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Extreme nonlinear dynamics of cantilever beams: effect of gravity
and slenderness on the nonlinear modes
Marielle Debeurrea,∗, Aurélien Groleta and Olivier Thomasa

aArts et Métiers Institute of Technology, LISPEN, HESAM Université, 8 boulevard Louis XIV, Lille, 59046, France

A B S T R A C T

In this paper, the effect of gravity on the nonlinear extreme amplitude vibrations of a slender,
vertically-oriented cantilever beam is investigated. The extreme nonlinear vibrations are modeled
using a finite element discretization of the geometrically exact beam model solved in the
frequency domain through a combination of harmonic balance and a continuation method for
periodic solutions. The geometrically exact model is ideal for dynamic simulations at extreme
amplitudes as there is no limitation on the rotation of the cross-sections due to the terms
governing the rotation being kept exact. It is shown that the very large amplitude vibrations of
dimensionless beam structures depend principally on two parameters, a geometrical parameter
and a gravity parameter. By varying these two parameters, the effect of gravity in either a
standing or hanging configuration on the natural (linear) modes as well as on the nonlinear modes
in extreme amplitude vibration is studied. It is shown that gravity, in the case of a standing
cantilever, is responsible for a linear softening behavior and a nonlinear hardening behavior,
particularly pronounced on the first bending mode. These behaviors are reversed for a hanging
cantilever.

1. Introduction
This paper considers the extreme amplitude vibrations of cantilever beams with a focus on two particular effects:

the influence of a gravitational field and that of the geometry of the cantilever, namely, its slenderness. Slender beam
structures are particularly susceptible to large amplitude vibrations because of the thinness of their cross-section, which
leads to a low bending stiffness and occasions large amplitude transverse vibrations for only moderate input forces.
Moreover, in the special case of clamped-free boundary conditions, there is no restriction of the in-plane displacements
(as in the case of a clamped-clamped beam, for instance) and, therefore, the oscillations can be extreme, especially near
the first resonance of the structure. For example, the free end of the beam can be easily subjected to more than half
of a complete turn, even reaching a state of bending “backwards” beyond the fixed end (see Fig. 4(a) and [1, 2, 3, 4]).
At large amplitudes of vibration, so-called geometrical nonlinearities (trigonometric terms related to the cross-section
rotation) become consequential. Although at first glance the oscillations in such cases may seem highly complex, using
the concept of nonlinear modes, it is possible to characterize the vibrations very easily in terms of oscillation frequency
and mode shapes. The purpose of this paper, then, is to address the effect of both gravity and the beam geometry on
the nonlinear modes of cantilever beams, up to extreme amplitudes of vibration.

Past works in the literature on cantilever beam mechanics have investigated the effect of gravity on their static and
dynamic behavior. In statics, Greenhill analyzed more than a century ago in [5] the point at which a tree, modeled as a
“heavy column” cantilever, would buckle under its own weight, a phenomenon known as self-buckling. In dynamics,
additional studies have investigated the influence of gravity on the free vibration of vertical cantilevers. An early study
on the topic is found in the work of Paidoussis and Des Trois Maisons [6], who studied the influence of gravity on
the free vibration of damped vertical cantilevers and recovered the self-buckling behavior described in [5]. In [7],
Schäfer computed the effect of gravity on the eigenfrequencies of the first five modes of hanging Euler-Bernoulli
cantilevers using a closed-form approximation based on the Ritz-Galerkin method for aerospace applications. The
results of [7] were confirmed by the work of Yokoyama [8], where the eigenvalues were computed based on a finite
element discretization of vertically hanging Timoshenko beams. Other studies on the free vibration of gravity-loaded

∗Corresponding author
marielle.debeurre@ensam.eu (M. Debeurre); aurelien.grolet@ensam.eu (A. Grolet); olivier.thomas@ensam.eu (O.

Thomas)
ORCID(s): 0000-0002-4427-7584 (M. Debeurre); 0000-0001-7240-5259 (O. Thomas)



beams include the work of Naguleswaran [9, 10] and Bokaian [11, 12] for Euler-Bernoulli-type cantilever beams,
Abramovich [13] for composite Timoshenko-style hanging cantilevers and Xi et al. [14] for Rayleigh-type cantilevers.
Naguleswaran, Bokaian and Xi et al. derived closed-form approximations of the natural frequencies of gravity-loaded
cantilevers, while Abramovich estimated the eigenproblem using a Galerkin approach. In addition to these, Hijmissen
and van Horssen [15] derived a closed-form approximation of the eigenfrequencies based on the linearized equations
of motion of a vertical uniform Timoshenko cantilever using the method of multiple scales. This linear approximation
is valid in particular for small effects of gravity. Furthermore, Virgin et al. experimentally investigated the influence
of gravity on vertical cantilevers in [16, 17] and, most importantly, validated experimentally in [17] the influence of
gravity on the eigenfrequencies (e.g. Fig. 2 in [14]) of the first four modes.

In all of these works, the primary interest was to investigate the influence of gravity on the linear eigenfrequencies
of the vertical cantilevers. However, very little investigation has been done to date on the effect of gravity on the
nonlinear dynamics of vertical cantilevers, especially at extreme amplitudes of vibration, which is the present aim
of this paper. Santillan et al. derived an analytical perturbation approximation based on the elastica model for the
first nonlinear mode of a standing cantilever including self-weight and compared the results with numerical finite
difference results [18]. In [18], the authors also compared their backbone approximations to the analytical expression
for the amplitude-vs-frequency relationship of cantilever beams derived by Luongo et al. [19], though this work did
not include the effect of gravity. Finally, the recent work of Farokhi et al. [20] on the parametric response of cantilever
beams at very large amplitudes of displacement discussed the strong influence of gravity on the nonlinear dynamic
response of the system.

An appropriate beam model should be selected in order to properly capture the geometrical nonlinearities at very
large amplitudes of vibration. In this paper, a finite element discretization of the geometrically exact beam model (also
known as the Reissner-Simo beam model [21, 22, 23, 24, 25]), based on Timoshenko kinematics of the cross-section,
is used. The advantage of this model is that the geometrical nonlinearities are kept exact without any truncation or
linearization, a strong advantage over other nonlinear models that break down at high amplitudes when the rotation
of the cross-section becomes large. An example of the latter is the widely-used inextensible beam model of Crespo da
Silva et al. [26, 27], where the nonlinearities expanded in Taylor series were truncated at order three; this truncation
begins to break down when the rotation of the cross-section nears or exceeds 𝜋∕4 rad. By contrast, the geometrically
exact model remains exact at any amplitude of rotation, even beyond 𝜋 rad, which is extreme in a standard vibration
test.

The discretized geometrically exact beam model is then solved in the frequency domain using a combination of
the harmonic balance method (HBM) and numerical continuation based on the asymptotic numerical method (ANM)
to compute periodic solutions, a process developed in many previous works [28, 29, 30, 31, 32]. Although many
works on the modeling of flexible beam structures using the geometrically exact model involve time domain strategies
to solve the system [33, 34, 35, 36, 37] (as in commercial finite element codes), a solving technique based in the
frequency domain has certain advantages. Solving in the frequency domain targets the steady-state of the periodic
oscillations under harmonic forcing without needing to manage time steps or transient oscillations, and also allows for
easy bifurcation detection and stability analysis [32, 38]. In this way, frequency domain strategies can target various
complex nonlinear vibratory phenomena such as bifurcations, instabilities, energy transfer between modes (internal
resonances) [39], quasi-periodic or chaotic responses [40, 41], etc. that enrich the overall nonlinear dynamic analysis.
Another set of works in the literature also used the geometrically exact model solved in the frequency domain to
compute the dynamics of flexible cantilever beams [2, 42] and later validated this model with experimental results,
notably with the weight of the cantilever incorporated into the equations of motion in [42].

In this paper, we investigate the effects of gravity in both the linear and nonlinear regimes. For the latter, we are
particularly interested in the effect of gravity on the nonlinear modes. Nonlinear modes provide a useful framework for
understanding nonlinear vibrations as they constitute the skeleton of the nonlinear resonance pattern and can be useful
in obtaining accurate reduced order models. Nonlinear modes are explicitly defined as families of periodic solutions
of the system in free and undamped vibration [43], or as invariant manifolds of the phase space [38], both definitions
being equivalent. In a way analogous to the eigenfrequencies and mode shapes in the linear regime, nonlinear modes
are characterized by oscillation frequencies and mode shapes, which are dependent on the amplitude of the motion due
to the presence of the nonlinearities, a point on which this article especially focuses in order to investigate the effect
of gravity.

