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Abstract

The Reynolds-Averaged Navier-Stokes (RANS) equations represent the computational workhorse for engineering

design, despite their numerous flaws. Improving and quantifying the uncertainties associated with RANS models

is particularly critical in view of the analysis and optimization of complex turbomachinery flows. In this work, we

use Bayesian inference for assimilating data into RANS models for the following purposes: (i) updating the model

closure coefficients for a class of turbomachinery flows, namely a compressor cascade; (ii) quantifying the parametric

uncertainty associated with closure coefficients of RANS models and (iii) quantifying the uncertainty associated with

the model structure and the choice of the calibration dataset based on an ensemble of concurrent models and calibration

scenarios. Inference of the coefficients of three widely employed RANS models is carried out from high-fidelity LES

data for the NACA65 V103 compressor cascade [1, 2]. Posterior probability distributions of the model coefficients are

collected for various calibration scenarios, corresponding to different values of the flow angle at inlet. The Maximum

A Posteriori estimates of the coefficients differ from the nominal values and depend on the scenario. A recently

proposed Bayesian mixture approach, namely, Bayesian Model-Scenario Averaging (BMSA) [3, 4], is used to build

a prediction model than takes into account uncertainties associated with alternative model forms and with sensitivity

to the calibration scenario. Stochastic predictions are presented for the turbulent flow around the NACA65 V103

cascade at mildly and severe off-design conditions. The results show that BMSA generally yields more accurate

solutions than the baseline RANS models and succeeds well in providing an estimate for the predictive uncertainty

intervals, provided that a sufficient diversity of scenarios and models is included in the mixture.
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1. Introduction1

The design of modern, highly-loaded axial compres-2

sors requires accurate predictions of stagnation pressure3

losses at the early stages of the design process. Com-4

pressor flows are characterized by high relative speeds,5

leading to the formation of shock waves interacting6
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with the surrounding boundary layers, as well as by the7

