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Résumé — Since tests only provide measurements at sensors, it is interesting to use models to estimate
the response at all degree of freedom, correct measurement errors and possibly allow updating of model
parameters. The paper gives an integrated perspective on methods developed by the control and structural
dynamics communities and in particular methods seeking a trade-off between test and model error. The
case of a measured brake squeal limit cycle is used to illustrate implementation details found to be
important.
Mots clés — Shape expansion, model based estimation, model reduction, parameter updating

1 Introduction

Experiments provide an accurate representation of reality but are always spatially limited in the
number of sensors. Tens of accelerometers, hundreds of scanning vibrometer points, thousands of camera
pixels never give a full continuous field estimation : interior volume not measured, unreachable ares,
hidden parts... This is referred to as the fact that measurements are spatially incomplete : Figure 1 left
shows the gap between each measured points (with 3D-Scanning Laser Doppler Vibrometer) and the
closest model surface ; all individual sensors are represented as red arrows on the middle and right figures.

FIGURE 1 – Sample application of squeal limit cycle measurement on a brake : distance map between
measured points and closest model surface (left), sensors as red arrows (middle) and zoom (right)

Models in general, and more specifically Finite Element Models for application in vibration of conti-
nuous structures, give a good understanding of many properties in very fine geometric detail but generally
with biased estimates (frequencies and shapes are slightly off) and approximations (damping, poor re-
presentation of non-linearity, ...). Sensor measurements are related to model unknowns, called states or
DOFs, defined in section 2.1, through observation equations detailed in section 2.2.

In the control community, state estimation methods, with Kalman filtering [1] being a common
choice, clearly introduce the idea that model unknowns (called states or DOFs) can be estimated combi-
ning a somewhat wrong model and measured data. Provided that a good understanding of measurement
errors exists, this estimate is actually more accurate than the measurement itself [2].

Expansion is the name given to state estimation by a number of authors of the structural dyna-
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mics community. Initial work quickly reminded in section 3.1 used the model to build a subspace :
modal/SEREP [3, 4], static (based on Guyan reduction [5]), dynamic [6] and hybrid [7, 8].

Formulating a multi-objective problem combining measurement and model errors was rapidly identi-
fied as promising and led to expansion using the Error in Constitutive Relation [9, 10] and the Minimum
Dynamic Residual Expansion [11, 12], that will be detailed in section 3.2.

The cost of solving this problem is however quite large for realistic FEM models and even recent
attempts [13] find this to be a major problem without model reduction strategies discussed in section 4.1.
The notion that model parameters can be adjusted as part of the estimation process is respectively referred
to as Extended Kalman Filtering [1] or model updating. A minor distinction is that expansion is generally
formulated in the frequency domain, when state estimation is generally expressed in time. But other than
naming conventions, the differences really reside in the fact that for structural dynamics applications,
model reduction is mandatory.

The test case used in section 4 to illustrate the expansion technique is a brake system for which squeal
occurs during braking at about 4050Hz. A 3D Scaning Laser Doppler Vibrometer performs a sequential
time measurement of all nodes in the test wireframe shown in figure 1 during the squeal and the procedure
presented in [14] is used to extract the operating deflection shape (ODS) shown in Figure 2 left. The large
associated model is used to show the efficiency of the reduction strategy, illustrate how expansion results
allows a better analysis of the measured data and provides clues for further model updating and structural
dynamics modifications.

2 States/DOF, observations/sensors, modes / shape functions

2.1 States/DOF, kinematic/model reduction

Properly defining states/DOF is the first need for estimation. In the general framework of continuous
mechanics, one seeks to approximate the continuous solution using variable separation, in other words
by assuming

u(x, t) = ∑
i

Ti(x)qi(t) = [T ]{q(t)} (1)

where DOF (Degrees Of Freedom) qi(t) are the amplitudes/coordinates associated with shape func-
tions/basis vectors Ti(x).

Since from (1) the solution lies within the subspace generated by shape functions, the same solution
can be written using another basis of the same subspace. This amounts to changing DOF for the same
response. Thus DOF are arbitrary and can only be properly defined in relation to a engineering choice
of shape functions and several choices make sense.

In FEM models, physical DOF are typically obtained using polynomial shape functions that have
unit amplitudes at a node with zero amplitude at all other nodes of an element.

In classical Component Mode Synthesis [5] (CMS), Guyan/static reduction achieves the same objec-
tive by selecting a subset of FEM DOF qI to be physical and resolving the static enforced displacement
problem leading to shape functions given by{

qI(t)
qC(t)

}
=

[
I

−K−1
C KCI

]
{qI(t)}=

[
T
]
{qI(t)} (2)

Modal DOF are defined by considering amplitudes associated with the mass normalized modeshapes
of a reference elastic model.

