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Towards an accurate pressure estimation in injection molding 
simulation using surrogate modeling

Sandra Saad1,2   · Alankar Sinha3 · Camilo Cruz1 · Gilles Régnier4 · Amine Ammar2

Abstract
The computational cost of high-fidelity injection molding simulations has been growing in the past years making it more and 
more challenging to use them for performing analyses such as optimizations or uncertainty quantification. Surrogate modeling 
offers a cheaper way to realize such studies and has been gaining attention in the field of injection molding simulation. In 
this work, we propose to compare three surrogate modeling techniques along with two design of experiment methods in their 
ability to predict the pressure signal at a surface node in a Moldflow simulation by varying process and modeling parameters. 
A Sobol sensitivity analysis is performed to study the contribution of the varied parameters on the pressure results. In addi-
tion, one of the generated models is used along with experimental pressure sensor data to improve the pressure estimation 
by calibrating the heat transfer coefficients during filling and packing as well as the pressure-dependency coefficient in the 
Cross-WLF viscosity model. This resulted in major improvements of the pressure predictions for all 27 considered cases in 
comparison to using the default heat transfer coefficients and viscosity model parameter.

Keywords  Surrogate Modeling · Injection Molding · Process Simulation · Parameter Optimization · Sensitivity Analysis

Introduction

The injection molding process is one of the most widely used 
plastics manufacturing technique in the industry. It enables 
the high production volumes of complex plastic parts while 
having short cycle times [1]. A cycle constitute mainly of 
six phases starting with the mold closing to form the cavity, 
followed by the filling phase where a plastic melt is injected 
into the cavity. After the cavity is filled, the packing phase 
begins by applying pressure on the melt, which simultane-
ously solidifies in contact with the cold mold. In parallel to 
this in-mold cooling phase, the screw starts to move back 

helping in the plastification of the next shot. And, finally, the 
produced part is ejected from the mold and the cycle restarts 
[1]. To ensure a high product quality and minimize design/
production costs, injection molding simulation is broadly 
used in order to efficiently design molds and enable the iden-
tification of optimal process settings that mitigate common 
defects such as warpage, shrinkage, weldline and short shots.

However, over the last years, the growing interest in 
highly accurate simulations resulted in the increase of the 
complexity of the embedded models and thus to higher com-
putational costs. This is especially problematic in case of 
using such simulation models for optimization routines or 
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uncertainty quantification. One way to overcome this chal-
lenge is by using a surrogate model, also known as a meta-
model, of these high-fidelity simulations, to perform such 
analyses in a cheaper way. These models are usually gener-
ated using a relatively low number of simulations obtained 
by varying a specific number of input parameters and are 
then able to approximate the output of interest in a matter of 
seconds instead of minutes or hours using the high-fidelity 
simulation.

In the last two decades, the use of surrogate models to 
approximate outputs from the injection molding simulation 
has been growing steadily especially in the field of process 
parameter optimization to enhance product quality and 
molding efficiency. Gao and Wang [2] employed a Krig-
ing approximation model along with an adaptive optimiza-
tion technique to minimize the warpage in produced parts 
by varying process parameters such as the mold and melt 
temperature, injection time as well as the holding pressure 
and time. Similar works were performed by Chen et al. [3], 
Wang et al. [4] and Kang et al. [5]. Others used radial basis 
function [6–8], artificial neural networks [9, 10], Gaussian 
process [11] as surrogate modeling technique to optimize 
process parameters for controlling shrinkage and warpage in 
the final part. Additional applications for surrogate models 
seen in literature were used for the optimization of cycle 
time [7] and part weight [12]. More comprehensive reviews 
can be found in [10, 13].

Mainly, most of the research in this field is directed 
towards optimizing process parameters using a surrogate 
model representing the simulation. For this, the simula-
tion needs to accurately reproduce the physical phenomena, 
which are subject of optimization. Kurt et al. [14] high-
lighted the importance of the cavity pressure in prescrib-
ing the final quality of an injection molded part. However, 
there still exist discrepancies in predicting these pressures 
accurately using simulations which in turn leads to errors 
in the estimations of shrinkage and warpage. Therefore, in 
this work, we use surrogate modeling to improve the pres-
sure estimation in the simulation by optimizing three uncer-
tain parameters using experimental pressure sensor data. As 
example of the methodology, we choose to optimize the heat 
transfer coefficients during filling and packing as well as the 
pressure-dependency coefficient in the Cross-WLF viscosity 
model [15, 16]. The previous parameters are known to affect 
the pressure results in the simulation and in addition their 
experimental determination is challenging and time-consum-
ing [17–19]. It is important to state that there exist additional 
parameters affecting the pressure field evolution in state-of-
the-art injection molding simulation such as the pressure-
dependency coefficient b6 in the two-domain Tait PVT 
model and the value of the transition temperature, which 
corresponds to the solidification criterion. However, for the 
current work, we decided to focus on the three mentioned 

variables in order to test the feasibility of using surrogate 
modeling to improve the simulation pressure predictions.

For these purposes, we compare the accuracy of three 
different regression-based surrogate modeling techniques 
along with two design of experiment (DoE) methods in their 
ability to approximate the pressure signal at a single node 
in the simulation. The proposed modeling approaches are 
the following:

1. a non-linear regression model of proper orthogonal
decomposition coefficients trained using a fixed Latin
Hypercube sampling,

2. a polynomial chaos expansion model fitted with a least-
squares optimization technique using the same fixed
Latin Hypercube sampling points, and

3. a polynomial chaos expansion model fitted with a least-
squares optimization technique but using an adaptive
DoE that is enriched while generating the model.

The models are trained using 30, 60 and 120 simulation 
runs and their predictions are assessed accordingly. The 
three models are built by varying a total of six input param-
eters, including process settings and modeling variables. The 
process parameters are the injection velocity, coolant inlet 
temperature, holding pressure and the modeling parameters 
are the heat transfer coefficients during filling and packing 
as well as the pressure-dependent coefficient in the Cross-
WLF viscosity model. After obtaining the surrogate models, 
we perform a sensitivity analysis to study the contribution 
of each varied parameter to the pressure signal as well as 
their interaction with each other. Finally, using the measured 
experimental pressure data and one of the generated sur-
rogate models, we calibrate the modeling parameters and 
compare the error between the optimized simulation and 
the default one.

