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Abstract: This paper addresses the way a simulated annealing-based fitting strategy 

can be enhanced by leveraging a sensitivity analysis able to characterize the impact 

of the variations in the parameters of a CAD model on the evolution of the deviation 

between the CAD model itself and the point cloud of the digitized part to be fitted. 

The principles underpinning the adopted fitting algorithm are briefly recalled. The 

applied sensitivity analysis is described together with the comparison of the result-

ing sensitivity evolution curves with the changes in the CAD model parameters im-

posed by the simulated annealing algorithm. This analysis suggests several possible 

improvements that are discussed. The overall approach is illustrated on the fitting 

of single mechanical parts but it can be directly extended to the fitting of parts’ 

assemblies. It is particularly interesting in the context of the Industry 4.0 to update 

digital twins of physical products and systems. 

Keywords: Sensitivity analysis, CAD model parameters, simulated annealing, re-

verse engineering, digital twins. 

1 Introduction 

Today, being able to reconstruct or update 3D representations of existing products 

and systems has become mainstream to support the creation and exploitation of 

digital twins in the context of Industry 4.0 [1]. Clearly, the relative ease of access 

to more or less sophisticated 3D acquisition devices has certainly accelerated the 

demand while extending the range of possible applications. However, the point 

cloud treatment and the reverse engineering of CAD models are not yet fully au-
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tomatized. Most of the existing reverse engineering techniques follow a time-con-

suming patch-by-patch reverse engineering strategy that does not satisfy the Indus-

try 4.0 requirements [2]. Indeed, in most applications, the structure of the products 

or systems does not change, and only the position and orientation of its constitutive 

parts is to be updated. Thus, the update problem can be transformed in a fitting 

problem for which the optimal parameter values of CAD models have to be found 

to minimize the deviation between the digitized point clouds and the digital twins.  

To support the fitting of parts and assemblies through the reverse engineering 

process, a simulated annealing (SA) based fitting algorithm has been developed [3]. 

It considers as input the digitized point cloud, the CAD models to be fitted and the 

set of its parameters to be modified by the SA algorithm to minimize the deviation. 

This metaheuristic algorithm has a stochastic behavior [4], with few knowledge on 

how the CAD parameters’ values are to be changed throughout the optimization. A 

possible way to understand the influence between the output and parameters’ evo-

lution is sensitivity analysis [5, 6]. It has been used in various contexts, as, for ex-

ample, for the parameter choices of SA for continuous network design [7], and var-

ious indices have been specified [8][9][10]. This paper studies the possibility of 

coupling a sensitivity analysis to the SA algorithm. The sensitivity analysis allows 

the evolution of the influence of the CAD model parameters to be monitored 

throughout the fitting process. Comparing the obtained sensitivity evolution curves 

to the changes of the parameters directly imposed by the SA algorithm provides 

hints to improve the fitting process. 

The paper is organized as follows. Section 2 briefly reviews the previously de-

veloped fitting framework, and the new sensitivity analysis is introduced in section 

3. Section 4 discusses the results on a L-like shape and how such an analysis could

be intelligently exploited throughout the fitting process. The last section concludes 

the paper and discusses the future works. 

2 Simulated annealing-based fitting of CAD models 

Recently, a breakthrough has been achieved in the definition of part-by-part recon-

struction or update of editable CAD models fitting the point cloud of a digitized 

mechanical part or assembly avoiding the patch-by-patch reconstruction [3]. The 

idea is to work directly at the level of the part whose parameters are modified by a 

SA algorithm until a good-quality fitting is obtained. The inputs are the point cloud 

PC to which a parameterized CAD model ℳ0 is to be fitted. The point cloud is

composed of N points PC[𝑖], with 𝑖 ∈ [1. . 𝑁], and the CAD model is parameterized 

by 𝑁𝑝 control parameters 𝑝𝑘, with 𝑘 ∈ [1. . 𝑁𝑝]. During the prearrangement step,

the user locates in a coarse manner the part inside the point cloud, this initializes the 

parameters values 𝑝𝑘,0 (Figure 1.a). At each iteration 𝑗, the SA algorithm then tries

to modify the parameters values 𝑝𝑘,𝑗 until the updated CAD model perfectly fits the

point cloud (Figures 1.b and 1.c). The quality of the fitting is assessed thanks to an 

energy function which characterizes the overall deviation between the point cloud 



and the CAD model. The process stops when the energy function no longer de-

creases with respect to a given accuracy 휀𝑠, or when a max number of iterations

𝑀𝑖𝑡𝑒𝑟  is reached.