development of secondary flows (such as corner and8

tip vortices) at blade roots and tips, which interact with9

the hub and casing and have a strong impact on flow10

development and on the resulting efficiencies. Addi-11

tional complexity is introduced by laminar-to-turbulent12

flow transition induced by high-intensity incoming13

freestream turbulence (bypass transition) or by flow14

separation under strongly adverse pressure gradients,15

for example.16

17

Although flawed by numerous major deficiencies18

–especially for strongly non-equilibrium and pos-19

sibly transitional flows like those of interest here–,20

Reynolds-Averaged Navier–Stokes (RANS) modelling21

remains the workhorse for turbomachinery design. The22

main reason is that, despite considerable advances of23

so-called high-fidelity simulations (namely, Direct Nu-24

merical Simulation, DNS, and Large Eddy Simulation,25

LES) in terms of applicability to more geometrically26

complex configurations and to higher Reynolds number27

flows (including turbomachinery flows, see [5]), the28

computational cost of such simulations remains hun-29

dreds of times higher than RANS.30

31

RANS modelling uncertainties can be classified into32

four levels [6]: 1) uncertainties related to the validity33

of the averaging process itself; 2) uncertainties in rep-34

resenting the unclosed Reynolds stress tensor as a func-35

tion of the mean field; 3) uncertainties in the constitu-36

tive law used to relate the Reynolds stresses to the mean37

field; 4) uncertainties in the closure parameters associ-38

ated with a given model form. A review of turbulence39

modelling uncertainties and of methodologies for quan-40

tifying and reducing such uncertainties can be found in41

[7]. Several authors have recently investigated the pos-42

sibility of using high-fidelity simulation data for devel-43

oping improved RANS models for restricted classes of44

flows (see [6] for a review). For instance, in [8] the45

source terms of the Spalart–Allmaras were learnt from46

data using a single hidden layer neural network, which47

served as a first feasibility study. In [9], a multiplica-48

tive correction function was introduced in the turbulent49

kinetic energy production term of the k-equation for the50

k−ω model. The correction was determined via inverse51

modelling and served to train a Gaussian process. In52

[10], a deep neural network was trained to predict the53

anisotropic part of the Reynolds stress tensor. The net-54

work was designed to embed Galilean invariance of the55

predicted stresses. The above-mentioned data-driven56

methods all try to develop corrections of some under-57

lying RANS model, in particular by relaxing the well-58

known ”Boussinesq approximation” or ”linear eddy vis-59

cosity” hypothesis, which is the keystone of a large ma-60

jority of RANS models used in industrial applications.61

A particularly promising data-driven approach has been62

introduced in [11], based on Gene-Expression Program-63

ming (GEP). Such an approach leads to the develop-64

ment of Explicit Algebraic Stress Models (EARSM), a65

class of RANS models using nonlinear constitutive rela-66

tions for the Reynolds stresses [12], directly from high-67

fidelity data. These models relax the linear eddy viscos-68

ity hypothesis, leading to improved and yet computa-69

tionally cheap (compared to high-fidelity) RANS mod-70

els. The GEP approach has been recently used to de-71

velop taylor-made EARSM for turbine flows [13]. An72

alternative approach for EARSM discovery, based on73

sparse deterministic regression, has been recently pro-74

posed in [14].75

GEP, as well as other of the above-mentioned76



data-driven methods, belong to the class of ”non para-77

metric” [7] methods for quantifying RANS modelling78

inadequacy, which try to formulate a correction to the79

model form (most often, the constitutive law for the80

Reynolds stress tensor) based on the observed data.81

Such non parametric methods have recently attracted82

considerable interest from the scientific community83

due to their potential for automatic learning of RANS84

models from data, but suffer from the following85

limitations: 1) they tend to lack generality, i.e., they86

work well for flows similar to those in the training87

set but can be hardly extrapolated to different flows;88

2) they need a significant amount of high-fidelity89

data (generally costly to obtain and limited to simple,90

low-Reynolds number configurations) and are not well91

suited for incomplete, noisy data such as experiments;92

3) in most cases, they lead to deterministic predictions93

and do not provide estimates of confidence intervals94

due to persisting uncertainties in both model form and95

closure coefficients. For turbomachinery design (and96

for engineering design in general), confidence intervals97

on the predicted quantities of interest (QoI) represent as98

valuable information as the QoI itself, since they allow99

estimating uncertainties about the expected system100

performance early in the design phase. This is why, in101

this work, we focus instead on ”parametric” uncertainty102

quantification approaches [7]. The latter use some103

available data for estimating and reducing uncertainties104

in model closure coefficients, given the model form.105

A natural framework for parametric approaches is106

Bayesian inference, whereby the model coefficients107

are assigned a priori probability distributions (based,108

e.g., on literature data or expert judgement) that are109

a posteriori updated by using data. Since the model110

coefficients are now represented as probability distri-111

butions, the model output is also a random quantity,112

characterized by a probability distribution. In other113

terms, the solution is naturally equipped with uncer-114

tainty intervals. Parametric approaches can be easily115

applied to small, noisy datasets and can be successively116

updated as soon as new or better data become available.117

Refs [15, 3] used Bayesian inference for calibrating the118

Spalart–Allmaras and k − ε models, respectively, by us-119

ing experimental data for turbulent flat plate boundary120

layers. Although parametric approaches only infer on121

model coefficients, they can also be used for estimating,122

to some extent, model-form uncertainties. One way to123

do that is to adopt multi-model ensemble techniques,124

which have been used in a variety of applications,125

including aerodynamics [16, 17, 18, 19, 20, 21]. Here126

we focus on the Bayesian Model Averaging (BMA)127

framework, initially proposed by Draper [22] (see also128

[23]). A significant extension to BMA is represented129

by Bayesian Model-Scenario Averaging (BMSA)130

[21, 3, 4]. Like BMA, BMSA combines the predictions131

from multiple models, thereby providing a measure132

for model uncertainty, using posterior distributions133

of the coefficients inferred from different calibration134

scenarios. In [3], a BMSA model was constructed135

by averaging five RANS models calibrated on 14136

scenarios, corresponding to turbulent flat plate flows137

subject to various external pressure gradients. BMSA,138

calibrated on the scenarios of [3], was successfully139

applied to a transonic wing configuration in [4].140

141

In the present work we investigate the potential of142

BMSA for robust predictions of turbomachinery flows143

under uncertain RANS models, with focus on a com-144

pressor cascade. We focus more particularly on the145

NACA65 V103 compressor cascade, for which high-146



fidelity numerical and experimental data are available147

in the literature. For our study, we select three widely148

used RANS models, namely, the Spalart–Allmaras [24],149

Wilcox’ k−ω [25], and Launder–Sharma k− ε [26] tur-150

bulence models. The purpose of the study is manifold:151

1) we investigate if BMSA calibrated on elementary ex-152

ternal flow configurations like those of [3, 4] may still153

provide valuable information for the internal flow con-154

figuration of interest; 2) we set up a computationally155

efficient strategy for specifically calibrating BMSA for156

costly compressor flows; 3) finally, we apply BMSA to157

the NACA65 V103 compressor flow at operating condi-158

tions outside the calibration set, and we assess its capa-159

bility to provide accurate predictions and the associated160

uncertainty intervals for new flows. The results are com-161

pared to those of BMSA based on the on-the-shelf sets162

of coefficients [4].163

The paper is organized as follows. In Section 2, we164

recall the Bayesian framework, with special focus on165

BMSA. In Section 3, we describe the compressor flow166

configuration and the RANS models. In Section 4 we167

report BMSA results for the NACA65 V103 cascade at168

two off-design conditions. Finally, Section 5 summa-169

rizes the main findings and draws perspectives for future170

work.171

2. Bayesian framework172

In this section, we recall the theoretical framework173

for Bayesian model calibration and BMSA, following174

[27].175

2.1. Bayesian calibration176

Let us consider a physical model of the form:

∆ = M(θ) (1)

with ∆ = (∆1, ...,∆N) a vector of Quantities of Interest177

(QoI) computed by a model M given a set of parameters178

θ of dimension P.179

In the deterministic framework, the components of180

θ are perfectly known and have a fixed value. In the181

Bayesian framework, the unknown parameters vector θ182

is treated as a random vector, characterised by a joint183

probability density function (pdf), noted f . Due to the184

uncertainty on θ, ∆ is also a random vector.185

The scope of Bayesian inference is to gain new

knowledge about θ by constructing an improved repre-

sentation of its pdf, based on prior knowledge and as-

similating the observed data. For that purpose, let us

note D the random vector of observed high-fidelity data.

Bayes rules states that :

f (θ|D = D) =
f (D = D|θ)

f (D = D)
f (θ) (2)

Here, f (θ) is the prior pdf and represents the initial be-186

lief about θ, f (D = D|θ) is the likelihood and corre-187

sponds to the probability to observe D, a realisation of188

the random variable D, if θ is known exactly. The pos-189

terior pdf f (θ|D = D) represents the updated knowledge190

of θ given the observed data vector D, of size N. In prac-191

tice, calibration compares the model prediction and the192

observations to extract the pdf of the parameters vector193

θ that is the most likely to capture the data. In our case,194

θ is the set of closure parameters associated with a given195

RANS model.196

From Eq. (2), it appears that the posterior distribution197

is entirely determined by the prior and likelihood func-198

tion. Following Arnst [28] we use uninformative priors,199

i.e. uniform priors, for each component of θ (supposed200

independent). As RANS models have been carefully de-201

signed, we are confident in assuming that the standard202

values should be included in the range of the prior. We203



therefore choose uniform priors that include standard204

values (reported in Table 2), as done in [15] [3]. Further-205

more, there is no evidence that model predictions would206

be improved by choosing closure coefficients with sig-207

nificant deviations from the standard values. The prior208

intervals are therefore chosen to be large enough to al-209

low a good exploration of the parameter space, while210

avoiding values preventing the CFD solver to converge.211

Also note that excessively large prior distributions may212

lead to overfitting problems, resulting in posterior coef-213

ficients that fit very well the calibration data, but deteri-214

orate predictions of unobserved quantities of interest.215

The likelihood function f (D = D|θ) is a statistical216

model for observation errors (discrepancies between the217

data and their true, unobserved, values) and model in-218

adequacies. The latter accounts for the fact that part of219

the physics is missed by the model due to any approx-220

imation introduced in its construction, so that the true221

phenomenon can never be exactly captured, even with222

the best possible model coefficients.223

In the present calculations, the observation error is

modelled as an additive noise and the model inadequacy

as a multiplicative term, as also done in [15]. Specifi-

cally, the data D at a given location xi are related to the

observation error by:

D(xi) = D̂(xi) + ei(xi) (3)

with ei the observation noise at position xi and D̂(xi) the224

(unobserved) true value of the QoI vector. We choose225

the components of the observation noise to be indepen-226

dent and normally distributed, with zero mean and a227

standard deviation equal to 1% of the observed value.228

The model-inadequacy ηi is given by:

D̂(xi) = ηi∆(xi, θ) (4)

with ∆(xi, θ) the model output at a point xi. We choose229

the model errors to be independent and Gaussian, i.e.230

ηi ∼ N(1, σ2
η) where ση is an additional uncertain231

hyper-parameter that needs to be calibrated, and there-232

fore is concatenated to the vector of parameters θ. The233

hyperparameter ση is a measure of the magnitude of the234

model inadequacy and thus can be taken as an indica-235

tor of the accuracy of a given model, calibrated for a236

given scenario. Considering a model error mitigates the237

influence of overfitting on the calibration, as it relaxes238

constraints. For more detailed discussion, see [22].239

The preceding choices for ηi and ei lead to a likeli-

hood function of the form:

f (D|∆, θ) =
1√

(2π)N |K|
exp

[
−

1
2

(D − ∆(θ))T K−1(D − ∆(θ))
]