This paper is divided into five sections: in Section 2, the governing equations of motion are presented, including de-
tails on incorporation of the gravity terms. Section 3 discusses the effects of the gravity on the linear eignefrequencies,
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Figure 1: Cantilever beam orientations with rectangular cross-section: (a) standing configuration, (b) hanging configuration.

including a comparison to the work of Hijmissen and van Horssen [15]. The nonlinear effects are treated in Sections 4
and 5, with emphasis on computation of the nonlinear modes. Finally, the paper ends in Section 6 with an analogy to
a simple pendulum system in order to provide a more physical interpretation of the effect of gravity on the cantilever
system.

2. Governing equations
In this section, the equations of motion and their finite element discretization are presented. Based on a previous

work [44], the equations are here adapted to the case of a weighted cantilever. Within this framework, we begin by
considering a straight cantilever beam of length 𝐿 oriented vertically with respect to the direction of gravity, as shown
in Fig. 1. Two orientations of the cantilever beam are equally considered: that of a standing cantilever, with the free
end at the top of the beam (Fig. 1(a)), and that of a hanging cantilever, with the free end at the bottom (Fig. 1(b)).

2.1. Beam model
Based on Timoshenko beam kinematics, it is assumed that any cross-section undergoes a rigid-body transformation

that may be arbitrarily large. Considering that the undeformed centerline of the beam is aligned with the 𝐞𝑋-direction
and that the motion of the beam is restricted to the plane (𝐞𝑋 , 𝐞𝑌 ) of a global basis (𝐞𝑋 , 𝐞𝑌 , 𝐞𝑍 ), the displacement field
of any point in the cross-section at location 𝑥 along the beam in the reference (undeformed) configuration is written
[44]:

𝐮(𝑥, 𝑦, 𝑡) = [𝑢(𝑥, 𝑡) − 𝑦 sin 𝜃(𝑥, 𝑡)] 𝐞𝑋
+ [𝑤(𝑥, 𝑡) + 𝑦 (cos 𝜃(𝑥, 𝑡) − 1)] 𝐞𝑌 , (1)

where (𝑥, 𝑦) are the coordinates of the point of the beam in the reference configuration, 𝑡 is the time, 𝑢(𝑥, 𝑡) and 𝑤(𝑥, 𝑡)
represent, respectively, the axial and transverse displacements fields and 𝜃(𝑥, 𝑡) is the total rotation of the cross-section,
including any shearing (see Fig. 1).

The strains are defined by the Green-Lagrange strain tensor, to which a consistent linearization is applied; in this
process, the part of the strains relating to local strains is linearized while the part relating to rigid-body rotation is kept
exact (see [44] for more details). It is appropriate in cases where the local strains remain fairly small, as is true for our
case of a very thin, slender beam structure, even for extremely large rotations of the cross-section. The strains can then



be written:

𝑒 = (1 + 𝑢′) cos 𝜃 +𝑤′ sin 𝜃 − 1, (2a)
𝛾 = 𝑤′ cos 𝜃 − (1 + 𝑢′) sin 𝜃, (2b)
𝜅 = 𝜃′, (2c)

with 𝑒 and 𝛾 the axial and shear strains, respectively, and 𝜅 the beam curvature, and where ◦′ = 𝜕◦∕𝜕𝑥.
Following the derivations in [44], the strong form of the equations of motion are written:

⎧

⎪

⎨

⎪

⎩

𝜌𝐴�̈� = (𝑁 cos 𝜃 − 𝑇 sin 𝜃)′ + 𝑛,
𝜌𝐴�̈� = (𝑁 sin 𝜃 + 𝑇 cos 𝜃)′ + 𝑝,
𝜌𝐼�̈� = 𝑇 (1 + 𝑒) −𝑁𝛾 +𝑀 ′ + 𝑞,

(3a)
(3b)
(3c)

with the generalized constitutive laws:

𝑁 = 𝐸𝐴𝑒, 𝑇 = 𝑘𝐺𝐴𝛾, 𝑀 = 𝐸𝐼𝜃′, (4)

where 𝜌, 𝐸,𝐺 are the density, Young’s modulus and Coulomb’s (shear) modulus, respectively, of the material, assumed
homogeneous and isotropic, 𝐴 and 𝐼 are, respectively, the area and second moment of area of the cross-section and 𝑘 is
the shear correction factor that accounts for the non-uniformity of shear stresses in the cross-section. The internal forces
are denoted by 𝑁, 𝑇 and 𝑀 , the axial force, shear force and bending moment, respectively. They are linearly-related
to the strains according to a linear Kirchhoff-Saint-Venant constitutive law [45], which remains valid as long as the
strains are small. The external forcing appears within 𝑛, 𝑝 and 𝑞, which are, respectively, the axial force, transverse
force and bending moment per unit length. Notice in Eqs. (3) the geometrical nonlinearities sin 𝜃 and cos 𝜃 governing
the rotation of the cross-section, which are kept fully exact in the geometrically exact beam model.

For the cantilever beam under consideration, the boundary conditions are such that one end of the beam (at 𝑥 = 0)
is fixed and the other free (at 𝑥 = 𝐿), written explicitly as:

𝑢 = 𝑤 = 𝜃 = 0, at 𝑥 = 0, (5a)
𝑁 = 𝑇 = 𝑀 = 0, at 𝑥 = 𝐿. (5b)

2.2. Dimensionless equations and independent parameters
The weight of the beam intervenes as a constant force in the direction of the gravitational acceleration vector.

For the sake of this derivation, we choose as our reference configuration the standing beam (Fig. 1(a)), and thus the
gravitational acceleration is written 𝐠 = −𝑔𝐞𝑋 . Since 𝑛, 𝑝 and 𝑞 are expressed in material coordinates, gravity simply
leads to an axial force 𝑛 = −𝜌𝐴𝑔.

To better understand the influence of the gravitational field on the beam equations (3) and to obtain independent
parameters of the problem, it is convenient to render the system dimensionless. To do so, the system is normalized by
injecting the following dimensionless parameters into the equations:

�̄�, �̄� = 1
𝐿
(𝑢,𝑤), �̄� = 𝑥

𝐿
, 𝑡 = 𝑡

𝐿2

√

𝐸𝐼
𝜌𝐴

, �̄� = 𝐿2
√

𝜌𝐴
𝐸𝐼

𝜔 (6a)

�̄�, �̄� , 𝑞 = 𝐿2

𝐸𝐼
(𝑁, 𝑇 , 𝑞), �̄�, �̄� = 𝐿3

𝐸𝐼
(𝑛, 𝑝), �̄� = 𝐿

𝐸𝐼
𝑀, (6b)

where ̄( ) indicates a dimensionless parameter and𝐿 is a characteristic length, chosen here as the length of the cantilever.
Injecting these dimensionless parameters into Eqs. (3) and (4) results in the following dimensionless equations of
motion:

⎧

⎪

⎨

⎪

⎩

̈̄𝑢 = (�̄� cos 𝜃 − �̄� sin 𝜃)′ − 𝛼,
̈̄𝑤 = (�̄� sin 𝜃 + �̄� cos 𝜃)′ + �̄�,

𝜂�̈� = �̄� (1 + 𝑒) − �̄�𝛾 + �̄� ′ + 𝑞,

(7a)
(7b)
(7c)



with:

�̄� = 𝑒∕𝜂, �̄� = 𝛾∕𝜇, �̄� = 𝜃′. (8)

It can be seen in the above equations that the system depends only on three independent parameters: 𝜂, 𝜇 and 𝛼,
defined as:

𝜂 = 𝐼
𝐴𝐿2

, 𝜇 = 𝐸𝐼
𝑘𝐺𝐴𝐿2

=
2(1 + 𝜈)𝜂

𝑘
, 𝛼 =

𝜌𝑔𝐴𝐿3

𝐸𝐼
=

𝜌𝑔𝐿
𝐸𝜂

, (9)

where 𝜈 represents the material Poisson’s ratio, with, for a homogeneous isotropic material, 𝐺 = 𝐸∕[2(1 + 𝜈)].
Rewriting 𝜂 for the case of a rectangular cross-section as:

𝜂 = 𝐼
𝐴𝐿2

=
𝑏ℎ3∕12
𝑏ℎ𝐿2

= 1
12

( ℎ
𝐿

)2
, (10)

with ℎ the thickness of the cross-section and 𝑏 the width, 𝜂 can be more easily interpreted as a slenderness parameter:
the thinner the beam, i.e. the smaller the thickness-to-length ratio ℎ∕𝐿, the smaller the 𝜂. The second parameter, 𝜇,
represents the ratio between the bending stiffness of the beam and its shear stiffness, and is entirely related to the
Timoshenko kinematics. In the case of Euler-Bernoulli kinematics, the shear stiffness would be infinite, leading to
𝜇 = 0 and 𝛾 = 0. For a homogeneous and isotropic material, 𝜇 is a function of 𝜂, as shown above. For the special case
of slender beams, both 𝜂 and 𝜇 are very small (see Tab. 1).

