown, after some manipulation, that the determi-
nant of this 2 × 2 matrix is given in Eq. (19).
To obtain Eq. (20), kc must be replaced by k∗c in Eq. (19) .
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