Theoretical background

The construction of a surrogate model consists of multi-
ple steps. The basic process can be summarized as follows 
[20–22]:

1. Design Variables Choice: Selection of variables, which
presumably have a non-negligible impact on the model
output, this choice is usually supported by preliminary
experiments, whether physical or numerical experi-
ments.

2. Design Space Sampling: Definition of a sampling plan
also referred to as design of experiments and evalua-
tion of the respective design points by means of a high-
fidelity simulation or actual experiments.
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3. Surrogate Model Generation: Selection of a type of sur-
rogate model in accordance with the problem at hand
and the construction of the model by fitting the data
obtained at the chosen points in the design space.

4. Model Validation: Checking of the accuracy of the gen-
erated model according to a predefined statistical cri-
teria, in case of unsatisfactory results, identification of
new design points for further model enrichment.

5. (Optional) Model Updating: Building an updated sur-
rogate model using the additional design points along
with the previous ones.

6. Model Exploitation: Use of the generated surrogate
model for further analyses such as parameter sensitivity
analysis, optimizations or uncertainty quantification.

Design of experiments

Design of experiments or sampling plan are terms used to 
represent the physical or computational experiments needed 
to be ran in order to capture the behavior of an underlying 
system over a limited number of variables [21, 23]. To build 
a surrogate model of a system, it is crucial to cleverly select 
the design points in order to cover the complete design space 
using the least possible number of samples. There exist two 
main categories of DoEs: classical and modern DoEs. Clas-
sical DoE methods are typically used for physical experi-
ments since these experiments are non-repetitive due to the 
presence of random error sources. As for modern DoEs, they 
are commonly applied to deterministic computer experi-
ments where systematic errors are mostly involved. In this 
work, two different modern DoE methods are utilized, Latin 
Hypercube sampling and Quasi-Monte Carlo sampling.

Latin hypercube sampling

The Latin hypercube sampling (LHS) technique is widely 
used in computational applications as it can work with any 
sample size which gives the user the freedom to choose the 
number of samples according to the available computational 

resources [24, 25]. LHS is a space-filling method such as it 
tries to find a design that fills the design space given a spe-
cific number of samples. To demonstrate the technique, let 
us consider a 2-dimensional design space Ω = [0,1]2 with 
variables having uniform probability distribution functions. 
If the desired number of sample points is, for example, N 
= 4, then the design space is divided into 42 equally sized 
cells. Next, values from 1 through N are placed in each row 
so that no two columns have an integer repeating, similar 
to Sudoku [24, 25]. Figure 1 shows two of the many pos-
sible arrangements. Next, a random integer between 1 and 
N is selected to specify the N cells in which a sample point 
is randomly picked. In the examples shown in Fig. 1, the 
chosen integer is 2 such as the shaded cells represent the 
sampling sites.

The Latin square presented in Fig. 1 generalizes to a Latin 
hypercube for higher dimensional (n > 2) design spaces. For 
instance, a design space with n = p design variables requir-
ing N samples points will form Np hypercubes [24]. It is 
also worth noting that there can exist some cases, such as 
diagonal arrangements, for which the chosen sample sites 
are not optimally positioned and do not fill the design space. 
One way to eliminate such an arrangement is by introduc-
ing additional conditions to check the minimum distance 
between the design points and selecting the largest one [24].

Quasi‑Monte Carlo sampling

Quasi-Monte Carlo (QMC) sampling is the deterministic 
counterpart of the classical Monte Carlo (MC) sampling 
method [26]. In classical MC, sample points are randomly 
selected in the design space for a given interval which can 
lead to having some regions of the design space unexplored 
[27]. Therefore, to overcome this shortcoming, QMC meth-
ods were developed to provide deterministic sample points 
with the optimal spread over the design space. These meth-
ods are also known as low-discrepancy sequences since they 
fill the space with some uniformity in order not to leave big 
gaps [24]. There exist various number of such sequences 

Fig. 1   Latin Hypercube 
sampling in a 2-dimensional 
design space Ω = [0,1]2 with a 
set of sampling sites denoted by 
integers from which the shaded 
cells are the selected sampling 
sites
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such as the Halton sequence [28], the Niederreiter sequence 
[29], the Sobol sequence [30]...

Many of the mentioned sequences are based on the van der 
Corput one, which is the simplest one-dimensional low-discrep-
ancy sequence. One can refer to [31] for detailed explanation 
concerning this sequence and its generalizations. For this work, 
the Sobol sequence is mainly used to obtain quasi-random DoE 
samples. In this type of sequence, the prime number 2 is used as 
the base for all the dimensions of the sequence. The first dimen-
sion is the van der Corput sequence with a base of 2 and the 
higher dimensions are permutations of this first dimension [24, 
30]. Figure 2a shows an example of 1000 sample points obtained 
using QMC with the Sobol sequencing method in comparison 
to those gotten using LHS in Fig. 2b for a 2-dimensional design 
space Ω = [0,1]2 with variables having uniform probability dis-
tribution functions.

Surrogate modeling techniques

In the following, only those modeling techniques that are used 
in this work are discussed in detail. For this discussion, let us 
consider Y to be one model output and X = (X1,⋯ ,Xp) the set 
of input parameters defined in the design space DXi

 such as:

where the function f(X) represents the system or simulation out-
put that is being approximated using a surrogate model F(X) and 
p the parameter space design size. These notations are used to 
describe the methods presented in this section for the case of one 
output result which can be extended to the multi-output case.

Proper orthogonal decomposition

Model order reduction techniques provide an efficient 
way to generate surrogate models since they work on the 

(1)Y = f (�) = f (X1,⋯ ,Xp) ≈ F(X1,⋯ ,Xp)

discretization of a state equation’s dimensionality instead 
of on its design space [22]. In this section, the main focus is 
on presenting the Proper Orthogonal Decomposition (POD) 
technique, a commonly used model order reduction method. 
It is known by different names such as the Karhumen-Loève 
(KL) expansion as well as Principle Component Analysis 
(PCA) and an extension of the Singular Value Decomposi-
tion [32].