Fig. 1. Global fitting of a L-like shape defined by 5 controlled parameters: (a) initial configuration 

after the prearrangement step, (b) fitted part after 50 iterations of the SA algorithm, (c) final fitted 

part minimizing the deviation with the point cloud (휀𝑠 = 10−1 and 𝑀𝑖𝑡𝑒𝑟 = 1000).

At an iteration 𝑗 of the SA algorithm, the energy function to be minimized is 

evaluated as follows:  

𝐸(𝑝1,𝑗, ⋯ , 𝑝𝑁𝑝,𝑗)  =  ∑ d2 (PC[𝑖], ℳ𝑗
⊳(𝑝1,𝑗 , ⋯ , 𝑝𝑁𝑝,𝑗))𝑁

𝑖=1 , with j ≥ 0 (1) 

wherein ℳ𝑗
⊳ represents the tessellation of the CAD model ℳ𝑗 after its update by

the CAD modeler at the jth iteration of the SA algorithm, and d(point, mesh) is the 

distance function that returns the closest distance between a point and a mesh. 

3 Sensitivity analysis 

The previous section has introduced the newly developed fitting algorithm that ex-

ploits a SA algorithm to minimize the overall deviation between the point cloud and 

the CAD model to be fitted. Even though this process has proved to generate good-

quality results when compared to the traditional patch-by-patch fitting strategy, the 

path followed to reach the minimum remains under the control of the SA algorithm, 

which works as a black box and that neither takes into account the semantics asso-

ciated to the various parameters 𝑝𝑘 nor the way their variations may influence the

evolution of the energy function step after step. Indeed, while acting on the variables 

to be optimized, the SA algorithm does not distinguish for instance the lengths, 

widths, thicknesses and radius that parameterize the features, and all the variables 

are considered in the same way. It also does not take into account the fact that the 

influence of a parameter variation on the energy may vary a lot depending on 

whether the parameter is associated to a structural feature (e.g. the length L of the 

L-like shape in Figure 1) or to a detail feature (e.g. the radius r in Figure 1).  

To better compare the influence of the parameters, a sensitivity estimator 𝑆𝑘,𝑗 is

here introduced to compute at each step j of the optimization process the sensitivity 

of the energy function with respect to each parameter 𝑝𝑘:



𝑆𝑘,𝑗 =
𝜕𝐸

𝜕𝑝𝑘
|

(𝑝1,𝑗,⋯,𝑝𝑁𝑝,𝑗)
, with j ≥ 0 (2) 

Since the energy function is computed using a nearest point algorithm, it cannot 

be differentiated. Thus, at the jth iteration, the sensitivities are approximated using 

a first-order finite difference scheme (either forward or backward) directly con-

trolled by the step ℎ𝑘 chosen for the corresponding parameter 𝑝𝑘:

𝑆𝑘,𝑗
+ =

𝐸𝑗(𝑝1,𝑗,⋯,𝑝𝑘,𝑗+ℎ𝑘,⋯,𝑝𝑁𝑝,𝑗)−𝐸𝑗(𝑝1,𝑗,⋯,𝑝𝑘,𝑗,⋯,𝑝𝑁𝑝,𝑗)

ℎ𝑘
+ Ο(ℎ𝑘), with j ≥ 0 (3) 

𝑆𝑘,𝑗
− =

𝐸𝑗(𝑝1,𝑗,⋯,𝑝𝑘,𝑗,⋯,𝑝𝑁𝑝,𝑗)−𝐸𝑗(𝑝1,𝑗,⋯,𝑝𝑘,𝑗−ℎ𝑘,⋯,𝑝𝑁𝑝,𝑗)