(5)

with K = Ke + KM where Ke is a diagonal matrix repre-240

senting the observational error vector and KM = σ2
ηI a241

diagonal matrix reflecting model inadequacy.242

For complex models like those of interest in this243

study, the term ∆(θ) cannot be computed analytically,244

and the posterior distribution for θ must be approx-245

imated numerically. Specifically, we use a Markov-246

Chain Monte-Carlo method to draw sample from the247

posterior pdf, and namely the Metropolis-Hastings al-248

gorithm [29] available in the pymc1 open library. The249

MCMC sampling is stopped when the following crite-250

ria are satisfied: the Geweke z-score [30], the steadi-251

ness of the first two moments of the sample, and the252

auto-correlation of the Markov Chain. For more details253

concerning such creteria, we refer to [27].254

Typically, O(105) samples are needed to reach con-255

vergence, which is unacceptably high for costly RANS256

models. To reduce the computational effort to an257

1https://github.com/pymc-devs/pymc



amenable level, the calibrations presented in the follow-258

ing are based on surrogate models, presented in section259

3.4.260

2.2. BMSA formulation261

In this paper we call scenario, noted S , a specific flow262

case unambiguously described by a known and deter-263

ministic set of parameters (e.g. the geometry of the264

blade, boundary conditions, Reynolds Number, Mach265

number...). Now, consider i = 1, ..., I models applica-266

ble to a set of k = 1, ...,K scenarios S = {S 1, ..., S K}267

for which we have K vectors of observed data D =268

{D1, ...,DK}. Similarly, we call M = {M1, ...,MI} the269

ensemble of all available models. For each model ap-270

plied to each scenario, we assume that the calibration271

phase resulted in a posterior for θ, i.e.272

θi,k ∼ θ|M = Mi, S = S k,D = Dk (6)

Aftewards, let us consider a new scenario S ′ with no

available data and a QoI ∆. Similarly to [22], we use

the law of total probabilities to state that :

f (∆|S ′,D,M,S) =

I∑
i=1

K∑
k=1

f (∆|S ′,Dk,Mi, S k)p(Mi|Dk, S k)p(S k)
(7)

Here, f (∆|S ′,D = Dk,M = Mi, S = S k) represents273

the distribution of ∆ obtained by propagating the pos-274

terior distribution θi,k for the new scenario S ′, p is the275

probability mass function of a discrete random variable276

and we assumed that D and S are independent, as in277

[21]. For the sake of conciseness, we drop the clearer278

but redundant formulation M = Mi or S = S k to simply279

write Mi or S k in the rest of the paper. We also deliber-280

ately omitD,M and S in f (∆|S ′) for the same reason.281

Equation (7) leads to the following expression for the

two leading moments of f (∆|S ′) :

E
[
∆|S ′

]
=

I∑
i=1

K∑
k=1

E
[
∆|S ′,Dk,Mi, S k

]
p(Mi|Dk, S k)p(S k)

(8)

Var
[
∆|S ′

]
=

I∑
i=1

K∑
k=1

Var
[
∆|S ′,Dk,Mi, S k

]
p(Mi|Dk, S k)p(S k)︸                                                     ︷︷                                                     ︸

within-model, within-scenario variance

+

I∑
i=1

K∑
k=1

(
E

[
∆|S ′,Dk,Mi, S k

]
−E

[
∆|S ′,Dk,M, S k

])2

p(Mi|Dk, S k)p(S k)︸                                                                    ︷︷                                                                    ︸
between-model, within-scenario variance

+

K∑
k=1

(
E

[
∆|S ′,Dk,M, S k

]
− E

[
∆|S ′,Z,M,S

])2
p(S k)︸                                                                 ︷︷                                                                 ︸

between-scenario variance

(9)

In Eq. (9) the variance Var [∆|S ′] is decomposed282

in three contributions: the first one is related to the283

parametric uncertainty and accounts for the dispersion284

within the samples θi,k. As such samples have been285

obtained in the calibration phase for given model and286

scenario, this first term is called within-model, within-287

scenario variance. The second term represents variance288

between model, within scenario and grows when mod-289

els give contradicting predictions for the same scenario.290

The final term, called between scenario variance, re-291

flects the fact that using different calibration scenario re-292

sults in different posteriors for θi,k and in different model293

probabilities p(Mi|Dk, S k). This ultimately leads to dif-294

ferent predictions for ∆|S ′.295

The term

E
[
∆|S ′,Dk,M, S k

]
in Eqs (8) and (9) represents the mean of ∆ averaged



over all the models being calibrated on the same sce-

nario. It is computed through :

E
[
∆|S ′,Dk,M, S k

]
=

I∑
i=1

E
[
∆|S ′,Dk,Mi, S k

]
p(Mi|Dk, S k)p(S k) (10)

The posterior model probability p(Mi, S k |Dk) reflects

how well the model Mi fits the data Dk for the scenario

S k . It can be computed through the Bayes rule:

p(Mi|Dk, S k) =
p(Dk |Mi, S k)p(Mi|S k)∑J

j=1 p(Dk |M j, S k)p(M j|S k)
(11)

where p(Mi|S k) is a user-defined prior and p(Dk |Mi, S k)

is the model evidence :

p(Dk |Mi, S k) =

∫
Θ

f (Dk |θ,Mi, S k) f (θ|Mi, S k)dθ (12)

p(Mi|S k) is generally chosen equiproportional, i.e.296

p(Mi|S k) = 1/I.297

The BMSA formulation is completed by selecting a

prior probability mass function for the scenarios, i.e. an

expression for p(S k). It was shown in [3] that choosing

a uniform prior for the scenario mass function brings

unnecessary large variance. Following [4] and [27], we

choose prior scenario based on model agreement:
p(S = S k) =

ε
−p
k∑K

k=1 ε
−p
k

εk =
∑I

i=1

∣∣∣∣∣∣E [
∆|S ′,Dk,Mi, S k

]
− E

[
∆|S ′,Dk,M, S k

] ∣∣∣∣∣∣
2

(13)

with p = 2. In this formulation, scenarios for which298

models give closer predictions are assigned higher prob-299

abilities.300

3. Case Setup and Methodology301

3.1. Compressor cascade configuration and reference302

data303

In the following, BMSA is used to predict a compres-304

sor flow configuration. Specifically, we focus on the305

Figure 1: Sketch of the compressor Cascade V 103 adapted from [32].

Ma1 is the inlet Mach and β1 is the angle of attack.

NACA65 V103 cascade from Leipold [31], sketched306

in Figure 1, which is representative of a realistic axial307

compressor mid-section. For this cascade, the design308

conditions correspond to an inlet flow angle β1 = 42°,309

an inlet Mach number of 0.67 and a Reynolds number310

(based on the blade axial chord and the inlet quantities)311

equal to 450000, respectively. This configuration has312

been widely studied in the past years [32, 33, 1], and the313

high-fidelity data available in the literature are suitable314

for BMSA calibration and assessment. Hereafter we315

consider in particular the LES data from Leggett [1, 2],316

who investigated the cascade at four off-design condi-317

tions, corresponding to calibration/prediction scenarios318

in the present Bayesian framework. The scenarios have319

different values of inlet angle but similar inlet Reynolds320

and Mach numbers and inlet turbulence intensities.321

Flow conditions characterizing each scenario are322

reported in Table 1. Previous study [1] pointed out323

that RANS models provide rather accurate results for324

near design conditions, but behave poorly at off-design.325



Scenario S 1 S 2 S 3 S 4

β1 36.99° 39.97° 44.09° 49.2°

Ma1 0.654 0.674 0.666 0.65

Re1 302K 302K 298K 289K

Tu (%) 2.9 3.4 3.4 3.5

Table 1: Flow conditions for various compressor cascade scenarios.