{q(t)}=
[
φ1...NM(x)

]
{qR(t)} (3)

In a more general setting, kinematic reduction is a generic process where one seeks solution within a
restricted subspace built to satisfy model objectives. The choice of the subspace induces model reduction
and should be chosen based on objectives. In FEM models, one chooses piecewise polynomials for their
simplicity and with mesh refinement controlling the ability to have localized gradients. In CMS [5],
one uses solutions to simple problems : eigenvalue computations, static responses leading to residual
vectors, or even snapshots of some possibly non-linear solution [15]. Modes are used to control the
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model bandwidth and static shapes to control the ability to represent the effect of representative loads. In
the choice of loads, external applied loads are obvious, but parametric loads have to be included for non-
linearity or time varying models [16], and here sensor location loads will be introduced in section 4.1.

2.2 Sensors, observabillity / actuators, controllability

For structural dynamics application, one uses equations of motion of the form

[M(p)]{q̈(t)}+[K(p)]{q(t)}= [b]{u(t)}+{Fparam(p,q(t))} (4)

where {q(t)} are physical DOF, p the model parameters whose nominal values define the nominal mass
[M(p0)] and stiffness [K(p0)] matrices, {u(t)} the inputs signals, [b] the controllability matrix (spanning
input signals to input forces at DOF) and {Fparam} represents modifications of the equations due to
parameter changes, non-linearities, ... (these will be called parameteric forces later).

But this classical form lacks the idea of sensors which correspond to measurable quantities and in a
model are related to DOF/states. In standard state space models, the system representation is decomposed
in two parts

{ẋ(t)}= [A(p)]{x(t)}+[B(p)]{u(t)} Evolution equation
{y(t)}= [C(p)]{x(t)}+[D(p)]{u(t)} Observation equation

(5)

which properly distinguishes physical measurements {y(t)} which depend on how an experiment is built
and states {x(t)} which, as DOF, can be chosen arbitrarily.

To define sensors, one then builds the FEM observation equation of the form

{y(t)}= [c]{q(t)} (6)

which, in the illustration of figure 1 right, accounts for the true position and orientation of vibrometer
measurement. The linear observation formulation is adapted for all the typical modal analysis sensors :
accelerometers, laser vibrometer, strain gauges and load cells, piezoelectric patches, ... The building of
the observation matrix, requires placement of sensors in the FEM mesh which is called the topology
correlation phase of experimental modal analysis [17].

The control matrix [b] uses a similar process to represent spatial distribution of unit loads and reci-
procity implies that b and c are transpose of each other for collocated inputs/outputs such that {u}{ẏ}
corresponds to power input.

3 Expansion or estimation of unknown states and possibly parameters

3.1 Subspace based method : interpolation, modal, static, dynamic

A class of expansion methods, called subspace methods, only use modeling information to select a
subspace of possible displacements with dimensions inferior or equal to the number of sensors. Classical
bases for subspace expansion are piecewise linear functions for wire-frame animation, modes [3, 4], unit
responses at sensors computed either at 0 Hz (static expansion) or a target frequency (dynamic expansion
[6]).

For [T ]N×NR a basis of this subspace, one assumes that the full displacement is of the form {qExp}=
[T ]{qR}. The case where the subspace dimension is equal to the number of sensors

{yTest}NS×1 = [c]NS×NS {qExp}NS×1 (7)

can be used to illustrate the widespread confusion between sensors and physical DOF. If c is assumed
non-singular, then {qExp} = [c]−1 {yTest} and one can use sensors as physical DOF by using {q} ≈[
[T ] [c]−1

]
{yTest} rather than the original {q} ≈ [T ]{qExp}. Another way to rephrase the same issue is to

say that a model is defined by the kinematic subspace, while DOF are depend on the selection of a basis
of this subspace.

This formulation of the problem illustrates the fact that enforcing motion at sensors can give differing
results depending on the model reduction strategy : static shapes ignore inertia forces, which is wrong
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above the frequency of the the first fixed sensor mode ; dynamic responses at the measured frequency are
optimal in the absence of noise, external or parametric forces ; modes may then lead to responses that are
not relevant at that frequency [12].

In the presence of measurement noise, one may seek to smooth the response by considering a sub-
space of dimension smaller than the number of sensors and solving the least-squares problem

{qR}= argmin‖{yTest}− [c] [T ]{qR}‖2
2 (8)

The choice of the subspace is however then critical and the classic solution of using modes can give
non-physical solutions.