ℎ𝑘
+ Ο(ℎ𝑘), with j ≥ 0 (4) 

4 Results and discussion 

The core of the fitting algorithm has been implemented in MATLAB®, which is 

able to call the built-in functions of SolidWorks® to perform the successive CAD 

model updates and ensure the consistency of the resulting B-Rep model during the 

optimization loops. All the steps ℎ𝑘 used to compute the sensitivities are equal and

only depend on the type of parameter they are associated to. Thus, step ℎ𝑘 = 0.1mm
in case 𝑝𝑘 is a length, and ℎ𝑘 = 0.1° in case it is an angle. Those values have been

chosen in coherence with the accuracy of the adopted CAD modeler. 

In order to compare the sensitivity of the parameters to the way the SA algorithm 

modifies the parameters values step after step, the evolution of the parameters can 

be tracked in an absolute or relative manner, as follows: 

𝛿𝑝𝑘,𝑗 = 𝑝𝑘,𝑗+1 −  𝑝𝑘,𝑗 (5) 

∆𝑝𝑘,𝑗 =
𝛿𝑝𝑘,𝑗

𝑝𝑘,𝑗
(6) 

Thus, the value 𝛿𝑝𝑘,𝑗 characterizes the absolute evolution of the parameter 𝑝𝑘

between iterations 𝑗 and 𝑗 + 1, whereas ∆𝑝𝑘,𝑗 refers to its relative evolution. At each

iteration 𝑗 of the SA algorithm, it is therefore possible to compare the sensitivity 

𝑆𝑘,𝑗 of each parameter 𝑝𝑘, to the decision taken by the SA algorithm on how to

modify the parameter value for the next step 𝑗 + 1. This is illustrated in Figure 2 for 

the fitting of the L-like shape introduced in section 3. For this example, the initial 

temperature of the SA algorithm has been set up to 𝑇0 = 10 following the initiali-

zation procedure suggested in [3]. For the sensitivities, the forward finite difference 

scheme 𝑆𝑘,𝑗
+  has been used when the absolute evolution 𝛿𝑝𝑘,𝑗 > 0, and the backward

scheme 𝑆𝑘,𝑗
−  otherwise.



Fig. 2. Comparison between the evolution of the sensitivities 𝑆𝑘,𝑗 (right) and the changes 𝛿𝑝𝑘,𝑗 

imposed by the SA algorithm (left) at each iteration 𝑗 of the fitting process. 

From this experimentation, one can clearly see that the sensitivities of the five 

parameters defining the L-like shape are relatively different at the beginning, and 

that they slightly evolve as the fitting process goes on (Figure 2 right). On the con-

trary, the changes imposed by the SA for each parameter at each iteration 𝑗 are very 

close. For sake of clarity, the sensitivity of the five parameters at the beginning and 

the average of first ten iterations are given in Table 1. This table also shows the 

desired values, 𝑝𝑘,𝐷, and the final values 𝑝𝑘,𝐹 for the object’s parameters.

Table 1. Values of the comparison metrics for the initial iteration (𝑗 = 0) and average of first ten 

iterations (𝑗 ∈ [0. .9]) . 

k 1 2 3 4 5 

𝑝𝑘,0 25.0 20.0 2.0 3.0 2.0 

𝑆𝑘,0 -8.0E+4 3.0E+4 4.0E+4 0.0E+00 1.0E+4 

𝛿𝑝𝑘,0 0.56 -0.45 -0.22 0.15 0.16 

∆𝑝𝑘,0 0.02 -0.02 -0.11 0.05 0.09 

 𝑆�̅�,𝑗∈[0..9] 4.4E+4 2.9E+4 4.1E+4 6.0E+3 6.0E+3 

𝛿𝑝̅̅ ̅
𝑘,𝑗∈[0..9] 2.55 1.25 1.76 1.79 1.60 

∆𝑝̅̅̅̅
𝑘,𝑗∈[0..9] 0.10 0.06 0.88 0.60 0.80 

𝑝𝑘,𝐷 35 30 5 6 5 

𝑝𝑘,𝐹 34.92 29.84 4.89 5.93 5.49 

One can also see that the successive changes imposed by the SA algorithm to the 

parameters’ values (Figure 2 left) cannot be easily correlated to the evolution of the 

sensitivities. Thus, several ways of improvement can be sketched: 