Table 1
Thickness to length (ℎ∕𝐿) ratio corresponding to different values of 𝜂 for a rectangular cross section and
𝜇 = 2(1 + 𝜈)𝜂∕𝑘, with 𝑘 = 5∕6 and 𝜈 = 0.3.

𝜂 = 1
12

(

ℎ
𝐿

)2
ℎ∕𝐿 𝜇

2 ⋅ 10−4 0.0490 ≃ 1∕20.4 6.24 ⋅ 10−4
1 ⋅ 10−4 0.0346 ≃ 1∕28.9 3.12 ⋅ 10−4
5 ⋅ 10−5 0.0245 ≃ 1∕40.8 1.56 ⋅ 10−4
1 ⋅ 10−5 0.0110 ≃ 1∕91.3 3.12 ⋅ 10−5
1 ⋅ 10−6 0.0035 ≃ 1∕289 3.12 ⋅ 10−6
1 ⋅ 10−7 0.0011 ≃ 1∕913 3.12 ⋅ 10−7
1 ⋅ 10−8 0.0003 ≃ 1∕2887 3.12 ⋅ 10−8

Whereas parameters 𝜂 and 𝜇 are common to any structure modeled as an assembly of beams (see e.g. [4]), the effect
of gravity appears solely in the equations through a new parameter, 𝛼, that can be interpreted as the ratio between the
effect of the restoring force due to gravity and the one due to the bending stiffness. This parameter was previously
introduced in the literature to explain the buckling of a standing cantilever under its own weight when exceeding the
critical value 𝛼crit = 7.837, as shown in [5].

Referring back to the definition of the gravitational acceleration vector 𝐠 and Fig. 1, it can be seen that Eqs. (7)
apply also to the hanging beam configuration simply by changing the sign of 𝑔 and, thus, the sign of 𝛼. Consequently,
a standing cantilever configuration is obtained when 𝛼 > 0 and a hanging cantilever when 𝛼 < 0 as shown in Fig. 1;
both cases will be considered in Sections 3, 4 and 5.

Since the effect of gravity on the mechanics of the beam depends solely on the magnitude of 𝛼, it is worth analyzing
in more detail the parameters that govern it. Returning to its definition in Eq. (9), it can be seen that 𝛼 naturally increases
linearly with the gravitational acceleration 𝑔. It also depends on the material characteristics of the beam through
𝜌 and 𝐸, which is logical since 𝛼 is related to the ratio between the weight of the beam and its bending stiffness.
Finally, 𝛼 depends on the geometry of the beam through 𝐿 and 𝜂, indicating that the effect of gravity increases as
the beam becomes more slender (i.e. as 𝜂 decreases). For this reason, it is important to investigate both the effects of
gravity (through 𝛼) and the slenderness (through 𝜂) on the beam mechanics. In this study, only slender beams will be
considered, i.e. with very small 𝜂. We consider a maximum threshold ratio ℎ∕𝐿 of around 1∕20 for the beam to be
considered very slender, meaning that 𝜂 ≤ 2 ⋅ 10−4 (see Tab. 1). The values of 𝜂 selected in this paper are chosen
accordingly, ranging between 𝜂 ∈ [10−8, 2 ⋅ 10−4].



As seen above, 𝜇 conditions the shear stiffness of the beam and is very small for slender beams, being proportional
to 𝜂. Apart from 𝜂, its value is governed by the Poisson’s ratio 0 ≤ 𝜈 ≤ 0.5 and the shear coefficient 𝑘. The value of 𝑘
itself depends on 𝜈 along with the geometry of the cross-section. It may be computed based on an energetic equivalence
and roughly takes values between 0.8 and 0.9 (for rectangular cross-sections, 𝑘 = 5∕6 ≃ 0.833 ) [46, 47, 48]. However,
since only slender beams are considered in this article, the effect of shearing is, in fact, negligible and therefore virtually
no difference between Timoshenko and Euler-Bernoulli kinematics is noticed. Consequently, the effect of variations
in 𝜇 are not considered in what follows (values of 𝜈 = 0.3 and 𝑘 = 1 have been used in the simulations). Instead, we
consider that the principal parameters governing the behavior of the weighted cantilever are simply 𝜂 and 𝛼. Additional
analysis justifying this choice and further highlighting the minimal influence of shearing for the case of very slender
beams is presented in Appendix A.

2.3. Finite element geometrically exact formulation
The problem under consideration here has been fully defined by Eqs. (3), (4) and (5). It is highly nonlinear due to

the geometrical nonlinearities (the sin 𝜃 and cos 𝜃 terms) and has no closed-form solution in nonlinear dynamics. An
approximate analytical solution, valid up to moderate rotations of the cross-section, can be derived based on Euler-
Bernoulli kinematics and assuming the condition of inextensibility and a third-order truncation of the nonlinearities
(see Appendix C). However, as we concern ourselves more with extreme amplitude vibrations, we rely instead on a
finite element (FE) method to discretize the spatial part of the problem. An alternate approach would have been to keep
the model of Appendix C exact (i.e. without the third-order truncation), rewriting it solely as a function of the rotation
of the cross-section 𝜃(𝑥, 𝑡) and solving it via discretization on a mode shape basis, as done in [2, 1].

The problem is discretized using standard finite elements with linear shape functions, as done previously in
[4, 44] without incorporating the effect of gravity, which is here added in. The beam is discretized into 𝑁𝑒 two-node
Timoshenko beam elements [49], each of length 𝐿𝑒, which could depend on 𝑥 if the mesh is not uniform. The ( )𝑒
superscript is used to differentiate quantities related to the individual elements from their global counterparts. For each
node of the mesh, there are three degrees of freedom

(

𝑢𝑖, 𝑤𝑖, 𝜃𝑖
)

, representative of the axial displacement, transverse
displacement and rotation of the cross-section, respectively. For each element, the degrees of freedom at each of the
two nodes are gathered in the vector 𝐪𝑒:

𝐪𝑒 =
[

𝑢1 𝑤1 𝜃1 𝑢2 𝑤2 𝜃2
]T , (11)

which relates to the displacements interpolated over the element ∀𝑥 ∈ [0, 𝐿𝑒] according to:

⎡

⎢

⎢

⎣

𝑢𝑒(𝑥, 𝑡)
𝑤𝑒(𝑥, 𝑡)
𝜃𝑒(𝑥, 𝑡)

⎤

⎥

⎥

⎦

= 𝐍(𝑥)𝐪𝑒(𝑡), (12)

where 𝐍 is the matrix of shape functions for each element, defined as:

𝐍(𝑥) =
⎡

⎢

⎢

⎣

𝑁1(𝑥) 0 0 𝑁2(𝑥) 0 0
0 𝑁1(𝑥) 0 0 𝑁2(𝑥) 0
0 0 𝑁1(𝑥) 0 0 𝑁2(𝑥)

⎤

⎥

⎥

⎦

. (13)

Since linear shape functions are used, 𝑁1 and 𝑁2 take the form:

𝑁1(𝑥) = 1 − 𝑥
𝐿𝑒 , 𝑁2(𝑥) =

𝑥
𝐿𝑒 . (14)

The equations of motion of the finite element model are derived from the principle of virtual work, which is written,
for all virtual displacement 𝛿𝐮:

𝛿𝑊𝑎 + 𝛿𝑊𝑖 = 𝛿𝑊𝑒, (15)

with 𝛿𝑊𝑎 the inertial, 𝛿𝑊𝑖 the internal and 𝛿𝑊𝑒 the external virtual works. Integrating Eq. (12), the virtual work terms
are discretized in order to define the elementary mass matrix, the internal and external force vectors and any other
elementary quantities for a single element (the explicit details of which, omitted here, are outlined in [4]).