3.2 Multi-objective problem combining test and FEM error

A more general class of methods, see among many [10, 11, 18], formulates expansion as a multi-
objective minimization problem [19, 20] combining modeling and test errors and using the frequency
information as in dynamic expansion. For a measured vector {yTest} and a model defined by parameters
p, a state estimate/expanded vector {qExp} is sought using the objective function

J({yTest} ,{qExp} , p,γ) = ‖RL({qExp} , p)‖2
K + γ ‖{yTest}− [c]{qExp}‖2

Q

= εMod({qExp} , p) + γ εTest({qExp})
(9)

where
— RL(qExp, p) is a modeling error residual, which depends on model parameters p and the expanded

shape. Natural dynamic residual loads are {RL}= [Z(ω, p)]{qExp}=
[
K(p)−ω2M(p)

]
{qExp}=

for modeshapes and {RL}= [Z(ω, p)]{qExp}− [b]{u(ω)} for frequency response to the harmonic
input signal {u(ω)}.

— ‖‖K designates an energy norm. The motivation of this norm is explicit in the name Minimum
Dynamic Residual Expansion [11] but is also motivated differently in the Error in Constitutive
Relation work [10]. The classic norm first computes residual displacements induced by the resi-
dual loads {RD}= [K]−1 {RL} and then evaluates the associated strain energy

εMod =
1
2
{RD}H [K]{RD}=

1
2
{RL}H [K]−1 {RL} (10)

— {yTest}− [c]{qExp} is the usual test error residual measuring difference between measurement
and observation of the expanded shape

— ‖‖Q designates a measurement error norm. Early work on the choice of Q assumed nothing and
thus used an Euclidian norm : this is the commonly used norm by SDT

εTest = ({yTest}− [c]{qExp})H ({yTest}− [c]{qExp}) (11)

Assuming gaussian measurement noise and thus relating Q to the noise variance is the usual
approach in Kalman filtering. Bias is however often larger than variance so that other error cha-
racterizations may be used [18]. The use of energy metrics is mentioned in many papers, but one
insists here on the fact that measurement errors are not related to a form of energy (in vibrometer
noise they are related to optical signal losses).

— γ corresponds to the relative weight between the two objectives. The need to study this issue
was identified very early [21] and has been the object of much attention since. The illustrations in
section 4 will indicate that a log-scale search for the optimal value is needed from our experience.

The optimization process is practically performed in two stages :
— γ and p values are fixed so that {qExp} and {RD} are solution of a linear problem of dimension

2×N. Model reduction needed to make this problem affordable is discussed in section 4.1.
— non-linear optimization is performed on γ and p :

— γ is chosen to find a balance between test and FEM error as illustrated in section 4.2
— when model updating is performed, optimal model parameters p minimize objective (9) as

discussed in section 4.3
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The outputs of the optimization are thus the expanded shape {qExp}, the modeling error residual
{RD} which provides clues on location of modeling errors, the choice of the multi-objective weighting γ

and possibly the set of updated model parameters p, that minimizes the objective.

4 A perspective gained from SDTools applications

To illustrate lessons learned from many applications, one uses a brake model and test from Hitachi-
Astemo-France. The measured operational deflection shapes (ODS) characteristic of squeal is shown in
Figure 2 left. The objectives of using MDRE in this study are :

— the estimation of a continuous field representing the ODS shape in the whole structure as shown
on Figure 2 right

— the analysis of the test/FEM correlation by considering errors coming from both the test and the
model side

— the prediction of system evolution for modifications of the geometry (local remeshing or thick-
ness modifications)

FIGURE 2 – Squeal ODS (left) and expansion result for γ = 104 (right)

4.1 Practical reduction strategies for expansion

The excessive numerical cost of solving (9) on a full model, see [13] for example, has strongly limited
the spread of methods. Model reduction [12, 20] seems necessary for any practical application. While
model reduction techniques are quite old in the Structural Dynamics community with modal techniques
dating to Rayleigh, they are now also considered in many other fields and the presentation that seems to
be becoming standard is to distinguish

— an offline, high cost, reduced order model building phase combining :
— learning, where a data representative of the solution is obtained by a readily available algo-

rithm
— model building, where the data is reformated to obtain a reduced model that may be used at

low cost
— an online usage phase where the low cost reduced order model is exploited, here to solve (9) or

possibly dynamic expansion which is otherwise prohibitively expensive.