The NACA 65 V103 cascade therefore represents a326

challenging configuration for assessing the BMSA327

methodology.328

329

For the purpose of BMSA calibration, we extracted330

from LES data selected quantities of interest, namely,331

the tangential velocity and turbulent kinetic energy pro-332

files in the wall-normal direction and total pressure pro-333

files in the wake. The LES data are in good agreement334

with the experiments of [31]. Tangential velocity pro-335

files at 4 streamwise positions (at x/l = 0.56, 0.64, 0.76336

and 0.99 on the suction side, l being the chord and337

x/l = 0 the leading edge), and total pressure (Ptinlet −338

Pt)/(Ptinlet−Pinlet) profiles at 2 positions downstream of339

the trailing edge (x/l = 1.02 and 1.1) were used for the340

calibration/assessment of all models considered in the341

study. For RANS models involving a transport equation342

for the turbulent kinetic energy (TKE), such as the k−ω343

and k − ε models, we also considered TKE profiles at344

the same positions on the suction side as the velocity345

profiles. For the calibrations reported in the following346

we used data for a small number of observation points347

along each profile, clustered in the near wall region and348

toward the wake center. The data are then concatenated349

to form the vector D. In total, we used 82 probes for350

k − ω and k − ε models, and 50 for Spalart–Allmaras351

model. As a general rule, the number of data used in the352

calibration is a tradeoff between the necessity of inform-353

ing the model coefficients and computational cost asso-354

ciated with the construction and inversion of the corre-355

lation matrices involved in the likelihood function.356

3.2. Flow models357

The flow around the compressor cascade is modelled358

by the compressible RANS equations (not reported for359

the sake of brevity) supplemented with a turbulence360

model. Since it is not possible to identify a priori the361

”best” turbulence model for predicting an unseen con-362

figuration based on pure expert judgement, we adopt a363

multi-model ensemble constituted of three concurrent364

turbulence models, briefly described thereafter. The365

reader may refer to the original references for more de-366

tails. Only linear eddy viscosity models are consid-367

ered in the following since, despite the limitations in-368

trinsic to the so-called Boussinesq hypothesis, their are369

robust and widespread in industrial flow solvers. For370

such models, a posteriori estimates of the closure coef-371

ficients and of the posterior model probabilities deter-372

mined from model calibrations against 14 flat plate flow373

scenarios have been made available in [3, 4]. These pos-374

teriors have been proven useful for prediction on differ-375

ent flows, such as pipes and wings.376

3.2.1. Launder–Sharma k − ε377

The k − ε model of Launder and Sharma [26] relies

on the solution of transport equations for the turbulent

kinetic energy k and the turbulent dissipation ε for com-

puting the eddy viscosity coefficient νt = Cµk/ε.The

transport equations and the eddy viscosity definition in-

volve six uncertain closure coefficients: Cµ, Cε1, Cε2,

σε, σk and κ, with κ the von Karman constant. These

are not all independent since they have to satisfy the fol-



lowing relationships, derived for simple canonical flows

[34] (see also [3]):

κ2 = σεC1/2
µ (Cε2 −Cε1) (14)

P
ε

=
Cε2 − 1
Cε1 − 1

(15)

Following [35] we set
P
ε

= 2.09 in equation (15). By378

enforcing the preceding relationships, we are finally left379

with 4 uncertain closure coefficients, namely Cε2 , Cµ,380

σk and κ. The standard values of these coefficients for381

the Launder–Sharma model are given in Table 2.382

3.2.2. Wilcox k − ω (2006)383

The second model is Wilcox’ k−ω model [25], based

on transport equations for the turbulent kinetic energy k

and the turbulent dissipation rate ω = ε/k. This model

has seven closure coefficients denoted α, β, β∗, σ, σ∗,

σdo and κ, whose standard values are given in Table 2.

The coefficients must satisfy the relation [25]

α =
β

β∗
−

κ2

2
√
β∗

(16)

so that only six independent coefficients are left. In the384

following, α is computed a posteriori once the other co-385

efficients have been calibrated from data.386

3.2.3. Spalart–Allmaras model387

The Spalart–Allmaras model [24] is a single-

transport-equation model for a viscosity-like quantity ν̃,

which merges with turbulent viscosity νt far from the

walls. It involves 8 closure coefficients: Cb1, Cb2, σ,

Cw1, Cw2, Cw3, Cv1 and κ . Since the coefficient Cw1 is

related to the other coefficients by the relation:

Cw1 =
Cb1

κ2 +
1 + Cb2

σ
(17)

only 7 independent closure coefficients are left, whose388

standard values are given in Table 2.389

Model Closure Coefficient Standard value

k − ε

Cε2 1.92

Cµ 0.09

σk 1.0

κ 0.41

k − ω

κ 0.41

σdo 0.125

σ∗ 0.6

σ 0.5

β∗ 0.09

β 0.0708

κ 0.41

Cw2 0.3

Spalart- Cw3 2.0

Allmaras Cv1 7.1

Cb1 0.1355

Cb2 0.622

σ 2/3

Table 2: Standard values of the closure coefficient for the k − ε, k −ω

and Spalart–Allmaras models, according to [26] [25] [24], respec-

tively.