The effect of gravity is introduced as an applied force in the external virtual work component 𝛿𝑊𝑒, which is written:

𝛿𝑊 𝑒
𝑒 = ∫𝑉 𝑒

(𝛿𝐮)T𝐛 d𝑉 = ∫

𝐿𝑒

0

(

𝛿𝑢 𝛿𝑤 𝛿𝜃
)

⎛

⎜

⎜

⎝

𝑛
𝑝
𝑞

⎞

⎟

⎟

⎠

d𝑥, (16)

where 𝑛(𝑥, 𝑡), 𝑝(𝑥, 𝑡) and 𝑞(𝑥, 𝑡) correspond to the distributed axial force, transverse force and bending moment,
respectively, as in Eqs. (3), and where 𝐛 is the vector of body forces. As explained in Section 2.2, gravity appears
in the axial direction as 𝑛 = −𝜌𝐴𝑔, 𝑝 = 𝑞 = 0, which, integrating Eq. (12) into (16), leads to:

𝛿𝑊 𝑒
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⎦

d𝑥
⎞

⎟

⎟

⎠

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝐟𝑒g

, (17)

with:

𝐟𝑒g = −1
2
𝜌𝐴𝑔𝐿𝑒 [1 0 0 1 0 0

]T . (18)

Following this, the expressions for the elementary quantities are assembled for the entire structure according to
traditional finite element assembly procedures. Formally, the problem can be written:

𝐌�̈� + 𝐃�̇� + 𝐟int(𝐪) = 𝐟g + 𝐟ext , (19)

where 𝐪 is the column vector containing all degrees of freedom 𝑢𝑖, 𝑤𝑖 and 𝜃𝑖, 𝑖 ∈ [1, 𝑁] with 𝑁 ∈ ℕ the number of
nodes, 𝐌 is the mass matrix of size 3𝑁 ×3𝑁 , 𝐟int(𝐪) is the internal force vector, 𝐟g is the gravitational force vector and
𝐟ext is the external force vector (housing all external forces except gravity), all three of size 3𝑁 × 1. The geometrical
nonlinearities sin 𝜃𝑖 and cos 𝜃𝑖 appear in the internal force vector 𝐟int , the full expression of which is found in [4]. A
linear damping term, with the damping matrix 𝐃 of size 3𝑁×3𝑁 , is also introduced for the sake of generality, although
this term is not used in what follows since we focus on free, undamped vibrations. Finally, considering the fixed-free
boundary conditions defined by Eqs. (5), a null value for degrees of freedom (𝑢,𝑤, 𝜃) is enforced at the node located
at 𝑥 = 0.

2.4. Numerical solving and type of problems considered
As explained in the introduction, in this study we focus primarily on computation of the nonlinear modes of the

system under the influence of gravity. Consequently, we consider the free and undamped problem associated with
Eq. (19), namely:

𝐌�̈� + 𝐟int(𝐪) − 𝐟g = 𝟎. (20)

The nonlinear modes are here computed by continuation of periodic solutions as the families of periodic orbits that
emerge from the equilibrium position of the system in the phase space. They are identical to the invariant manifolds
of the system, as explained e.g. in [38]. In practice, the Harmonic Balance Method (HBM) is used to compute the
periodic solutions of the problem as Fourier series of 𝐪(𝑡). The HBM transforms Eq. (20) into an algebraic system,
which is then solved by the Asymptotic Numerical Method (ANM) in a process extensively documented in previous
works [32, 4]. Solving the system yields the evolution of the Fourier components of 𝐪(𝑡) as a function of the frequency
Ω of the oscillations, leading to the frequency / amplitude relations of the nonlinear modes, well known as the so-called
“backbone” curves, as well as the nonlinear mode shapes. These are investigated in Sections 4 and 5. As a final detail,
it should be mentioned that since Eq. (20) is autonomous, a phase condition and a fictitious damping term are added
for numerical purposes, as fully explained in [4].

Due to the presence of gravity, the equilibrium (static) configuration of the system is not 𝐪s = 𝟎 but the solution
of:

𝐟int(𝐪s) − 𝐟g = 𝟎, (21)



which is representative of an axial compression of the cantilever in the standing equilibrium configuration and to a
stretching in the hanging configuration. The static solution is used in two different computations, either as the starting
point for computation of the nonlinear modes or in computation of the evolution of the (linear) eigenmodes of the
problem.

Since we are interested in vibrations of the system, it is convenient to consider its oscillations around the equilibrium
configuration �̃�(𝑡), defined by:

�̃�(𝑡) = 𝐪(𝑡) − 𝐪s. (22)

Introducing this equation into Eq. (20), the problem is rewritten for �̃�(𝑡):

𝐌 ̈̃𝐪 + 𝐟int(�̃� − 𝐪s) − 𝐟g = 𝟎. (23)

Eq. (23) can be linearized using the Taylor expansion of 𝐟int(𝐪) around 𝐪s, yielding:

𝐟int(𝐪) ≃ 𝐟int(𝐪s) +𝐊t(𝐪s)�̃�, 𝐊t(𝐪s) =
𝜕𝐟int
𝜕𝐪

|

|

|

|𝐪=𝐪s

, (24)

where the nonlinear terms in the Taylor expansion have been neglected and with 𝐊t the tangent stiffness matrix.
Introducing Eq. (24) into Eq. (20) and using Eq. (21), the following relation is obtained:

𝐌 ̈̃𝐪 +𝐊t(𝐪s)�̃� = 𝟎. (25)

This problem defines the small (linearized) oscillations of the system around its equilibrium (weighted) position,
which leads to the eigenvalue problem:

[

𝐊t(𝐪s) − 𝜔2𝐌
]

𝚽 = 𝟎. (26)

The solutions of Eq. (26) are the (linear) eigenmodes (𝜔𝑚,𝚽𝑚), 𝑚 = 1,…𝑁 of the system. Since 𝐪s is directly tied
to gravity (Eq. (21)), the effect of the weight of the cantilever beam on its own eigenmodes can be analyzed by solving
this eigenvalue problem. The results of this analysis are described in Section 3. In practice, the tangent stiffness matrix
𝐊t is computed according to standard FE assembly procedures, a process explained in Appendix B.

Two different methods for computing 𝐪s are implemented and compared. The first method computes the solution
of the full nonlinear problem directly using a Newton-Raphson iteration algorithm to solve the nonlinear Eq. (21). A
second method computes 𝐪s, which is assumed very small since the beams under consideration are very stiff in the
axial direction, with the linearized version of Eq. (21), written:

𝐊t(𝟎)𝐪s = 𝐟g. (27)

It is noted that since 𝐪s is typically small, the results of the two methods are virtually identical; however, some
inconsistencies are uncovered when computing 𝐪s for very small values of 𝜂 (i.e. 𝜂 ≤ 10−8), which is discussed in the
next section (§3).

Moreover, recall from Section 2.2 that the system can be normalized by introducing the dimensionless parameters
defined in Eqs. (6). For better conditioning of the numerical problem and to bring more universality to the results,
the normalized system is used in practice, simply by selecting the following values for the material and geometrical
parameters of the system: 𝐿 = 1, 𝐸𝐼 = 1, 𝜌𝐴 = 1, 𝜌𝐼 = 𝜂, 𝐸𝐴 = 1∕𝜂, 𝑘𝐺𝐴 = 1∕𝜇 = 𝑘∕[2(1+𝜈)𝜂] and 𝑔 = 𝛼. Since,
as explained before, variations of 𝜇 are not investigated, values of 𝜈 = 0.3 and 𝑘 = 1 are selected in the simulations.
Finally, all numerical computations presented in this work are carried out on a finite element mesh of 𝑁 = 50 nodes
(i.e. 49 elements) and with 𝐻 = 20 harmonics in the HBM computations.

3. Effect of (𝛼, 𝜂) on the natural frequencies
In this section, the effect of gravity on the (linear) natural frequencies of the (dimensionless) system is investigated.