POD is a mathematical procedure that provides ortho-
normal basis functions, known as empirical eigenvectors, 
in order to obtain a simplified representation of a set of data 
or a state’s evolution [22, 33]. These obtained eigenvectors 
correspond to the highest eigenvalues and they represent the 
basis functions that are able to describe the main modes or 
events involved in a certain state evolution [33]. Let M be 
a model state variable considered in a specific system. The 
variable can be represented at specific time steps and for the 
different nodes present using a matrix AM such as:

where κ is the number of time steps and ν is the number of 
nodes. The main objective of the POD technique is to find 
a set of orthogonal basis functions ϕi (i = 1,⋯ ,κ) able to 
describe the deviation M̂i of the model variables from their 
mean M̄i . These basis functions can be represented through 
a linear relation with the snapshots as follows:

To obtain the POD basis vectors, also known as POD modes, 
the following eigenproblem needs be solved to obtain a 
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Fig. 2   Comparison of 2-dimen-
sional design spaces Ω = 
[0,1]2 with 1000 sample points 
obtained using (a) QMC, (b) 
LHS
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subspace with a low dimension m able to provide a good 
approximation of the true data:

with λi as the eigenvalues. The state variable M can be then 
represented using a linear combination of the calculated 
POD basis functions with the following relation:

where αi(t) are the POD coefficients [34]. More in-depth 
information concerning POD and model order reduction can 
be found in [22, 32, 34].

The POD model by itself is unable to approximate the 
state variable at sites not included in the original data set 
[22]. Therefore, the next step is to generate a surrogate 
model to predict the POD coefficients. For this, the calcu-
lated coefficients are used to train a surrogate model. This 
is done by first choosing a model to fit the POD parameters 
such as Kriging, radial basis functions, polynomial functions 
then use an appropriate fitting method like least-squares 
regression, best linear unbiased predictor to determine the 
surrogate model’s coefficients. As such, one can obtain a 
POD-based surrogate model. Simpson et al. [35] as well as 
Wang and Shan [20] gave detailed reviews on the equations 
and fitting techniques used for various surrogate modeling 
methods.

Polynomial chaos expansion

Polynomial chaos expansions (PCE) are surrogate modeling 
techniques that expand f(X) using a series of multivariate 
basis functions orthogonal to the probability density function 
gXi

 of an input variable Xi [36]. In general, polynomial chaos 
expansions can be considered as a special case of KL or PCA 
since orthogonal polynomial families are used to describe the 
basis functions instead of eigenvectors. The resulting random 
model response Y is assumed to have a finite variance and 
thus belonging to the so-called Hilbert space, allowing for 
the following spectral representation [37]:

The random variable Y is an infinite series, where {�j}
∞
j=0

 are 
a set of countable random variables forming the basis of the 
Hilbert space and {cj}∞j=0 are the coefficients representing the 
coordinates of Y in this basis [37]. With the assumption that 
the input variables are independent, an inner product can be 
defined for each variable Xi with any two functions φ1,φ2 
such as:

(4)��
T� = �i�

(5)M(x, t) = M̄ +

m∑
i=1

𝛼i(t)𝜙i(x)

(6)Y =

∞∑
j=0

cj�j.

When replacing the arbitrary functions in Eq. 7 with orthog-
onal polynomials P(i)

k
:

where k is the polynomial degree and δjk is the Kronecker 
symbol equal to 1 for j = k and 0 otherwise. As for the term 
a
(i)

j
 , it is the squared norm of P(i)

j
 and is equal to 1 for ortho-

normal polynomials:

The family of orthonormal polynomials {� (i)

j
} is obtained by 

normalizing the P(i)

j
 functions :

Depending on the distribution of the input variables, there 
exist well-known orthogonal polynomial families. For 
example, if Xi has a uniform distribution, the correspond-
ing family is the Legendre polynomials or if Xi has a Beta 
distribution then the Jacobi polynomials constitute the basis 
functions for PCE [38].

In order to estimate the polynomial chaos coefficients, 
there exist various intrusive (Galerkin projection) and non-
intrusive methods. Popular non-intrusive techniques are 
error minimization ones which solve a least squares (LS) 
or least angle regression (LAR) problem [24]. For more 
detailed description concerning PCE, the reader is advised 
to refer to [36–38].

Variance‑based sensitivity analysis

Variance-based sensitivity analyses are used to quantify the 
variance contribution of an input parameter to the uncon-
ditional variance of the model output [39]. A commonly 
utilized method in this field is the Sobol method [40]. An 
attractive feature of this technique is its ability to not only 
measure the amount of variance caused by one input but also 
the interaction of two or more inputs and their contribution 
to the output. These are known as the Sobol sensitivity indi-
ces. The method utilizes approximate Monte Carlo integra-
tion to calculate the different indices [41].

The Sobol approach decomposes the function f into terms 
of increasing dimensionality [39]
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such as each successive term represents the increasing degrees 
of interactions between the various parameters. The total vari-
ance V (Y ) can be then defined using the sum of the partial 
variances through a similar decomposition to Eq. 11 with the 
assumption that the parameters are mutually orthogonal:

As such, the Sobol sensitivity indices can be formulated as 
follows:

for the first order sensitivity indices and

for the second order sensitivity indices.

Method implementation

Software tools

Injection molding simulation

The injection molding simulations are performed using 
AutodeskⓇ MoldflowⓇ Insight 2021.1 (AMI2021.1). The 
simulations are automated with the help of the three com-
mand line control functions. This set of utilities allow the 
use of third-party software in tandem with the simulation 
runs in order to automatize extensive studies such as opti-
mizations and sensitivity analyses... The main functions are 
editing, running, and retrieving results from a user-custom-
ized Moldflow analysis automatically through a command 
line interface. The following are the available utilities:

1. studymod: This command generates a modified simu-
lation study from a base study using an XML format
modifier file (modified geometry, boundary condition,
process/model parameters).

2. runstudy: This command launches a new simulation
analysis.

3. studyrlt: This command extracts simulation results from
a finalized analysis in simple text or XML file format.

Python uncertainty quantification library

The Python Uncertainty Quantification (pyUQ) library is a 
Bosch proprietary Python tool providing the user the ability 

(12)V(Y) =

p∑
i=1

Vi +

p−1∑
i=1

p∑
j=i+1

Vij +⋯ + V1,⋯,p.