- the parameters 𝑝𝑘 could be grouped according to their levels of sensitivity,

so as to treat them in several batches for which the sensitivity is comparable; 

- the way the SA algorithm changes the parameters values could be further 

optimized while considering the sensitivity analysis all along the process; 



- the sensitivity analysis could be performed at a lower level, while decom-

posing the energy function and tracking which parts of the energy function 

are affected by the changes to save time when computing the overall energy. 

The first idea has been implemented, but due to space limitation results cannot 

be shown here. On the example of the L-like shape, two main categories of param-

eters can be distinguished when comparing their sensitivities at the beginning of the 

fitting process: {𝐿, ℓ, 𝑒} and {𝑅, 𝑟} gather together parameters having comparable 

sensitivities. Such a decomposition in two groups gives rise to two successive opti-

mization loops. Overall, doing this way the accuracy of the fitting is improved com-

pared to the use of a single optimization loop. 

6 Conclusion 

This paper has explored the possibility to integrate a sensitivity analysis within a 

SA algorithm used to fit a CAD model in the point cloud of a digitized part. Such 

an approach helps grouping the CAD model’s parameters so as to treat batches hav-

ing comparable sensitivities. Other improvements have also been sketched to be 

more accurate and to reduce optimization times. 

References 

1. Y. Lu, Industry 4.0: a survey on technologies, applications and open research issues, Journal of

Industrial Information Integration 6 (2017) 1-10 

2. B. Falcidieno, F. Giannini, J.-C. Léon, J.-P. Pernot, Processing free form objects within a prod-

uct development process framework, Advances in Computers and Information in Engineering 

Research (2014) 317-344 

3. G. A. Shah, A. Polette,  J.-P. Pernot, F. Giannini, M. Monti, Simulated annealing-based fitting

of CAD models to point clouds of mechanical parts’ assemblies, to appear in Engineer with

Computers (2020), DOI: 10.1007/s00366-020-00970-8

4. S. Kirkpatrick, D. Gelatt, C, and M.P. Vecchi. Optimization by simulated annealing. IBM Re-

search Report RC 9355, Acts of PTRC Summer Annual Meeting, 1982 

5. B. Iooss and P. Lematre, A review on global sensitivity analysis methods, in Uncertainty Man-

agement in Simulation-Optimization of Complex Systems, Springer, 2015, pp. 101-122 

6. D.M. Hamby, A review of techniques for parameter sensitivity analysis of environmental mod-

els. Environmental monitoring and assessment, 1994, vol. 32, no 2, p. 135-154 

7. J. Yang, M. Xu, Z. Gao, Sensitivity Analysis of Simulated Annealing for Continuous Network

Design Problems, Journal of Transportation Systems Engineering and Information Technol-

ogy, Volume 9, Issue 3,2009, 64-70,ISSN 1570-6672 

8. F. Gamboa, J. Janon, T.  Klein, A. Lagnoux, Sensitivity analysis for multidimensional and func-

tional outputs, 2013, https://arxiv.org/abs/1311.1797 

9. A. Spagnol, A., R. Le Riche, S. Da Veiga, Global sensitivity analysis for optimization with

variable selection, SIAM/ASA Journal on Uncertainty Quantification, 2019, Vol. 7, No. 2 : 

pp. 417-443 

10. M. Lamboni, H. Monod, D. Makowski, Multivariate sensitivity analysis to measure global

contribution of input factors in dynamic models, Reliability Engineering & System Safety,

Volume 96, Issue 4, 2011, Pages 450-459, ISSN 0951-8320

https://arxiv.org/abs/1311.1797