Following the discussion of Section 2.2, only two independent parameters condition the mechanics of the beam: the
slenderness parameter 𝜂 and the gravity parameter 𝛼. In order to investigate first the effect of (𝛼, 𝜂) on the natural
frequencies, the beam’s parameters are chosen as explained at the end of Section 2.4 and the modes of the beam
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Figure 2: Effect of gravity on the dimensionless natural frequencies �̄�𝑚: (a) for the first three bending modes of the
cantilever beam, (b) zoom of (a) onto the first bending mode, (c) the same as (a) but depicting �̄�2

𝑚 = 𝑓 (𝛼), (d) zoom of
(c) onto the first bending mode. Several values of the slenderness parameter 𝜂 as well as approximations based on [15]
are depicted, as specified in the legend. The vertical blue dashed lines indicate the self-buckling point at 𝛼crit . A linear fit
based on the two points indicated with circles in (d) is shown in cyan

.

(�̄�𝑚,𝚽𝑚) are computed by numerically solving Eq. (26) for several values of (𝛼, 𝜂). Throughout this work, we choose
to concentrate on the first three bending modes of the cantilever beam, 𝑚 = 1, 2, 3.

The results of the effect of (𝛼, 𝜂) on �̄�𝑚 are summarized in Fig. 2(a) for the first three bending modes. For reference,
the deformed shape of the first bending mode is depicted in Fig. 3(a), while the second and third bending modes are
depicted in Figs. 3(b) and (c). The linear natural frequencies �̄�𝑚 for 𝑚 = 1, 2, 3 are solved for a range of 𝛼 values for
six different 𝜂 values (six different beam geometries). The black dashed line at 𝛼 = 0 indicates the location of zero
gravity (i.e. where the weight of the beam is not taken into account), with negative 𝛼 to the left indicating a “hanging”
beam configuration and positive 𝛼 to the right indicating a “standing” beam. At the point of “no gravity” (𝛼 = 0), the
value of �̄�𝑚 for each mode matches its classical dimensionless natural frequency for a uniform cantilever beam [50]
(�̄�𝑚 = [3.516, 22.034, 61.701] for 𝑚 = 1, 2, 3). In addition, Fig. 2(b) shows a zoom of Fig. 2(a) onto the first bending
mode.

First, consider the effect of 𝜂 on �̄�𝑚. The computation of �̄�𝑚 = 𝑓 (𝛼) is performed for six different values of 𝜂
ranging from 2 ⋅ 10−4 to 10−8, i.e. from a rather thick beam to a very thin one (see Table 1 for the values of ℎ∕𝐿
corresponding to 𝜂 in the case of a rectangular cross section). In Fig. 2(a), it is readily seen that, for all three modes,



�̄�𝑚 = 𝑓 (𝛼) varies little for different values of 𝜂. In fact, there is virtually no difference in the curves apart from on the
third bending mode, where an 𝜂 = 2 ⋅ 10−4 or 10−4 reduces �̄�3 slightly compared to other 𝜂 (some discussion on the
larger effect of 𝜂 on mode 3 is presented at the end of Section 4.1). It can be said, then, that the effect of 𝜂 for 𝜂 ≤ 10−5
on the natural frequencies �̄�𝑚 is negligible.

The same cannot be said for the influence of 𝛼 on �̄�𝑚. Particularly on the first mode of vibration, �̄�1 changes
significantly for different values of 𝛼. In general, for all three modes, a negative 𝛼 increases the natural frequency,
while a positive 𝛼 decreases it. The effect of gravity on a standing (resp. hanging) cantilever is to add a restoring
force in the system which acts qualitatively in the same way as a pre-compression (pre-tension). This pre-compression
(pre-tension) of the beam results in a decrease (increase) of the bending stiffness and, thus, decreases (increases) the
natural frequencies. A more physical interpretation of this effect can be described using a simple pendulum system,
which is explained in detail in Section 6. In the case of the standing cantilever (𝛼 > 0), the gravity decreases the
global bending stiffness of the cantilever until it is completely canceled, which occurs at a critical value of the gravity
parameter 𝛼 = 𝛼crit = 7.837. In statics, 𝛼crit corresponds to the point of self-buckling, well-known in the literature [5],
at which the standing beam buckles under its own weight. In dynamics, 𝛼crit corresponds to the first natural frequency
�̄�1 tending to zero [51, 52, 53], as seen in Fig. 2(b). Beyond the point of self-buckling, the compressed, straight and
vertical equilibrium configuration of the beam is no longer stable, indicated by the dashed portions of the mode 2 and
3 curves in Fig. 2(a). The dashed blue line in Fig. 2 indicates the location of failure due to self-buckling at 𝛼crit .

Note, however, that as 𝛼 approaches 𝛼crit, the linearized tangent stiffness matrix 𝐊t approaches a singularity, which
occurs exactly at the self-buckling point (at 𝛼 = 𝛼crit ⇔ �̄�1 = 0). This effect is explained since the terms in 𝐊t
related to the bending stiffness are decreased (and canceled at 𝛼 = 𝛼crit) due to the influence of gravity. This effect
is magnified when 𝜂 is very small, which explains the numerical noise observed in the �̄�1 = 𝑓 (𝛼) curve of Fig. 2(b)
close to the buckling point when 𝜂 = 10−8. For very small values of 𝜂 (observed in our case only for 𝜂 = 10−8), the
linear computation of 𝐪s using Eq. (27) is not considered sufficiently accurate due to the existence of this numerical
noise in the �̄�1 = 𝑓 (𝛼) curve. To avoid this, the nonlinear computation of Eq. (21) is used, although some numerical
noise remains very close to 𝛼crit .

In the stable equilibrium region 𝛼 < 𝛼crit, it can be seen that 𝛼 does not have as strong of a relative influence on
�̄�𝑚 for 𝑚 > 1. To describe this effect quantitatively, compare the values of �̄�𝑚 at 𝛼 = 0 and 𝛼 = 7 for all three modes:
at 𝛼 = 0, �̄�𝑚 = [3.51, 21.93, 61.03] and at 𝛼 = 7, �̄�𝑚 = [1.18, 20.64, 60.44] for 𝑚 = 1, 2, 3, respectively. On modes 2
and 3, �̄�𝑚 decreases by less than 6% and 1%, respectively, while on mode 1, it decreases by more than 66% between
𝛼 = 0 and 𝛼 = 7. This simple comparison highlights the large influence of the gravity parameter 𝛼 on the natural
frequency of the first bending mode of vibration of the cantilever beam, while its influence remains relatively small on
higher-frequency bending modes. The same was found in the work of Hijmissen and van Horssen in [15]; computing
their linear estimation of �̄�𝑚 = 𝑓 (𝛼) for 𝑚 = 1, 2, 3 revealed a weaker 𝛼 influence on the higher-frequency modes.
The linear estimations provided by Hijmissen and van Horssen [15] are given by the red dashed lines in Fig. 2(a) for
comparison, again with a zoom on the first mode in Fig. 2(b). Our results are in good agreement with the estimation
of [15] (particularly close to 𝛼 = 0), once again highlighting the strong influence of 𝛼 on �̄�1.

An interesting feature can be seen when plotting �̄�2
𝑚 as a function of 𝛼, as done in Figs. 2(c) and (d): it is observed

that an almost linear relationship exists between the square of the natural frequencies and 𝛼, a trend likewise noticed
in [17]. A linear fit through the two known points

(

0, �̄�2
0,1

)

and
(

𝛼crit , 0
)

is overlaid onto Fig. 2(d) to further highlight
this, where �̄�0,𝑚 = �̄�𝑚(𝛼 = 0). By consequence, a good approximation of the 𝛼 dependence of the natural frequencies
can be written as a square root relationship:

�̄�𝑚 = �̄�0,𝑚

√

1 − 𝛼∕𝛼cr,𝑚, (28)

where 𝛼cr,𝑚 is the 𝑚-th buckling point, with of course 𝛼cr,1 = 𝛼crit = 7.837. This relationship explains why 𝛼 has
a stronger influence on �̄�1 than on the higher-frequency modes: considering the particular shape of the square root,
each curve �̄�𝑚 = 𝑓 (𝛼) is a scaled version of the same overall shape, with a breakdown at 𝛼 = 𝛼cr,𝑚 (see Fig. 2(a)).
Consequently, �̄�1 = 𝑓 (𝛼) decreases more in the range 𝛼 ∈ [0 𝛼cr,1] than the higher natural frequencies �̄�𝑚, 𝑚 > 1,
justifying the stronger effect of 𝛼 on �̄�1.
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Figure 3: Snapshots of the cantilever beam vibrating on its first three nonlinear modes at moderate amplitude: (a) first
mode, (b) second mode, (c) third mode. The locations on the backbones at which the snapshots are taken are marked
with black circles in Figs. 5, 6, 8(a) and 9.