(13)Si =
Vi

V

(14)Sij =
Vij

V

to perform uncertainty quantification (UQ) on simulation 
models using state-of-the-art UQ models and methods. The 
methods cover the design of experiments, surrogate modeling, 
sensitivity analysis and statistical analysis. The pyUQ module 
provides functions that can be modified or extended to act 
as an interface between simulation tools and UQ methods. 
Parameter uncertainties are defined in this tool using standard 
distributions (uniform, normal, Gamma, Beta) by stating the 
parameter’s upper and lower limits. The module offers four 
basic modern DoEs such as Standard-Monte Carlo, Quasi-
Monte Carlo, Latin Hypercube sampling and more refined 
sparse grid experimental methods like Non-Intrusive Spectral 
Projection. There are five different surrogate modeling tech-
niques that this library supports:

1. Polynomial Chaos Expansion (PCE) using least square
(LS) as optimization methods,

2. PCE using least angle regression (LAR) as optimization
method,

3. Gaussian Process Regression (GPR),
4. Pseudo Spectral Projection method (PSP),
5. Stochastic Collocation method.

The simulation results are stored in a Hierarchical Data For-
mat (HDF5) to be able to efficiently perform statistical analy-
sis or surrogate model generation using this tool. HDF5 is a 
folder-like storage structure, which saves data in compressed 
format and allows data slicing leading to efficient memory 
usage. Apart from these features, the main highlight of this 
tool is its active learning algorithm with an adaptive DoE gen-
eration which is one of the methods evaluated in this work.

MATLAB

The POD model order reduction and the non-linear regres-
sion of the respective POD-based coefficients is imple-
mented in MATLAB R2019b. The fmincon built-in function 
of the optimization toolbox is used for the optimization of 
the POD-based surrogate model.

Surrogate models set‑up

Physical experiments

A simple mold geometry is used for varying several process 
settings on an electrical injection molding machine (ENGEL 
E-Motion 440/220 T). The geometry sketch along with the 
design dimensions are shown in Fig. 3. The mold has three 
p-T-sensors to measure pressure and temperature during the 
injection molding process. The sensors’ location is speci-
fied by the gray circles in Fig. 3. An unreinforced polyoxy-
methylene homopolymer (POM) is used for the injection 
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molding trials, in which the mold temperature, the injection 
velocity and the holding pressure are varied. The upper and 
lower bounds of these variables are presented in Table 1. 
A design of experiments consisting of 27 sampling points 
is performed. The sensor data collected during the actual 
molding trials were used in the optimization process to iden-
tify the heat transfer coefficient values and the viscosity’s 
pressure-dependency coefficient.

Simulation environment

The 3D high-fidelity simulation model was set up in 
AMI2021.1 using the respective POM material card given 
in the Moldflow database. The simulation consists of a cool-
ing, fill and pack analyses. Therefore, the simulation model 
included cooling channels meshed as beam elements and 
the part as well as the feed system (nozzle & flange) meshed 
using tetrahedral elements with 24 layers through the thick-
ness. The feed system is defined as hot runner in the simula-
tion model. Lateral and top views from the meshed model 
are shown in Fig. 4a and b, respectively. A single simulation 
requires around 75 minutes to be completed on a workstation 
with a 4.10 GHz processor and 32 GB RAM.

The various surrogate models are obtained by modify-
ing six parameters in the simulation. Three of which are 
the process parameters changed during the experimental 
trials as presented in Table 1. Since a cooling analysis is 
performed in the simulations, the inlet cooling temperature 
is varied such as Tc,in = Tmold + 4 of the Tmold set experimen-
tally. The other three are the heat transfer coefficient during 
filling (HTCf﻿﻿illing) and during packing (HTCpacking) as well as 
the pressure-dependency coefficient (D3) of the Cross-WLF 
viscosity model (refer to Appendix A). Table 2 summarizes 
the surrogate models’ variables and their bounds. The HTC 
ranges are chosen in reference to the default Moldflow val-
ues ( HTCfilling = 5000W/m2◦C , HTCpacking = 2500W/m2◦C ). 
As for the pressure-dependent viscosity model parameter, 

the variation range goes from 0 up to 0.4 K/MPa in order to 
cover the actual behavior of POM and other typical semi-
crystalline thermoplastics such as PP [42].

Proposed DoE and surrogate modeling techniques

In this work, three different combinations of DoEs and sur-
rogate modeling methods are used in order to compare their 
performance in predicting the pressure signal results at one 
surface node corresponding to the location of the second 
sensor in Fig. 3. Additionally, the total number of simula-
tions used for the training phase is varied such as 30, 60 and 
120 simulation runs are considered and their performance 
is tested using four additional runs. The testing simulations 
are summarized in Table 3.

POD‑NLR  The POD-based surrogate model whose param-
eters are fitted using non-linear regression (NLR) is referred 
to as POD-NLR. To generate this model, LHS is used to 
obtain the DoEs according to the needed total number of 
training simulations S. The obtaining of the final model 
requires the following steps after running all the simula-
tions according to the DoE:

1. Pre-processing: the various nodal pressure results Pi (i
= 1,⋯ ,S) are pre-processed by shifting all correspond-
ing time series by tstart so that all non-zero signals start

Fig. 3   Sketch of the injection-
molded part including some 
characteristic dimensions in mm 
and the location of the three 
pressure and temperature com-
bination sensors (p-T-sensors)

Table 1   Variable process settings in the experimental runs with their 
upper and lower bounds

Process Settings Lower Bound Upper Bound

Injection Velocity, Vinj (cm3/s) 10 50
Mold Temperature, Tmold (∘C) 80 110
Holding Pressure, Phold (MPa) 20 80
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at t0 = 0 s and followed by the resampling of the pressure 
data using a common time vector from 0 to 50 s with 
0.02 s time steps. This step is important given that the 
different simulation settings lead to different times at 
which the flow front reaches the sensor node and pro-
duces a non-zero pressure signal.

2. Model order reduction: the POD basis functions ϕ are
calculated by solving the eigenvalue problem PPTV =
λV where the eigenvectors V corresponding to the most
influential eigenvalues λ constitute the basis functions
able to reconstruct the pressure signal by:

(15)P
(s)

reconstructed
=

n∑
i=1

Γ(s)
n
�n

where s is the simulation number, n is the number of 
modes or basis obtained according to a specified error 
value and Γ(s)

n
 is the POD parameter for a specific mode 

n and simulation s. The truncation criterion is done 
according to an error value of 𝜖 = 10− 3 which only 
selects the modes corresponding to eigenvalues that ful-
fill the condition �

�max
≥ �.