3.3. RANS solver and computational setup390

The simulations presented in this study are con-391

ducted by using the CFD solver elsA, developed by392

ONERA [36]. We solve the 2D steady compressible393

RANS equations for perfect Newtonian gases by using394

a cell-centered finite volume approximation on struc-395

tured multi-block grids. The upwind scheme of Roe396

with second-order MUSCL extrapolation is used for ap-397

proximating the spatial fluxes. For time stepping, we398

use the first-order backward Euler scheme.399

The computational domain contains a single blade400

profile and periodic boundary conditions are applied at401



the upper and lower boundaries to simulate an infinite402

cascade. The domain extends from 0.4 chords upstream403

of the leading edge to 0.5 chords downstream the trail-404

ing edge. The top and bottom boundaries are sepa-405

rated by a distance equal to the gap between neighbor-406

ing blades, t/l = 0.59, with l the axial chord. In addi-407

tion to the periodicity conditions at the upper and lower408

boundaries, non-slip adiabatic boundary condition is ap-409

plied at the blade wall, and characteristic conditions are410

imposed at the inlet and outlet boundaries. At the in-411

let, the total pressure, enthalpy and angle of attack are412

prescribed; a constant static pressure is enforced at the413

outlet.The computational grid is composed by 200,000414

cells distributed on 12 blocks. The near-wall grid reso-415

lution leads to an average height of the first cell closest416

to the wall (in wall coordinates) such that y+ < 1.0 on417

both the suction and the pressure side of the blade. For418

all computations, we assume that the solution has con-419

verged to the steady state when the L2 norm of the resid-420

uals is reduced by five order of magnitude with respect421

to the initial value. The simulations are run in paral-422

lel on 12 cores and the typical CPU time for obtaining a423

converged solution is of the order of 20 minutes. Since a424

very large number of numerical simulations is required425

for the calibration of model coefficients using MCMC,426

the solver output for the observed data is approximated427

by means of a surrogate model, described in the next428

section.429

3.4. Surrogate modelling430

To reduce the number of expensive RANS simula-

tions involved in model calibrations, we approximate

the QoIs required in the argument of the likelihood func-

tion , (i.e. ∆(θ)) by means of surrogate models based

on Gaussian process regression. For that purpose, we

use the Gaussian Process Regression module available

in scikit − learn [37]. We select a Matern − 3/2 kernel,

whose hyperparameters are determined by optimizing

the likelihood. For that purpose, we use the L-BFGS-

B [38] optimizer available in the scipy library [39]. The

initial RANS calculations required as an input to the sur-

rogate model are distributed in the parameter space by

Latin Hypercube Sampling (LHS) [40] optimized un-

der the Maximum Projection Design criterion. More

precisely, this criterion ensures optimal space filling by

maximizing the minimal distance between points of the

LHS, for every projection in parameter sub-spaces. We

construct a separate surrogate based on 200 RANS sam-

ples for each concurrent turbulence model and each cal-

ibration scenario in Table 1, for a total of 2400 CFD

calculations, run in parallel on a multi-processor com-

puter. This is a considerable computational effort, but it

is done one for all prior to the calibration phase. For a

given model and a given scenario, the 200 samples are

used to build a surrogate for each one of the observed

QoIs involved in the likelihood function (namely, veloc-

ity, TKE and total pressure values at selected points in

the flow field, as discussed in section (3.1)). We ver-

ified the accuracy of the surrogate models by Leave-

One-Out cross-validation. For each model and scenario,

we compute the Q2
n criterion for every element ∆n of

∆ = (∆1, ...,∆N). By definition, Q2
n is defined as :

Q2
n = 1 −

1
200

∑200
i=1

(
(∆n)true

i − (∆n)pred
i

)2

Var((∆n)true)
(18)

For each model and scenario, we present in Table 3 the431

mean value of the Q2
n criterion, averaged on the N sur-432

rogate models.433



Average Q2 k − ε k − ω Spalart–Allmaras

S 1 0.976 0.991 0.975

S 2 0.967 0.968 0.965

S 3 0.995 0.997 0.970

S 4 0.996 0.985 0.994

Table 3: Average values of Q2
n for models and scenarios.

4. Results434

In this section, BMSA is used to predict two of the435

scenarios presented in section 3.1 (namely, S 2 and S 4)436

. In scenario S 2, the flow remains attached all over the437

suction side of the blade, whereas flow separation is ob-438

served in scenario S 4, which is very different from the439

other scenarios in the database and represents a chal-440

lenging configuration for assessing BMSA predictions441

far outside the training set. The BMSA results reported442

in the following are based on different ensembles of cal-443

ibration scenarios. First, a baseline BMSA model, noted444

BMSA1, is constructed by propagating the maximum-445

a-posteriori (MAP) estimates of model coefficients and446

the model posterior probabilities of [4]. Although such447

coefficients were obtained for flat plate flows, we may448

expect that the thin NACA65 V103 blades can be ap-449

proximately modelled as flat plates subject to a variable450

(mostly adverse) pressure gradient. It is then interest-451

ing to measure the capability of BMSA to predict the452

present compressor cascade before having observed any453

data for this family of configurations. In the following,454

the flat-plate scenarios are noted S XYZW , with XYZW455

the four-difit code assigned to the scenarios in [3], to456

which we refer for more information.457

Afterwards, another BMSA model, noted BMSA2,458

is developed by calibrating the RANS models against459

compressor configurations. More precisely, we cali-460

brate the models against data available for each of the461

four compressor scenarios of Sec. 3.1 and we determine462

the corresponding model evidences. Then, we construct463

BMSA models of S 2 and S 4 by using the three remain-464

ing scenarios. For instance, we use models trained on465

scenarios S 1, S 3 and S 4 to predict scenario S 2.466

Finally, a more general BMSA model, named467

BMSA3, is constructed by mixing together flat plate468

scenarios and the S 1, S 2 and S 3 NACA 65 scenarios469

and applied to the prediction of S 4.470

In all cases the smart scenario weighting of Eq. (13)471

is used to assign a priori probabilities to the scenarios472

involved in the BMSA models.473

Specifically, the error term εk in Eq. (13) is de-474

termined by computing the ||.||2 of local errors on the475

normalized velocity and total pressure profiles at the476

streamwise stations of section 3.477

4.1. Calibration results478

In order to construct a BMSA model specifically479

trained for compressor configurations, we apply the sta-480

tistical calibration framework described in section 2.1481

to infer on the parameters of the RANS models for the482

scenarios of section 3.1.483

For each model and scenario, we assign to the clo-484

sure coefficients non-informative uniform marginal dis-485

tributions priors initially ranging from 10% to 250%486

of the standard values described in Table 2. For some487

models and scenarios, these large ranges are eventually488

restricted to values preventing the CFD solver to con-489

verge.490

The hyper-parameter ση is assigned a uniform prior491

in the range [0, 1]. For illustrative purpose, we present492



in Table 4 the prior ranges for the closure coefficients of493

Spalart–Allmaras model and scenario 3.494

Closure Coefficient Lower bound Upper bound

κ 0.36 0.56

Cw2 1.0 2.4

Cw3 0.1 0.9

Cv1 6.5 18.0

Cb1 0.5 1.5

Cb2 0.06 0.16

σ 0.6 2.0

Table 4: Lower and upper bounds for the prior of the Spalart–Allmaras

closure coefficient for the scenario 3.

Figure 2a shows typical calibration results for the κ495

coefficient of the Spalart–Allmaras model. As also ob-496

served in [41], the coefficient is well informed by the497

data but is highly sensitive to the calibration scenario.498

It can be noticed that calibration may assign high prob-499

abilities to values of κ that are very different from the500

standard value 0.41, especially for off-design scenarios501

farthest from the nominal conditions. Similar results are502

obtained for other coefficients and models, not reported503

for brevity. In the next Figure 2b, we present calibra-504

tion results for the hyper-parameter ση, which is also505

well informed by the data. As described in Section 2.1,506

ση can be interpreted as a measure of model accuracy507

in the calibration scenario. We notice that for all cali-508

brations the mean of the hyper-parameter ση is smaller509

than 10%.510
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(b) Hyper-parameter ση.

Figure 2: Posterior probabilities in case of Spalart–Allmaras model:

Scenario 1 ( ), Scenario 2 ( ), Scenario 3 ( ) and Scenario

4 ( ). Priors has been chosen uniform on [0.36 , 0.56] and [0 , 1]

respectively.