(a) (b) (c)

Figure 4: Snapshots of the cantilever beam vibrating on its first three nonlinear modes at high amplitude: (a) first mode,
where the cantilever has “bent backwards” beyond its fixed end, (b) second mode, (c) third mode. The locations on the
backbones at which the snapshots are taken are marked with blue circles in Figs. 5, 6, 8(a) and 9.

4. Effect of (𝛼, 𝜂) on nonlinear backbone curves
Next, we turn to the effects of gravity on the nonlinear dynamics of the slender cantilever beam. When the

displacement of the beam becomes sufficiently large, the geometrical nonlinearities (recall Eqs. (2) and (3)) are
activated. As explained in the introduction, in this paper we choose to focus on the nonlinear modes of the cantilever,
represented here by their backbone curves and nonlinear mode shapes. The nonlinear modes are defined as the particular
solutions of the undamped and free oscillation problem, defined here by Eqs. (20) or (23). Note that they share this
definition with the standard (linear) eigenmodes of a linear system, the difference being the nonlinearities in the
equations of motion. They correspond equivalently to invariant manifolds of the phase space or to families of periodic
solutions (see e.g. [38]). The latter (families of periodic solutions) definition is used here to compute the nonlinear
modes with the HBM-ANM strategy. The main difference with linear modes is that the free oscillation frequency and
the shape of the motion on the 𝑚th nonlinear mode – the extension of the natural frequencies 𝜔𝑚 and the mode shape
𝚽𝑚 to the nonlinear regime – now depend on the amplitude (or energy) of the motion. The former is represented here
in a classical amplitude / frequency plot called the backbone curve. The latter, the nonlinear mode shape, depends on
the amplitude and is illustrated by plotting snapshots of the beam oscillations over a half period, at a given energy.
Examples for the first mode are shown in Figs. 3(a) and 12 for low-to-moderate amplitudes of vibration and in Fig. 4(a)
at very large amplitude. The second and third mode shapes are shown in Figs. 3(b) and (c) at moderate amplitude and
in Figs. 4(b) and (c) at a higher amplitude. In this section, we focus on the effect of (𝛼, 𝜂) on the backbone curves; the
effect on the nonlinear mode shapes is addressed in Section 5.
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Figure 5: Effect of the slenderness parameter 𝜂 on the first nonlinear mode: (a) amplitude of the first harmonic H1 of 𝜃 at
the free end of the beam for different values of 𝜂 and comparison with inextensible (analytical) beam model [26, 27], (b)
amplitude of the first harmonic H1 of �̄� at the free end of the beam for different values of 𝜂. Case with no gravity (𝛼 = 0).

As before, the influences of the two dimensionless parameters 𝛼 and 𝜂 are studied separately. To this end, the
backbone curves are computed by solving Eq. (20) with the HBM-ANM method for several values of (𝛼, 𝜂). Results
are presented in Section 4.1 for constant 𝛼 and in Section 4.2 for constant 𝜂. Here, the backbone curves trace the
evolution of the amplitude of the first harmonic (H1) of either the cross-section rotation at the free end of the cantilever
𝜃(𝐿, 𝑡) or the transverse displacement 𝑤(𝐿, 𝑡) as a function of the frequency of oscillation Ω (Ω = 2𝜋∕𝑇 with 𝑇 the
period of the motion) in Figs. 5, 6, 8 and 9. Based on the results of [4, 1], it was found that showing only H1 gives
an excellent image of the amplitude of the periodic solution since this harmonic is heavily dominant up to very large
amplitudes of displacement. Moreover, the backbone curves tied to the cross-section rotation 𝜃(𝐿, 𝑡) are considered
more readable than those of the transverse amplitude 𝑤(𝐿, 𝑡) since they increase monotonically, whereas the latter fold
at large amplitude, i.e. beyond 𝜃(𝐿, 𝑡) > 𝜋∕2 when the beam bends backwards (compare Figs. 5(a) and (b)). For this
reason, mostly 𝜃(𝐿, 𝑡) backbones are depicted in this work, instead of 𝑤(𝐿, 𝑡). Note also that all backbone curves have
been normalized by the (linear) natural frequency 𝜔𝑚(𝛼), which depends on gravity, as analyzed in Section 3.

4.1. Effect of 𝜂
First, we study the isolated effect of the dimensionless slenderness parameter 𝜂 on the first three nonlinear modes.

In this case, the effect of gravity is removed, i.e. 𝛼 is fixed at 0. The amplitude of the first harmonic H1 backbone curve
is traced for the rotation degree of freedom 𝜃 at the free end of the cantilever, i.e. the location of maximum displacement
on a cantilever beam, for several values of 𝜂. The 𝜃 backbone curve is shown for nonlinear modes one, two and three in
Figs. 5(a) and 6. To these is also added the backbone curve of the first nonlinear mode for the transverse displacement
degree of freedom �̄� at the tip of the beam in Fig. 5(b).

Beginning with the first nonlinear mode, the shape of the backbone curves in Fig. 5 highlights several classical
phenomena in the field of nonlinear dynamics. First, it is seen that as the displacement amplitude of the vibrating
cantilever increases, the oscillating frequency Ω∕𝜔1 likewise increases. This behavior is known as frequency
dependence on the vibration amplitude, and is strictly a nonlinear effect (a linear “backbone” curve would be a straight
vertical line at the resonant frequency). If the frequency increases with increasing amplitude, the trend is referred to as
hardening (versus softening if reversed). All backbone curves in Fig. 5 for different values of 𝜂 depict this hardening
trend, which validates the known hardening of the first nonlinear mode of the cantilever beam [54, 2, 42, 44]. Another
classical nonlinear effect is seen in the jumps and branches or “offshoots” from the main backbone curve. Such instances
represent locations of internal resonance (IR), when some energy is transferred from one mode to another one because
of a frequency locking between the harmonics of the oscillating mode and the nonlinear frequencies of other modes
(see e.g [38, 43, 55]).
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Figure 6: Effect of the slenderness parameter 𝜂 on the second and third nonlinear modes: (a) amplitude of the first harmonic
H1 of 𝜃 at the free end of the beam for different values of 𝜂 (mode 2) and comparison with inextensible (analytical) beam
model [26, 27], (b) the same as (a) for mode 3. Case with no gravity (𝛼 = 0). Note that some curves (particularly for
small 𝜂) overlap others and therefore some curves may not be visible.

The appearance of internal resonance points along the backbone curve can take different forms and can sometimes
be challenging to compute numerically. For the present case of a cantilever beam, this was discussed in [4].
Furthermore, since the focus in this article centers on the main backbone curves, the IR branches are not computed
entirely, leading in some cases to interruptions in the curve shown (as explained in [4]). Note that the shape of the
backbone curves in Fig. 5 is slightly different from those shown in [4], especially in the vicinity of the IRs as well
as at large amplitude. This is due to the fact that in [4], the maximum amplitude over one period of oscillation –
thereby including the effect of all harmonics – was shown, whereas, here, only the amplitude of the first harmonic is
depicted. However, the difference between the maximum amplitude and the first harmonic of 𝜃 is, in this case, slight;
as mentioned earlier, the first harmonic greatly dominates the higher harmonics, which become consequential only
at higher amplitude. This is illustrated in Fig. 7, which superimposes the backbone curve in terms of the maximum
amplitude of 𝜃(𝐿, 𝑡) over one period onto the backbone curves of the first three odd harmonics H1, H3 and H5, and in
which the dominance of H1 is clearly visible. Moreover, since the oscillations of the structure are symmetrical, 𝜃(𝑥, 𝑡)
is an odd function of 𝑡 and its even harmonics are zero (and, thus, are not included in Fig. 7). Some differences between
[4] and this work can also be explained by the differences in the number of finite elements (FEs) and harmonics 𝐻 .
The number of FEs greatly influences the values of the natural frequencies of the higher modes and thus the locations
of the IRs on the main branch, which is itself much less affected. A greater number of FEs also increases the number
of IRs since it increases the number of natural modes and therefore the number of possible frequency lockings, which
is also influenced by the number of harmonics 𝐻 retained in the HBM. We use 50 FEs in the present article, whereas
between 20 and 30 (depending on the mode) were used in [4], with the same number (𝐻 = 20) of harmonics in both
cases. In practice, the IR branches are avoided during the continuation process by manually jumping across their zone
of appearance using an initial guess in frequency after the critical region and a Newton-Raphson algorithm to initiate
the computation on the next branch. In the present case of a cantilever beam, this process is found to be delicate because
some unusually large frequency ranges for the IR branches are uncovered: notice the IRs around Ω ≃ 1.04𝜔1 for the
first mode and Ω ≃ 0.92𝜔2 for the second mode in Figs. 7(a, b). For the latter case, as seen in Fig. 7(b), it is even more
unusual that the branch of the first harmonic (dark blue) is virtually unaffected by the presence of the IR, meaning it
can go undetected during continuation unless the third harmonic (brown) or the maximum amplitude of the periodic
solution (light blue) is also monitored.