3. Model fitting: a least-squares regression of a second-
order polynomial is used to train a model to predict the
POD parameters Γ and the time shift value tstart as fol-
lows:

(16)Γ(s)
n

= a(n) + b
(n)

i
X
(s)

i
+ c

(n)

ij
X
(s)

i
X
(s)

j

Fig. 4   The meshed simulation model including the part (dark green), runner and sprue (light green), cooling channels (blue) and feed system 
(red)

Table 2   Varied parameters in 
the simulation runs used to 
generate the surrogate models 
along with their upper and 
lower bounds

Surrogate Model Variables Lower Bound Upper Bound

Injection Velocity, Vinj (cm3/s) 10 50
Coolant Inlet Temperature, Tc,in (∘C) 84 114
Holding Pressure, Phold (MPa) 20 80
Heat transfer coefficient (filling), HTCf﻿﻿illing (W/m2∘C) 5000 10000
Heat transfer coefficient (packing), HTCpacking (W/m2∘C) 1000 5000
Viscosity model parameter, D3 (K/MPa) 0 0.4

Table 3   Definition of the testing 
simulations for evaluating the 
performance of the surrogate 
models

DoE 
Name

Vinj  
(cm3/s)

Tmold 
(∘C)

Phold 
(MPa)

HTCf﻿﻿illing 
(W/m2∘C)

HTCpacking 
(W/m2∘C)

D3 
(K/MPa)

Test 1 36.0 94.2 55.1 5175 4522 0.33
Test 2 15.5 83.3 74.7 9751 2143 0.07
Test 3 45.6 105.4 47.5 8092 3945 0.21
Test 4 27.2 102.2 25.9 7338 1640 0.12
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where Xi and Xj are the surrogate model input vari-
ables with i≠j representing the number of variables 
(1,⋯ ,6) and a,b,c,α,β,γ are the surrogate parameters. 
In Eqs. 16 and 17 the implicit Einstein summation con-
vention is used for indexes i and j. This implementation 
is restricted to bilinear regression in order to mitigate 
overfitting the data.

Regular‑PCE‑LS  The same LHS DoEs used to train the 
POD-NLR model are employed as inputs to a second-order 
PCE-based surrogate model. The model parameters are 
trained using least-squares regression and thus referred to 
as regular-PCE-LS since the DoE is fully predefined. The 
PCE model is generated using the pyUQ library using the 
following steps:

1. Pre-processing: similar to POD-NLR, a resampling step
is performed to have a unique time index starting with t0
= 0 s and spanning to 50s with 0.02 s time steps.

2. Polynomial chaos expansion: since the surrogate model
input variables have a uniform distribution, after apply-
ing the Gram-Schmidt orthogonalization to Eq.  8,
the Legendre polynomial family is obtained and thus
used as basis functions to represent the pressure signal
results from the simulation. A hyperbolic truncation of
1 is utilized to generate the model which signifies that
all interaction effects are considered in the PCE basis.
Additionally, the PCE regression order is estimated by
pyUQ using heuristics and in this case a second-order
regression is used.

3. Model fitting: the algorithm uses the pressure time-
dependent training data to solve an optimization prob-
lem which minimizes the squared residuals between the
simulation’s pressure signals and the predicted output of
the PCE model. The solution of the least-squares optimi-
zation problem is the vector containing the polynomial
coefficients.

Adaptive‑PCE‑LS  A sequential design of experiment (SDOE) 
is used to build iteratively a DoE from a big candidate DoE 
obtained with QMC according to the importance of the input 
variables. The surrogate model utilizes PCE and is trained 
using least-squares regression. This model is generated 
using the pyUQ library and is referred to as adaptive-PCE-
LS since its DoE is enriched as the model is being generated 
making it an adaptive approach. Therefore, given a sample 
set, the surrogate model generation follows the same steps 
presented in regular-PCE-LS. The main difference between 
the two methods lies in the iterative steps needed to build the 
whole surrogate model by updating the DoE.

(17)t
(s)
start = � + �iX

(s)

i
+ �ijX

(s)

i
X
(s)

j
The algorithm starts with an initial small LHS DoE of 

10 simulations and is enriched after each iteration with 5 
additional sample points from a large QMC candidate DoE 
(1000 samples). The enrichment is done via the bootstrap 
method [43] which calculates the local variances of the sur-
rogate model and chooses the new sample points that lead 
to the maximum variance. In other words, it performs a UQ 
analysis on the simulation results to estimate which param-
eters contribute most to the statistical fluctuations. This 
process is repeated until convergence in terms of maximum 
simulations S of 120 or a global error threshold E of 10− 2 
is achieved.

The surrogate model is assessed by cross-validation using 
the training data set with the leave-one-out error method 
such as the model is generated from S − 1 simulations and 
evaluated on the remaining one simulation result. The stand-
ard error metric used to evaluate the surrogate model after 
each iteration is its global error. This error value is an aver-
age of a scalar model output predefined by the user. In this 
work, the selected scalar quantity corresponds to the mean 
value of the pressure vector at the studied node.

The flowchart in Fig. 5 presents a summary of the steps 
followed while generating the adaptive-PCE-LS surrogate 
model using an active learning/adaptive approach.

For the sake of clarity, the characteristics of the three 
studied surrogate models are summarized in Table 4.

Evaluation strategy

To evaluate and compare the various surrogate models, two 
error metrics are considered: the root mean squared error 
(RMSE) and the coefficient of determination (R2 score).

Let the surrogate model response and the true values of 
the high-fidelity simulation model or experiment be repre-
sented by Ŷ  and Y, respectively. Using these notations, the 
RMSE is computed by evaluating the surrogate model point-
wise on a given test data set, such as:

where n is the total number of data points. In this work, 
this error is normalized using the min-max normalization 
method to be able to compare the various surrogate mod-
eling techniques.

The R2 score is a statistical measure that indicates how 
well the data fit the regression model and how well the 
unseen samples are likely to be predicted by the model. It 
determines the proportion of variance of the model response 
that can be explained by its independent variables. The best 

(18)RMSE(Y , Ŷ) =

√√√√1

n

n∑
i=1

(Yi − Ŷ i)2
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score is 1.0 and has a range between −∞ < R2 ≤ 1 . A nega-
tive score means that the surrogate model response is unable 
to predict accurately the output results. R2 is calculated as 
follows:

where Ȳ =
1

n

∑n

i=1
Yi is the mean value of Y.