4.2. BMSA prediction for S 2511

For the rest of this paper, we present BMSA pre-512

diction in blue color, with first and second standard-513

deviations in degrading shades of blue. Red color is514

reserved for the LES reference data from [1]. Black,515

green and orange colors are used respectively for the516

baseline k−ω, k− ε and Spalart–Allmaras models, with517

the nominal closure coefficients of Table 2.518

In this section we first report results of BMSA of the519



NACA65 V103 configuration at mildly off-design con-520

ditions, namely, scenario S 2. The results are discussed521

for selected velocity and total pressure profiles, repre-522

sentative of typical BMSA predictions. However, simi-523

lar considerations hold for other locations in the flow.524

We present in Figure 3 the tangential velocity profile525

at x/l = 0.99. The x-axis represents the normalized dis-526

tance to the wall yn/l, yn being the distance to the blade.527

The BMSA results are based on the three sets of scenar-528

ios described in the above. Predictions of the baseline529

RANS models are also reported for comparison. These530

exhibit significant differences, even for the present at-531

tached 2D flow. The k − ω and Spalart–Allmaras mod-532

els provide rather close predictions, in better agreement533

with the LES data than the k− ε model, which performs534

noticeably worse than the two other for this case.535

Figure 3a displays results for the BMSA1 model, i.e.536

using on-the-shelf MAP estimates of model coefficients537

calibrated on flat plates from [4]. The prediction ex-538

pectancy for this model does not yield better results than539

the best baseline model but performs much better than540

the worst one. Moreover, the prediction error bars, cor-541

responding to ±2 standard deviations, encompass rather542

well the reference data, except in the region closest to543

the wall.544

In Figure 3b we report the results for BMSA2, cali-545

brated on compressor scenarios {S 1, S 3, S 4} and applied546

to S 2. In this figure, the complete posterior distribu-547

tions are propagated through the models based on krig-548

ing surrogates of the output QoI. Propagation of the full549

posterior distributions is based on surrogate models for550

each RANS model in the mixture and each QoI, as dis-551

cussed in the above. The predictive accuracy of BMSA552

improves significantly when we consider closeby sce-553

narios for model calibrations. In particular, the mean554

prediction E [∆|S ′] is significantly better than the best555

RANS model, and the reference data are now captured556

within only one standard deviation.557

The cost of the kriging surrogate increases with the558

size of the parameter space but can be roughly estimated559

to O(10 P), with P the number of uncertain parameters.560

A way of reducing the computational overcost associ-561

ated with the propagation step is to approximate the full562

posterior distributions with MAP estimates of the co-563

efficients. Using this approximation neglects the pos-564

terior parametric uncertainty but involves only K × I565

RANS calculations using the MAP estimates for the566

coefficients. Furthermore, since the parameters are no567

longer considered as random variables in the propaga-568

tion step, the BMSA formula can be applied to any QoI569

in the output solution and not only to selected QoI and570

flow locations for which a surrogate is available. Fig-571

ure 3c reports results for BMSA2 based on the propaga-572

tion of MAP estimates of the coefficients for scenarios573

{S 1, S 3, S 4} through scenario S 2. It turns out that the574

BMSA prediction using MAP estimates is very close to575

the one using the full posteriors, both in terms of ex-576

pectancy and of standard deviation.577
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(a) MAP estimates calibrated on flat-plate [4].
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(b) Complete distributions obtained on S = {S 1, S 3, S 4}.

−0.005 0.005 0.015 0.025 0.035 0.045 0.055 0.065 0.075
yn
l

−0.1

−0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

N
or

m
.

T
an

ge
n
ti

al
ve

lo
ci

ty

(c) MAP estimates obtained on S = {S 1, S 3, S 4}.

Figure 3: Prediction of the normalized tangential velocity profile at

x/l = 0.99 on the suction side for scenario 2. LES data from Leggett et

al. [1] ( ), E
[
∆|S ′

]
±
√

Var [∆|S ′] ( ), E
[
∆|S ′

]
±2
√

Var [∆|S ′]

( ), Baseline k − ω ( ), Baseline Spalart–Allmaras ( ) and

Baseline k − ε ( ).

Figure 4 shows the variance decomposition accord-578

ing to equation 9, for each prediction of Figure 3. The579

total variance for BMSA1 is larger than for the other580

two cases, due to the greater diversity of scenarios in-581

cluded in the model. The wall-normal locations asso-582

ciated with the largest variance is close to the bound-583

ary layer edge in this case, whereas it is located in the584

near-wall region for BMSA2 predictions, either using585

full posteriors and MAP estimates. A possible expla-586

nation is that the flat-plate scenarios used in BMSA1587

mostly differ in the wake region. As a consequence, the588

calibration mostly adjusts the coefficients to fit velocity589

profiles in the outer part of the boundary layer. On the590

contrary, for NACA65 scenarios the near wall region is591

found to be the most sensitive to the RANS model.592

As expected, the within-model, within scenario vari-593

ance is strictly equal to zero for the MAP-based BMSA594

models. However, inspection of Figure 4b shows that595

that this term is also very small when propagating the596

full posteriors. The reason is that the latter are rather597

peaked (i.e. not too far from a Dirac function), since598

the model coefficients are well informed from the data.599

The residual parametric uncertainty is then negligible600

compared to the between-model, within scenario. On601

the other hand, the total variance of the MAP-based602

BMSA2 model (Figure 4c) is comparable to the one of603

the full BMSA2 or slightly larger. The discrepancy is604

due to the different probabilities assigned to the scenar-605

ios in the two cases, which are discussed below. Over-606

all, these results further support the choice of MAP es-607

timates for BMSA predictions. To complete the discus-608

sion of this figure, we also observe that the larger con-609

tribution to the variance is due to the between scenar-610

ios component. This indicates that the uncertainty as-611

sociated with the calibration of the closure coefficients612



against different datasets is larger than the uncertainty613

about the more suitable model form.614
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(a) MAP coefficients calibrated on flat-plate [4].
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(b) Complete distributions obtained on S = {S 1, S 3, S 4}.
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(c) MAP coefficients obtained on S = {S 1, S 3, S 4}.

Figure 4: Variance decomposition of prediction for the normalized

tangential velocity profile on the suction side at x/l = 0.99 for sce-

nario 2. within-model, within scenario variance, between mod-

els, within scenario variance and between scenario variance



BMSA predictions of a normalized total pressure pro-615

file in the compressor wake are presented in Figure 5.616

Results are reported again for BMSA1 and for BMSA2617

based on full posterior distributions and MAP estimates618

of the coefficients. The quantity on the x−axis (namely619

y/l) represents the normalized crossflow position, with620

the origin aligned with the trailing edge.621

For this QoI, the BMSA models exhibit a behavior622

similar to the velocity profiles. Specifically, the k − ε623

baseline model predicts a wake profile farther from the624

LES reference compared to the two other baselines.625

Second, the prediction using the BMSA1 model pre-626

dicts a wake profile relatively close to the best perform-627

ing nominal RANS model, with LES reference data628

falling within two standard deviations from the mean629

prediction. As for the velocity profile, the BMSA2630

model provides results in very good agreement with the631

reference data (Figure 5b), especially for the peak and632

the left-hand side of the profile. For the right-hand side,633

corresponding to flow coming from the suction side634

(characterized by a more challenging physics), BMSA635

still improves over the nominal models but with higher636

standard deviations than for the rest of the profile. The637

results do not change much when using MAP estimates638

instead of full posteriors. In fact, Figure 6 shows that,639

once again, the contribution of parametric uncertainty to640

the total variance is very small, which justifies the use641

of MAPs.642
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(a) MAP coefficients calibrated on flat-plate [4].
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(b) Complete distributions obtained on S = {S 1, S 3, S 4}.
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(c) MAP coefficients obtained on S = {S 1, S 3, S 4}.