As in Section 3 for the natural frequencies, it can be seen that the effect of 𝜂 on the mode 1 backbone curves (Fig. 5)
is very slight, almost indistinguishable, so long as 𝜂 remains small (𝜂 ≤ 10−5). The effect of 𝜂 on the backbone curves
becomes apparent only for larger values of 𝜂, i.e. when the beam is less slender. In this case, the location of the internal
resonances shifts slightly due to changes in the frequencies of the higher modes that are affected by the change in 𝜂, thus



(a) (c)(b)

Figure 7: Comparison of the maximum amplitude of 𝜃(𝐿, 𝑡) over one period of oscillation on the first three nonlinear modes
with the amplitudes of the first three odd harmonics H1, H3 and H5. Note that the H1 curves are the same as those shown
in Figs. 5 and 6 for 𝛼 = 0, 𝜂 = 10−7: (a) first nonlinear mode, (b) second, (c) third.

moving the frequency locking. An analytical computation of the backbone curves is also included in Fig. 5, depicted
with the dashed black curve, based on the approximate inextensible beam model of [26, 27] restricted to the first
bending mode (see Appendix C for details on this model). In this model, the geometrical nonlinearities are truncated
in the Taylor series expansions at order 3 in 𝑤∕𝐿, leading to this model being valid only up to moderate amplitudes of
vibration and diverging from the numerical (i.e. geometrically exact) backbone curves (around 𝜃 = 0.2𝜋 rad and
𝑤 = 0.5𝐿 at the beam’s tip). This model is included in order to validate the finite element discretization of the
geometrically exact model used here at low to moderate amplitudes.

For the second nonlinear mode, the same two observations as for mode 1 are made, as seen in Fig. 6(a): the influence
of 𝜂 on the backbone curve is negligible, so long as 𝜂 remains small (𝜂 ≤ 10−5), and also the backbone curve is validated
at low amplitudes by the mode 2 inextensible model of Crespo da Silva et al. (Appendix C). The same cannot be said
for the third nonlinear mode. As shown in Fig. 6(b), the global trend of 𝜂’s influence diminishing for small values of 𝜂
holds, but only for very small 𝜂, around 𝜂 ≤ 10−6. The influence of the slenderness of the beam seems to be quite large
on the third nonlinear mode for “larger” 𝜂, e.g. 𝜂 > 10−5, even greater than on the first nonlinear mode. The mode 3
backbones for small 𝜂 ≤ 10−6 are again validated by the inextensible analytical backbone, but these results seem to
suggest a greater influence of the ℎ∕𝐿 ratio on the third nonlinear mode than on either of the first two. This trend seems
logical when considering the mode shapes of the structure (see Fig. 3); an “improved” definition of the slenderness
ratio 𝜂 would consider instead ℎ∕𝜆𝑚, with 𝜆𝑚 a fraction of 𝐿 representing the wavelength of the mode. Referring to
Fig. 3 and according to the “improved” definition, as the mode number 𝑚 increases, 𝜆𝑚 decreases, thereby suggesting
a greater influence of 𝜂 on the backbone curves of the higher modes. It is for this reason also that only 𝜂 in the range
of [10−8, 10−4] is plotted for mode 3 in Fig. 6(b).

4.2. Effect of 𝛼
Next, we investigate the influence of the dimensionless gravity parameter 𝛼 on the first three nonlinear modes /

backbone curves of the cantilever. A constant 𝜂 = 10−7 is selected and the H1 backbones for the rotation degree of
freedom 𝜃 at the free end of the beam (analogous to the backbones in the previous section) are shown as a function
of the normalized frequency Ω∕𝜔𝑚 for different values of 𝛼. The results are summarized for mode 1 in Fig. 8 and for
modes 2 and 3 in Fig. 9. Note that the mode 1 backbone for (𝛼, 𝜂) =

(

0, 10−7
)

is the same in both Fig. 5(a) and Fig. 8.
Beginning with the first nonlinear mode, as in Section 3, it can be seen that the dimensionless gravity parameter

𝛼 has a significant effect on the backbone curve, much more of an effect than 𝜂 in Section 4.1. It can be seen that,
noting that the 𝛼 = 0 backbone is already of hardening type, increasing 𝛼 in a standing configuration (i.e. increasing
positive 𝛼) drastically hardens the backbone curve. In a similar way, decreasing 𝛼 in a hanging configuration (i.e.
decreasing negative 𝛼), softens the backbone curve, until it eventually becomes a globally softening backbone instead
of the classical hardening mode 1 backbone. Notice in the inset of Fig. 8(a) that the backbone curve for 𝛼 = −2,
which is globally of softening type, is initially of hardening type, before switching direction around 𝜃 = 0.35𝜋 rad. A
softening-to-hardening transition of the backbone curve is classical for initially curved structures (see e.g. [56, 57] for
shallow shells, [58, 59, 60] for shallow arches or [61] for curved cantilevers). However, an example of the hardening-
to-softening transition like that of the 𝛼 = −2 backbone in Fig. 8 is much more uncommon, but was observed on
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Figure 8: Effect of dimensionless parameters on first nonlinear mode, isolation of the effect of 𝛼: (a) amplitude of the
first harmonic H1 of 𝜃 at the free end of the beam for different values of 𝛼 with inset zoom onto hardening-to-softening
behavior for 𝛼 = −2, (b) a zoom of (a) at low amplitudes. Comparison (𝜂 = 10−7) with results of Santillan et al. [18] and
Luongo et al. [19]: (c) maximum transverse displacement of the free end over one period of oscillation for 𝛼 = 0 (solid
black curve: perturbation approximation [18], dashed curve: finite differences [18], dots: analytical approximation [19], solid
blue curve: 𝜂 = 10−7 backbone curve of Fig. 5), (d) the same as (c) but for (from left to right) 𝛼 = 5.859, 2.989, 1.655, 0.

the second nonlinear mode of a flexible ring structure in [4]. In addition, a comparison is made to the backbone
approximations of Santillan et al. [18] and Luongo et al. [19] as shown in [18] for cantilever boundary conditions.
In Fig. 8(c), the maximum transverse displacement at the free end of the beam over one period for the 𝜂 = 10−7
backbone of Fig. 5 is computed and compared to Fig. 5 of [18]. Likewise, the same comparison is carried out for Fig.
7 of [18] for three nonzero values of 𝛼 = [1.655, 2.989, 5.859] in Fig. 8(d). Up to very high amplitudes, it can be seen
that there is excellent agreement between our results and the finite differences computation of [18]. The differences at
high amplitude are probably due to the time integration method used in [18], which did not enforce periodicity of the
response (or invariance), the property used here to compute the nonlinear modes.

With regard to the second and third nonlinear modes, the H1 backbone curves for the same 𝜃 degree of freedom at
the free end of the beam as for mode 1 are shown for several values of 𝛼 in Fig. 9(a) for mode 2 and 9(b) for mode 3.
It can be seen that gravity has only a very minor influence on the backbone curves, almost unnoticeable. It is for this
reason that only a few very different values of 𝛼 ∈ {−6, 0, 6} are selected for modes 2 and 3 prior to the self-buckling
occurring at 𝛼crit = 7.837, where 𝛼 = 6 can be considered as a “large” effect of gravity on a physical standing cantilever.