Optimization

In this work, an optimization routine is performed to identify 
the uncertain simulation model parameters: HTCf﻿﻿illing, HTC-
packing and D3. For these purposes, the sensor data from the 
27 experimental runs presented in “Physical experiments” 
section are utilized. The optimization problem aims at mini-
mizing the difference between the experimental results Yexp 
and the surrogate model predictions Ŷ by varying the respec-
tive uncertain input parameters of the surrogate model. It can 
be represented as follows:

(19)R2(Y , Ŷ) = 1 −

∑n

i=1
(Yi − Ŷ i)2∑n

i=1
(Yi − Ȳ)2

find Var = (HTCfilling,HTCpacking,D3),

min
27∑
i=1

‖Yexp

i
(�) − Ŷi(�)‖,

with � = (Vinj, Tmold,Phold),

� = (Vinj, Tmold,Phold,HTCfilling,HTCpacking,D3),

s.t. 5000 ≤ HTCfilling ≤ 10000 (W∕m2◦C),

1000 ≤ HTCpacking ≤ 5000 (W∕m2◦C),

0 ≤ D3 ≤ 0.40 (K/MPa).

Results and discussion

Comparison of surrogate models

The performance of the three surrogate model techniques 
is assessed by their ability to predict the pressure signal 
at a surface node in simulations unseen by the model. In 
this work, those test simulations are presented in Table 3. 
Although the total simulated time is around 48 s, the main 
focus is on the pressure signal between 0 and 22 s. This 
interval includes the filling phase between 0 and ∼ 2 s, the 
packing phase till ∼ 18 s and the start of the cooling phase 
until the pressure goes to 0 MPa before 22 s. Therefore, all 
the error metrics and plots consider only this time interval.

Figure 6 presents the models’ predictions obtained after 
using 30 training simulation runs in comparison to the true 
high-fidelity simulation results. At first glance, it seems 
that all three surrogate models are able to capture the main 
features of the pressure signal after only 30 training simu-
lations. However, one can distinguish some particular dis-
crepancies such as the inability of the POD-based model 
to predict the tstart for Test 2 and error of the adaptive-PCE 
for estimating the pressure at the end of packing in Tests 3 
and 4. Additionally, there are deviations by predicting the 
pressure peak at the end of the filling phase for all surrogate 
models.

A quantitative analysis of the performance of the dif-
ferent surrogate models are given in Fig. 7a and b, where 
the normalized RMSE and R2 score are plotted for the 
four test simulations. The average normalized RMSEs of 
0.084, 0.093 and 0.119 for POD-NLR, regular-PCE-LS and 

Yes
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o

Run
Simulations

Pre-processing
Simulation

Results

Generate
Metamodel

Global Error
Calculation

Error < E
Post-

processing
Metamodel

Local
Variances

Calculation

Initial DoE 
set

Additional
DoE set

Fig. 5   Workflow for generating an adaptive surrogate model using the pyUQ active learning algorithm

Table 4   An overview of the 
proposed DoE and surrogate 
modeling techniques

Surrogate model Acronym DoE Technique Surrogate model Technique Fitting Method

POD-NLR Latin Hypercube Proper orthogonal decomposition Least-squares regression
Regular-PCE-LS Latin Hypercube Polynomial chaos expansion Least-squares regression
Adaptive-PCE-LS Sequential DoE 

(LHS & QMC)
Polynomial chaos expansion Least-squares regression
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adaptive-PCE-LS, respectively, show that the POD-based 
surrogate model is slightly more accurate in recreating the 
simulation results after training with 30 high-fidelity simula-
tions. Whereas, the R2 score shows that the adaptive-based 
surrogate model is not able to estimate accurately the pres-
sure results which is especially underlined by the R2 score 
of 0.16 for Test 4.

Looking to increase the prediction capability, the number 
of simulations used to train the surrogate models is dou-
bled to 60. Overall, this increase in training simulations led 
to noticeable improvements in the pressure signal predic-
tions of the test runs as shown in Fig. 8. For example, by 

comparing Figs. 6b and 8b, the POD-based model is now 
able to better predict the tstart for Test 2 as well as both PCE-
based models can estimate the pressure result more accu-
rately during the packing phase. On the other hand, for Test 
4 the R2 score of the adaptive model prediction increased 
slightly with the higher number of training points, but both 
predictions of the regular-PCE-LS and POD-NLR reduced 
their performance. In general, there is still room for improve-
ments when estimating the pressure for Test 4 as well as 
predicting the pressure peak at the end of filling and the 
time at which the pressure goes to zero at the start of the 
cooling phase.

Fig. 6   Predicted pressure 
signals by the three proposed 
surrogate models after training 
with 30 simulations in com-
parison to the true high-fidelity 
simulation results for four test 
cases
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Fig. 7   Testing error metrics 
for the three studied surrogate 
modeling methods after training 
with 30 simulation runs
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Figure 9a and b show respectively the normalized RMSE 
and R2 score for the three studied surrogate modeling meth-
ods after training them with 60 simulation runs. The increase 
in training points improved the accuracy of all models as 
shown by the average normalized RMSE of of 0.076, 0.082 
and 0.10 for POD-NLR, regular-PCE-LS and adaptive-
PCE-LS, respectively. As mentioned before, unexpectedly 
the RMSE for the POD-NLR and regular-PCE-LS in the 
Test 4 increased from 3.7 % to 9.2 % and from 5.5 % to 
12.1 %, respectively, when increasing the number of train-
ing simulations.

As final attempt to improve the surrogate models’ per-
formance,, especially for the case of Test 4, 120 simu-
lations are used to train them. Figure  10 presents the 
pressure evolution as a function of time for all four test 
simulations. By comparing with Fig. 6, it turns out that 
the performance of all surrogate models improved after 
120 training simulations and they appear to converge to 
the same result. The models still struggle to predict the 
early pressure drop at the end of the packing phase in Test 
1 and Test 2 as shown in Fig. 10a and b, respectively. 
Additionally, the estimation of the pressure peak in the 

Fig. 8   Predicted pressure 
signals by the three proposed 
surrogate models after training 
with 60 simulations in com-
parison to the true high-fidelity 
simulation results for four test 
cases

0 5 10 15 20

Time (s)

0

20

40

60

80

P
re

ss
u

re
 (

M
P

a)

High-fidelity Simulation

POD-NLR

Regular-PCE-LS

Adaptive-PCE-LS

0 5 10 15 20

Time (s)

0

20

40

60

80

P
re

ss
u

re
 (

M
P

a)

High-fidelity Simulation

POD-NLR

Regular-PCE-LS

Adaptive-PCE-LS

0 5 10 15 20

Time (s)

0

20

40

60

80

P
re

ss
u

re
 (

M
P

a)

High-fidelity Simulation

POD-NLR

Regular-PCE-LS

Adaptive-PCE-LS

0 5 10 15 20

Time (s)

0

20

40

60

80

P
re

ss
u

re
 (

M
P

a)

High-fidelity Simulation

POD-NLR

Regular-PCE-LS

Adaptive-PCE-LS

Fig. 9   Testing error metrics 
for the three studied surrogate 
modeling methods after training 
with 60 simulation runs
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filling phase is a problematic location for all models and 
especially highlighted in Test 4 as seen in Fig. 10d. As 
for the final error metrics, they are presented in Fig. 11. 
The RMSE of all surrogate models is lower than 8 % after 
training with 120 high-fidelity simulation runs. The model 
based on PCE-LS using an adaptive DoE exhibits the low-
est average error of 5.8 % and an average R2 score of 0.96.