Figure 5: Prediction of the normalized pressure wake profile at x/l =

1.10 for scenario 2. LES data from Leggett et al. [1] ( ), E
[
∆|S ′

]
±

√
Var [∆|S ′] ( ), E

[
∆|S ′

]
± 2
√

Var [∆|S ′] ( ),Baseline k − ω

( ), Baseline Spalart–Allmaras ( ) and Baseline k − ε ( ).
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Figure 6: Variance decomposition of prediction for the normalized

pressure wake profile at x/l = 1.10 for scenario 2 for the complete

distributions obtained on S = {S 1, S 3, S 4}. within-model, within

scenario variance, between models, within scenario variance and

between scenario variance

Finally, in Figure 7 we compare the scenario weight-643

ing for the various scenarios. Only scenarios that are as-644

signed a probability of 5% or more are shown. For each645

scenario, we also report the fraction assigned to each646

RANS model in the mixture, i.e. P(Mi|Dk, S k) P(S k)647

For BMSA1, the calibration scenarios are labelled as in648

[3]. The scenario weighting criterion automatically as-649

signs higher probabilities to scenarios corresponding to650

mixed pressure gradients (airfoil-like cases like S 2100)651

or to zero-gradient (S 1400) and mildly favorable cases652

(S 6300), which is a bit counter-intuitive. This is proba-653

bly due to the fact that model agreement for the predic-654

tion scenarios is better for regions of favorable pressure655

gradient (the left part of the blade), leading to lower er-656

rors and the higher weighting of such scenarios. For657

BMSA2, scenario weighting is little affected by the658

MAP approximation. In both cases, the scenarios are659

assigned similar probabilities, with scenarios S 1 and S 3660

being preferentially weighted with respect to S 4. This661

can be explained by the proximity of the inlet flow angle662

of S 2, S 3 and S 1. For the first two scenarios, the flow663

is qualitatively similar to S 2, which is not the case for664

S 4, as discussed in the next section. In all BMSA, the665

Spalart–Allmaras model is generally assigned the high-666

est probability, and k− ε the lowest. Using the MAP ap-667

proximation changes slightly the model evidences, and668

subsequently model weighting within each scenario, but669

the results are overall very close to the BMSA2 using670

the full posterior distributions.671
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(a) MAP coefficients calibrated on flat-plate [4]
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(b) Obtained with complete distributions on S = {S 1, S 3, S 4}.
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(c) Obtained with MAP estimates of the distributions on S =

{S 1, S 3, S 4}.

Figure 7: Distribution of p(S k) and p(Mi |Dk , S k) in case of scenario 2.

Only scenarios with probability superior to 5% are shown on Figure

7a. Each bar sums to the probability of the scenario. Each probability

of scenario is then decomposed into probabilities of models, given this

scenario. k − ε ( ), k − ω ( ) and Spalart–Allmaras ( ).
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(a) E [Pt(xi)|S 2]
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(b) Var [Pt(xi)|S 2]

Figure 8: 2-D contour of first two moments of the BMSA prediction

for normalized total pressure for scenario 2. In this case, we consid-

ered MAP estimates on scenarios S = {S 1, S 3, S 4}

A clear advantage of the MAP approximation of the672

posteriors, in addition to speeding up the prediction673

phase, is that it allows constructing a BMSA predic-674

tion for any QoI in the flow, compared to the surrogate-675

based propagation. For instance, Figure 8 shows the676

iso-contours of the mean and standard deviation of the677

total pressure field around the blade. The latter provides678

a global view of flow regions that are the most sensitive679

to the turbulence model. Based on the preceding discus-680

sion, only MAP-based BMSA models are considered in681

the following.682



4.3. BMSA prediction for S 4683

The BMSA mixture models are then applied to the684

prediction of a more challenging off-design conditions,685

i.e. the separated flow scenario S 4. We show in Fig-686

ure 9 the predictions for the tangential velocity profile687

at x/l = 0.99 on the suction side in this case. The688

BMSA1 solution is reported in Figure 9a. The solu-689

tion clearly under-estimates the size of the backward690

flow region. Nevertheless, the predicted velocity pro-691

file exhibits incipient separation and the ±2σ error bars692

encompass reasonably well the reference LES solution.693

Figure 9b reports results for BMSA2 calibrated on sce-694

narios S 1, S 2 and S 3. In this case, the mean solution695

compares poorly with the reference LES. Since BMSA2696

has been calibrated on attached scenarios, the posterior697

coefficients tend to provide even fuller velocity profiles698

than the baseline models, which already fail to predict699

flow separation, except for the baseline k−ω that under-700

estimates the size of the reversed flow. We also observe701

that, in this case, the error bars are small and do not en-702

compass the reference data. This is due to the fact that703

the models in the mixture strongly agree on the wrong704

solution. This result shows the importance of including705

sufficientlu diverse scenarios in BMSA models. In the706

present BMSA, predictions are based on models with707

similar characteristics (linear eddy viscosity), further-708

more calibrated on similar attached flow scenarios. As a709

consequence, the resulting BMSA model is very good at710

predicting flow scenarios similar to the calibration ones711

but generalizes badly to a different flow, leading to less712

accurate results than BMSA1. In Figure 9c we present713

results for BMSA3, which aggregates together the flat714

plate scenarios and the NACA65 scenarios. Increasing715

the diversity of scenarios in the model mixture has a716

beneficial effect on the solution, which is not worst than717

the baseline RANS models in the average, but provides718

an estimate for the error bars. The reference data are719

captured within approximately two standard deviations720

from the average.721
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(a) MAP estimates calibrated on flat-plate [4].
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(b) MAP estimates obtained on S = {S 1, S 2, S 3}.
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(c) MAP estimates obtained on S =

{S 1400, .....S 2134, S 1, S 2, S 3}.

Figure 9: Prediction of the tangential velocity profile at x/l = 0.99 on

the suction side for scenario 4. LES data from Leggett et al. [1] ( ),

E
[
∆|S ′

]
±
√

Var [∆|S ′] ( ), E
[
∆|S ′

]
±2
√

Var [∆|S ′] ( ), Base-

line k−ω ( ), Baseline Spalart–Allmaras ( ) and Baseline k−ε

( ).

The scenario probabilities are reported in Figure 10722

for the three BMSA. Once again we focus only on sce-723

narios with a probability of 5% or higher. For BMSA1724

(10a), the most influential scenario is S 1400, i.e. the725

zero pressure gradient flat plate, probably due to strong726

model agreement in the upstream portion of the flow.727

Interestingly, the BMSA now also assigns significant728

weights to S 1100 and S 2500, characterized by mildly ad-729

verse pressure gradients, and S 1200 which is representa-730

tive of a ”diverging channel, with eventual separation”.731

Such scenarios were not assigned any significant proba-732

bility in the S 2 solution. For BMSA2, the highest prob-733

ability is assigned to S 3, followed by S 1 and finally S 2.734

This shows that the scenario weighting criterion tends735

to promote scenarios with inlet angles closest to the736

one of the prediction scenario. Finally, BMSA3 (Fig-737

ure 10c) assigns the higher weights to the mixed and738

adverse pressure gradient scenarios from BMSA1 and739

to the NACA65 scenarios.740
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(a) MAP coefficients calibrated on flat-plate [4].
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(b) MAP estimates obtained on S = {S 1, S 2, S 3}.
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(c) MAP estimates obtained on S =

{S 1400, .....S 2134, S 1, S 2, S 3}.