The learning phase, implemented in SDT [22], starts by combining some or all of the following
vector sets

— modes of the nominal model [φ1:NM(p0)] truncated to the bandwidth of interest.
— parametric model enrichment, typically using the multi-model approach where learning modes is

done at multiple design points [23]
— component modes can be used to access shapes at the component level which is very convenient

when considering design changes or updating of components (see the CMT method in [24])
— residual vectors associated with unit load at sensor location [11]

[TSens] = [K]−1 [c]T (12)
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which are computed using the classical approaches for residual vectors [5] which may contain
mass shifting and prefiltering to avoid loads generating response on the low frequency modes. As
the sensor density is large, it is possible to generate a basis with local support (values far away
from the sensor are set to zero) thus generating a sparse reduction basis.

The second step of the learning phase is to build a basis from this collection of vectors using mass-
orthonormalization and stiffness orthogonalization, using the nominal model M,K(p0) chosen in (4).

The brake system used as illustrations has 1.7 million DOF. The reduction basis contains the 100
first modes of the nominal model (up to 6000Hz as squeal occurs at 4050Hz) enriched with the static
response to unit load through each of the 1293 sensors. A full reduced matrix would require 17 GB, but
using the sparse sensor enrichment basis 1.2 GB is used. The learning phase (mode + sensor enrichment
+ orthonormalization) takes hour, while expansion, the online phase, for one γ using the reduced model
then takes only a second. On top of model reduction, use of analytic gradient evaluations and reuse of
factored matrices can vastly improve computational performance updating/optimization computations.

4.2 Choosing the γ weight and analyzing stress concentration at sensors

To analyze the influence of the objective weight on the expansion result, (9) must be computed for
many γ values. Minimizing the objective function with a very low value of γ is equivalent to minimizing
the modeling error residual alone which is easily found with {qExp} = 0 leading to εMod = 0 and a
maximum test error εTest = ‖yTest‖Q. Increasing γ forces the expanded shape to more and more follow
the test measurement up to maximum values of γ where εTest = 0 and the modeling error reaches a
maximum. To display model and test error, whose evolution range with γ is huge, relative errors

ε
R
Test =

εTest

‖yTest‖Q
; ε

R
Mod =

εMod

‖qExp‖K
(13)

are shown in Figure 3 and relevant values are where the relative errors cross around 10%.

FIGURE 3 – Left : Evolution of relative errors with γ, right : expanded shape with stress concentration at
sensor locations (γ = 1e7)

It is often useful to split the orthonormalized basis by block, distinguishing the part linked to global
shapes [φM] and the remaining part linked to the sensor enrichment

[
T⊥Sens

]
{q}= [T ]{qR}=

[
φM T⊥Sens

]{qM

q⊥

}
(14)

Using this decomposition and reminding that the associated basis is stiffness orthogonal, model error can
be split into modal and sensor enrichment energies

εMod = {RD}|TM


. . .

ω2
M

. . .

 {RD}|M + {RD}|T⊥


. . .

ω2
⊥

. . .

 {RD}|⊥ (15)
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The modal energies, shown in Figure 3 left, become smaller than the sensor enrichment energies
after γ = 105. This leads to an expanded shape with stress concentration close to the sensors illustrated in
Figure 3 right, which is not representative of a physical stress field, and can thus not be used for model
error localization or sensitivity studies.

4.3 Parameter changes : updating, structural dynamics modification

With an expanded modeshape, the next steps are to analyze the spatial distribution of test and mo-
deling errors. Figure 4 left illustrates that the test error is almost only noise, with the remaining global
motion being of the same order of magnitude as the noise level. This is typically seen as the indication
of a good test and appropriate expansion. Figure 4 right, illustrates model error highlighting elements at
bottom left and right of the structure close to the screws catching almost 50% of the error. This is used
to orient model updating efforts towards changing the contact properties associated with screws and thus
start the updating procedure. Note that in the plot, elements are sorted by energy density and grouped by
blocks of 20%. In our experience, this specific choice notably helps interpretation for complex systems.

FIGURE 4 – Test error (left) and model error (right) repartition

5 Conclusion

The test case illustrated that the expansion is very practical for industrial models provided that model
reduction is used to achieve the necessary performance and objective weighting is analyzed in detail
to obtain a solution where stress distribution is properly reproduced. Introducing automated tools to
analyze test errors and possibly changing the test error norm based on the results is a first perspective.
Highlighting test errors to allow manual diagnostic of test is also important. Organizing the optimization
process is a practical challenge for the industrial implementation of updating. For the case of squeal, the
objective is often to modify the frequencies of modes involved in the limit cycle, and component mode
tuning [24] can be very important.
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