Based on the previous results, all three surrogate mode-
ling methods improved gradually their performance with the 
increase of the number of training simulations. This fact is 
depicted in Fig. 12, in which the average normalized RMSE 
of each model is plotted versus the number of simulations 

used to train it. Both the POD-NLR and regular-PCE-LS 
surrogate models reached an average RMSE below 10 % 
already after training with 30 simulations. Whereas the 
adaptive-PCE-LS model showed the highest average error 
after 30 training runs and only reached comparable low 
errors to the other two surrogate modeling techniques after 
120 training simulations. For the two models using a fixed 
DoE, increasing the number of training simulations from 30 
to 120 led to a relatively small decrement of the prediction 
error from 8.4 % to 6.3 % for the POD-based model and from 
9.3 % to 6.3 % for the PCE-based one. As for the adaptive-
PCE-LS model, the average RMSE decreased significantly 

Fig. 10   Predicted pressure 
signals by the three proposed 
surrogate models after training 
with 120 simulations in com-
parison to the true high-fidelity 
simulation results for four test 
cases
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Fig. 11   Testing error metrics 
for the three studied surrogate 
modeling methods after training 
with 120 simulation runs
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from 11.9 % to 5.8 % after training with 120 runs leading to 
much improved predictions.

By comparing the results of the two surrogate models 
based on PCE-LS, it appears that not only the number of 
training simulations but the choice of DoE play an impor-
tant role in determining the model performance. An adap-
tive DoE only leads to a better surrogate model perfor-
mance when using a relatively high number of training 
runs in comparison to another which uses a fixed random 
DoE. In this particular work, running 120 high-fidelity 
simulations necessitates around 6 days and represents an 
acceptable computational cost for gaining higher accuracy 
in front of a surrogate model generated with a fixed random 
DoE. However, in case of a low number of available train-
ing simulation, a pre-defined DoE is a pertinent alterna-
tive for surrogate model generation as corroborated by the 
results of the POD- and PCE-based models with a fixed 
random DoE. In terms of global performance, the POD-
based model is slightly more accurate than the PCE-based 

models when using low number of training simulations but 
as this number increases the difference between the two 
techniques becomes negligible.

Sensitivity analysis

A Sobol sensitivity analysis is performed using the gener-
ated adaptive-PCE-LS surrogate model trained with 120 
simulation runs. Figures 13 and 14 show the resultant first 
order and some of the second order sensitivity indices, 
respectively.

The first order indices underline the contribution of a 
certain surrogate model parameter to the variance of the 
pressure output as explained in “Variance-based sensi-
tivity analysis” section. The sensitivity of the different 
process settings shown in Fig. 13a are in agreement with 
the common understanding of the injection molding pro-
cess. The injection velocity is the more sensitive factor 
during the filling stage because it determines directly the 
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Fig. 12   Average normalized RMSE over the five test runs for each 
surrogate model generated as a function of the number of training 
simulations used

Fig. 13   The first order Sobol 
sensitivity indices obtained 
using the generated adaptive-
PCE-LS surrogate model 
trained with 120 simulation runs
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pressure need. On the other hand, the holding pressure is 
naturally the more sensitive parameter during the packing 
phase, just after the switch-over till the time when the 
gate is completely solidified. After which the contribu-
tion of the coolant inlet temperature is the main driver of 
part shrinkage and therefore pressure development. The 
sensitivity of the HTC values and the pressure-dependent 
viscosity coefficient is presented in Fig. 13b. During the 
filling and the beginning of the packing phase, the pres-
sure signal is highly sensitive to changes of the pressure-
dependent viscosity coefficient D3, which is in principle 
an expected result given the natural impact of the vis-
cosity model in the simulation of the filing stage. As for 
HTCpacking, it appears to affect the pressure output mainly 
at the time in which the gate freezes during the packing 
phase. Finally, it turns out that the HTCfilling has no effect 
on the pressure results during the filling phase. The sen-
sitivity of HTCfilling after 20 s is certainly an artifact of 
the surrogate model, because this parameter should not 
play any role at this time in the high-fidelity simulation.

Figure 14 presents some of the second order sensitiv-
ity indices representing the most important interactions 
between the surrogate model parameters as a function of 
time in relation to their combined contribution to the out-
put pressure. During the filling phase, the main interac-
tion is given by the injection velocity and D3. As for the 
beginning of the packing phase, the most important inter-
actions are given by the holding pressure along with both 
the injection velocity and D3. Whereas, along the packing 
phase, it turns out that there is not significant two-param-
eter relations affecting the pressure development. Inter-
estingly, at the time when pressure strongly drops during 
the packing phase, probably associated to the freezing 
of the gate, pressure development is controlled by the 
interaction between the holding pressure and the coolant 
inlet temperature. The interaction between HTCpacking and 
D3 after 20 s is difficult to explain in terms of polymer 
physics, but eventually reveals some subtleties caught in 
the complexity of the simulated phenomena.

In general, such sensitivity analyses are helpful in 
understanding the effect of parameters on specific out-
put results. One way they can play an important role in 
surrogate model generation is by pinpointing the most 
influential parameters at the regions in which the model 
exhibits the large errors. For example, at the end of the 
filling phase, the models are not fully capable to pre-
dict the correct pressure drop, as can be seen in Fig. 10c 
and d. A possible way to improve these predictions is by 
adding DoE points where we mainly vary the injection 
velocity, holding pressure and D3 as their first and sec-
ond order sensitivity indices show their high contribution 
to the output in this region.