Figure 10: Distribution of p(S k) and p(Mi |Dk , S k) in case of scenario

4. Only scenarios with probability superior to 5% are shown on Fig-

ures 10a and 10c. Each bar sums to the probability of the scenario.

Each probability of scenario is then decomposed into probabilities of

models, given this scenario. k−ε ( ), k−ω ( ) and Spalart–Allmaras

( ).

Scenario 2 Scenario 4

Ut,RMS Pt,RMS Ut,RMS Pt,RMS

Baseline 0.728 0.492 0.797 0.345

Flat plate 0.710 0.448 0.567 0.232

NACA65

configuration
0.275 0.183 1.199 0.554

NACA65

and flat plate
0.561 0.356 0.843 0.372

Table 5: Root-Mean Square values for the baseline models (averaged

value for the 3 considered models), BMSA with models calibrated on

flat plates [4], BMSA with models calibrated on NACA65 configura-

tions and BMSA with models calibrated on NACA65 and flat plates

together.

5. Conclusions741

A recently developed Bayesian framework is as-742

sessed for the quantification and reduction of modelling743

uncertainties in RANS-based simulations of turboma-744

chinery flows. In this framework, modelling uncertain-745

ties are treated in terms of probabilities. Specifically,746

the closure coefficients associated with RANS models747

are treated as random variables, which are assigned an748

a priori probability distribution based on their nominal749

values and expert judgement. Bayesian inference from750

observed data for selected Quantities of Interest (QoI) is751

used to reduce the uncertainty ranges of the coefficients,752

leading to a posteriori distributions. The latter can be753

propagated through the model by means of an Uncer-754

tainty Quantification (UQ) method to obtain predictions755

with quantified uncertainty of a new flow. Additionally,756

the proposed framework leverages information from a757

set of concurrent RANS models and a set of concurrent758

calibration scenarios to build a mixture model based on759

Bayesian-Model-Scenario-Averaging (BMSA). BMSA760



allows to account to some extent for uncertainties asso-761

ciated with the mathematical form of the RANS model762

and for uncertainties associated with the choice of flow763

scenarios for model calibration in view of the stochastic764

prediction of a new flow not included in the calibration765

set.766

BMSA models were constructed by averaging three767

linear-eddy viscosity models widely used for industrial768

applications, namely, Spalart–Allmaras, Wilcox’ k − ω769

and Launder–Sharma k − ε. A baseline mixture model,770

named BMSA1, was constructed by using on-the-shelf771

sets of model coefficients calibrated for fourteen turbu-772

lent flat-plate flow scenarios corresponding to different773

external pressure gradients [3, 4]. A second model,774

named BMSA2, was specifically tailored for the tar-775

geted flow configuration, i.e. the compressor cascade776

NACA65 V103. In this case, each RANS model in777

the mixture was calibrated against reference LES data778

[1, 2] available for 3 off-design scenarios and validated779

against data available for a fourth scenario, not included780

in the calibration set. The main parameter differen-781

tiating the scenarios is the flow inlet angle. The re-782

sulting posterior distributions of the model coefficients783

assign high probability to radically different values of784

the coefficients than the nominal values. The results785

show that, even if BMSA1 was not calibrated for the786

flows of interest, the results obtained for a mildly off-787

design and a highly off-design scenario are globally not788

worst than the nominal models and the estimated error789

bars encompass rather well the reference solution. On790

the other hand, the compressor-specific BMSA2 model791

significantly improves the predictions compared to the792

baseline RANS models when it is used to predict sce-793

nario characterized by an intermediary inlet angle with794

respect to those included in the BMSA. Additionally,795

the predicted error bars encompass the reference data.796

However, this strategy may leads to overfitting prob-797

lems. When applied to a scenario with operating con-798

ditions leading to radically different flow features com-799

pared to the training scenarios, BMSA provides less ac-800

curate predictions than the baseline models. In addition,801

the error bars are strongly underestimated due to the in-802

sufficient diversity of models and scenarios included in803

the mixture.804

Since it is difficult to select a priori the most suit-805

able scenarios to be included in the BMSA based on806

pure expert judgement (for instance, one could argued807

that flat plate scenarios are a priori less suitable than808

the NACA65 scenarios to predict another NACA65 flow809

condition), it is very important to include in the mixture810

sufficiently diverse flow scenarios and RANS model to811

mitigate overfitting and avoid underestimation of vari-812

ance. For instance, predictions of the strongly off-813

design scenario based on a mixture of the flat plat and814

NACA65 scenarios preserved or improved the average815

prediction with respect to the baseline RANS models816

and delivered sufficiently large error bars to encompass817

the reference data.818

A serious limitation to the number of models and819

scenarios in a BMSA is the computational cost of the820

stochastic prediction. In fact BMSA combines stochas-821

tic predictions of a new flow scenarios from K several822

models using posterior pdf of the closure coefficients823

calibrated for I flow scenarios. Each stochastic predic-824

tion involves an UQ calculation, corresponding to a high825

number (O(100) or more, according to the UQ method826

in use and to the number of uncertain coefficients), lead-827

ing to an unacceptably high number of costly determin-828

istic RANS simulations, O(100 K×I). A first method for829

drastically reducing the required number of determinis-830



tic simulations, first proposed in [4] and further assessed831

in this work, is to approximate the posterior pdf by832

Dirac pdf based on Maximum A Posteriori (MAP) es-833

timates of the closure coefficients. This approximation834

is shown to affect weakly the quality of the BMSA pre-835

dictions, both in terms of mean and variance, while re-836

ducing the number of deterministic simulations to only837

K × I, i.e. nine deterministic simulations in the present838

application. All the required simulations are indepen-839

dent and can be run in parallel and the BMSA intervenes840

as a post-processing step. Since MAP-based BMSA841

does not rely on any surrogate model for the UQ propa-842

gation step, it can be use to extract potentially any QoI843

at any point in the flow, provided that such QoI is com-844

putable with the baseline models in the mixture (for in-845

stance, a BMSA prediction of a QoI like the turbulent846

kinetic energy k or the turbulent dissipation ε can be ob-847

tained only if all the models in the mixture are at least848

two-transport equation models).849

Further reduction of the computational cost can be850

achieved by using alternative criteria to assign weights851

to the BMSA scenarios. In this work, we used a crite-852

rion based on model agreement in the prediction sce-853

nario derived in [3, 4]. This criterion has proved to854

be effective in assigning high weights to scenarios in855

the mixture that are more similar to the prediction case.856

However, this criterion requires computing the new flow857

with the K models using the coefficient from all of the858

I scenarios, even when many of them are in the end as-859

signed a very low probability. Alternative criteria have860

been proposed in the literature (e.g. [27]) that allow861

selecting the more suitable scenarios a priori, thus ex-862

cluding from the beginning scenarios that are affected a863

probability below a given threshold and finally reduc-864

ing the number of deterministic calculations required865

for the prediction of a new flow. The development866

and assessment of smarter and computationally efficient867

scenario-selection criteria will make the object of fur-868

ther research.869
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