Simulation parameters optimization

All three models performed similarly after training with 120 
high-fidelity simulations as shown in Fig. 12. The POD-
based surrogate model is used for the parameter optimization 
as the coupling of this particular model implementation with 
the optimization algorithm presented in “Optimization” sec-
tion was straightforward in comparison with the other sur-
rogate model implementations. The goal of this optimization 
is to identify the uncertain simulation model parameters: H
TCf﻿﻿illing, HTCpacking and D3. The optimized parameters are 
summarized in Table 5 along with the default Moldflow val-
ues for the HTCf﻿﻿illing and HTCpacking as well as the pressure-
dependent viscosity parameter given in the Moldflow mate-
rial card (D3) for the utilized POM material.

One of the main objectives of this optimization is the 
identification of material parameters or boundary conditions 
for enabling a more accurate estimation of the pressure field 
in a high-fidelity injection molding simulation. To show the 
impact of this parameter calibration, the experimental DoE 
is simulated using both the optimized parameters and the 
default parameters given in Table 5. The simulated pres-
sure signals at the sensor location (taken from a surface 
node) are compared to the experimental pressure signals. 
Four example DoEs are shown in Fig. 15. In all cases, the 
simulation using the optimized parameters is closer to the 
experimental data than using the default parameters. In the 
experimental setting showed in Fig. 15a, the cavity was actu-
ally not filled completely (short shot) and both default and 
optimized simulations were not able to predict this event. 
This failure in the simulation can be related to the default 
solidification criterion, which defines the melt-to-solid tran-
sition at a constant temperature and oversimplifies the crys-
tallization phenomena occurring in a wide range of cooling 
rates. In any case, the simulation results using the optimized 
parameters show more accurate pressure estimations dur-
ing the packing phase as seen in Fig. 15b and d. However, 
the estimation of the filling time and maximum pressure at 
the end of filling are less accurate than those obtained with 
default parameters. This issue is certainly due to the high 
value of the optimized pressure-dependent viscosity coef-
ficient, which leads to higher viscosities and thus longer fill-
ing times. The prediction of the time when the pressure goes 
to zero is also prone to further improvement for both default 

Table 5   The model and boundary condition parameters used in the 
default simulation and the ones obtained in the optimization use case

Simulation HTCf﻿﻿illing  
(W/m2∘C)

HTCpacking  
(W/m2∘C)

D3 
(K/MPa)

Default 5000 2500 0.076
Optimization 9520 3520 0.400
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and optimized simulations. This shortcoming should be also 
strongly related to the current simple solidification criterion.

The error metrics comparing the pressure predictions using the 
default and optimized parameters for all 27 experimental DoEs 
are given in Fig. 16. The use of the optimized parameters led to a 
huge decrease in the RMSE over all considered DoE cases. The 
simulation using default values exhibited for some cases errors 
around 40 % which are decreased by more than half while using 
the optimized parameters. However, as showcased by the Fig. 16b, 
negative R2 scores are still calculated even when using optimized 
modeling parameters. On one hand, this is mainly due to the inabil-
ity of the simulation to recreate the short shots that were observed 
experimentally for the molding trials with a low injection velocity 
of 10 cm3/s and a holding pressure of 20 MPa, as seen in Fig. 15a. 

On the other hand, the optimized value for pressure-dependent 
viscosity parameter D3 is found at the upper bound of the sur-
rogate model generation range, which can indicate that the cho-
sen intervals are insufficient or that the implemented models are 
intrinsically limited to mimic all physical phenomena during the 
injection molding process.

Conclusion

Surrogate models of high-fidelity simulations, where the vari-
ables are material-dependent parameters, offer an alternative 
to standard experimental identification methods, as shown for 
the case of injection molding in this work. The main aim of 

Fig. 15   Comparison between 
the experimental pressure sig-
nals and those obtained by the 
simulation using the default HT
Cf﻿﻿illing, HTCpacking and D3 values 
(Simulation: Default) and the 
optimized ones (Simulation: 
Optimization) for four example 
DoEs
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Fig. 16   Error metrics of the 
simulated pressure results 
obtained using the default HT
Cf﻿﻿illing, HTCpacking and D3 values 
(Simulation: Default) and the 
optimized ones (Simulation: 
Optimization) for the 27 experi-
mental DoEs
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the method is the generation of an accurate surrogate model, 
which enables the reverse engineering of the material-depend-
ent parameters using optimization techniques. Considering six 
independent variables, the POD-NLR and the regular-PCE-LS 
surrogate models exhibit basically the same performance espe-
cially when using a low number of training data. By increasing 
the number of training data, the adaptive-PCE-LS technique 
improves steadily the accuracy of the surrogate model and 
reaches a comparable performance with the fixed-DoE tech-
niques for 120 training simulations. The advantages of the 
adaptive-PCE-LS should appear more evident when having a 
high number of variables.

Based on a Sobol sensitivity analysis using the gen-
erated surrogate model, we found that the heat transfer 
coefficient during filling has a low impact on the pressure 
evolution at a sensor node in front of the heat transfer coef-
ficient during packing or the pressure-dependent viscosity 
coefficient. By optimizing the HTCf﻿﻿illing, HTCpacking and the 
pressure-dependent viscosity model parameter D3 using 
measured pressure signals, it was possible to calibrate the 
high-fidelity simulation in order to decrease the devia-
tions in the pressure estimation when compared to those 
obtained using default simulation values. However, there 
is still a gap for getting an accurate estimation of the pres-
sure fields in injection molding, which could be closed 
with this methodology by including additional simula-
tion model parameters or with a refinement of the mod-
els implemented in the simulation as for example using 
crystallization-dependent solidification criterion for ther-
moplastic polymers.

Appendix A: Cross‑WLF viscosity model

The Cross-WLF viscosity model [15] describes the tempera-
ture, shear rate, and pressure dependency of the viscosity 
for thermoplastic materials. This model is used in Autodesk 
Moldflow Insight 2021.1 to calculate the viscosity of the poly-
mer during its injection molding.

where:

• η is the viscosity of the melt,
• η0 is the zero shear viscosity,
•  𝛾̇ is the shear rate,
• τ∗ is the critical stress at the transition to shear thinning,
• n is the power law index in the high shear rate regime.

The zero shear viscosity parameter, η0, in the above equa-
tion is given by the WLF model [16]:

(A1)
𝜂 =

𝜂0

1 +
(

𝜂0 𝛾̇

𝜏∗

)1−n

where:

• T is the temperature,
• T∗ = D2 + D3P is the glass transition temperature,
• A2 = A3 + D3P,
• P is the pressure,
• A1, A2, D1, D2 and D3 are data-fitted coefficients.
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