(b)(a)

Figure 9: Effect of dimensionless parameters on second and third nonlinear modes, isolation of the effect of 𝛼: (a) amplitude
of the first harmonic H1 of 𝜃 at the free end of the beam for different values of 𝛼 (mode 2), (b) the same as (a) for mode
3.

(a) (b)

Figure 10: Effect of dimensionless parameters on the first nonlinear mode, isolation of the effect of 𝜂 for 𝛼 ≠ 0: (a)
amplitude of the first harmonic H1 of 𝜃 at the free end of the beam for different values of 𝜂 in the standing configuration
(𝛼 = 7), (b) the same as (a) but in the hanging configuration (𝛼 = −2).

Finally, the joint effect of 𝜂 and 𝛼 on the nonlinear modes is studied, where 𝜂 is varied while including the effect
of gravity, i.e. 𝛼 ≠ 0. On the first nonlinear mode, 𝜂 is varied as in Fig. 5 for 𝛼 = 7 and 𝛼 = −2, this latter case being
selected in particular due to the unique hardening-to-softening transition of the backbone curve observed in Fig. 8.
On the second and third nonlinear modes, 𝜂 is varied for 𝛼 = 6 and 𝛼 = −6 in order to be consistent with Fig. 9.
The results are summarized in Fig. 10 for the first nonlinear mode and in Fig. 11 for the second and third nonlinear
modes. In general, the main conclusions already established for the ranges of 𝜂 and 𝛼 studied in this work hold also
for 𝜂, 𝛼 ≠ 0, namely that 𝜂 does not have a strong influence on the backbone curves no matter the value of 𝛼 so long as
𝜂 is small, and that 𝛼 has a strong influence only on the first nonlinear mode. Interestingly, however, larger values of
𝜂 (𝜂 > 10−5) appear to have a greater influence on the first nonlinear mode as 𝛼 decreases: comparing Figs. 5 and 10,
large 𝜂 (such as 𝜂 = 2 ⋅ 10−4) has the least influence when 𝛼 = 7 and the greatest influence when 𝛼 = −2.

To summarize, it can be said that the effect of gravity on the nonlinear modes of the system is significant on the first
nonlinear mode, but comparably insignificant on higher-frequency modes. On the first nonlinear mode, it is observed
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Figure 11: Effect of dimensionless parameters on the second and third nonlinear modes, isolation of the effect of 𝜂 for
𝛼 ≠ 0: (a) amplitude of the first harmonic H1 of 𝜃 at the free end of the beam for different values of 𝜂 (solid curve: 𝛼 = −6,
dotted curve: 𝛼 = 6), (b) the same as (a) but on the third nonlinear mode.

that in a standing configuration (𝛼 > 0), increasing the effect of gravity serves to increase the hardening trend of
the backbone, meaning that the global backbone becomes more hardening when taking into account the gravitational
field. In a hanging configuration (𝛼 < 0), the effect is reversed. Interestingly, gravity has an opposite effect on the first
nonlinear mode as compared to the linear one: in the standing configuration, gravity has a hardening effect on the
backbone curve of the first nonlinear mode, whereas it has a softening effect on the (linear) natural frequencies, since
they decrease as 𝛼 increases, as described in Section 3. A more physical interpretation of these effects is outlined in
Section 6 using a simple pendulum system.

Finally, it is noted that the case of the hanging configuration is very similar to the case of a rotating cantilever beam,
in which the beam is subjected to a centrifugal axial field. In this case, the effect of the centrifugal force is hardening
for the (linear) natural frequencies and softening for the backbone curves (see e.g. [44, 62]). The similarity between
the two cases can be linked to the axial preload condition, with the only difference being that the load is not uniform
(it increases with 𝑥) in the case of the rotating beam.

5. Nonlinear mode shapes
5.1. Effect of 𝛼 on the first nonlinear mode shape

In addition to the effect of (𝛼, 𝜂) on the nonlinear backbone curves, it is also of interest to study the effect of
gravity on the deformed shape in the nonlinear region. Based on the results of Section 4, we choose to concentrate the
investigation primarily on the influence of 𝛼 for a chosen 𝜂 = 10−7 on the first nonlinear mode, since it is shown in
Sections 3 and 4 that both 𝜂 (when small) and 𝛼 do not have a strong influence on the higher-frequency modes up to
𝛼crit.

First, we investigate the effect of 𝛼 on the deformed shape of the beam at moderate-to-high cross-section rotations,
around a maximum H1 amplitude of 0.45𝜋 rad, considering this region to be representative of moderate-to-high
amplitudes of vibration (and, therefore, judiciously considered as nonlinear behavior). This is justified since the
analytical backbone computation based on the third-order inextensible beam model of Crespo da Silva et al., recalling
the black dashed line in Fig. 5(a), begins to diverge from the geometrically exact model around 𝜃 = 0.2𝜋 rad.

To study the effect of the gravity parameter 𝛼 on the deformed shape of the beam, the deformed shape is traced
at points of (nearly) constant amplitudes along each of the 𝛼 ∈ {−4,−2, 0, 2, 5, 7} backbones, shown as red circles
in Fig. 8(a). Since the continuation points are different for each numerical computation, it is not possible to select an
exact amplitude of 0.45𝜋 rad in all simulations, the closest continuation point being selected instead. The coordinates
of the red circles in Fig. 8(a) for each backbone curve are tabulated in Table 2.
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Figure 12: Snapshots of the cantilever beam vibrating on its first nonlinear mode for different values of 𝛼. The locations
on the corresponding backbones at which the snapshots are taken are marked by red circles in Fig. 8(a).

Figure 13: Snapshots Fig. 12(a)-(f) condensed into one figure: — 𝛼 = 0, — 𝛼 = −4, — 𝛼 = −2, — 𝛼 = 2, — 𝛼 = 5, —
𝛼 = 7.

The deformed shapes of the cantilever beam at these points along the backbone curves are gathered in Fig. 12. The
deformed shapes are taken as a certain number of snapshots over a fixed time interval equal to half of the period of the
periodic motion. Over the half period, the individual snapshots of the deformed shapes appear as the colored curves,
the initial reference (undeformed) configuration is the black curve, and the dashed light gray curves joining the colored
curves represent the trajectory of the nodes (see Fig. 12). In addition, the individual snapshots of Fig. 12 are gathered
together in a single plot in Fig. 13.

It is immediately observed that the deformed shapes of the beam in Figs. 12 and 13 are nearly indistinguishable
despite the points being taken at very different frequencies. For example, the 𝛼 = 0 deformed shape (Fig. 12(a)) is
traced for a frequency of Ω∕𝜔1 = 1.0179, while the 𝛼 = 7 deformed shape (Fig. 12(f)) is traced for a frequency of
Ω∕𝜔1 = 1.5814, 1.61 times larger, yet the deformed shapes are nearly identical. Between Figs. 12(a)-(f), only the
effect of 𝛼, i.e. of gravity, changes; comparing Figs. 8 and 12 proves that, although changing 𝛼 bends the backbone



Table 2
Coordinates at which the deformed shapes in Fig. 12 are taken, as shown by the red circles in Fig. 8(a).

𝛼 Ω∕𝜔1 Amp. H1 𝜃 [𝜋 rad]

−4 0.9854 0.4497
−2 0.9998 0.4497
0 1.0179 0.4500
2 1.0469 0.4491
5 1.1590 0.4511
7 1.5814 0.4505

curve either more hardening or more softening depending on the sign of 𝛼 (and, therefore, shifts the frequency higher
or lower), the deformed shape of the nonlinear mode is essentially not influenced by gravity.

5.2. Evolution of mode shape as a function of the amplitude
The surface plots in Fig. 14 provide another useful visualization for understanding the development of the nonlinear

deformed shape of the cantilever for different values of 𝛼. Each surface plot corresponds to a backbone curve of Fig. 8(a)
for 𝛼 ∈ {−2, 0, 5}, 𝜂 = 10−7. The surfaces depict the amplitude of the first harmonic H1 of the rotation 𝜃(𝑥, 𝑡),
normalized by its value at 𝑥 = 𝐿, as a function of (1) the cross-section positions �̄� = 𝑥∕𝐿 and (2) the amplitude of the
first harmonic H1 of the rotation 𝜃(𝐿, 𝑡) at the free end. Consequently, at 𝑥 = 𝐿, the amplitude of the surface is exactly
1. The curves are plotted, for each 𝛼, for the same range of amplitudes H1 of 𝜃(𝐿, 𝑡) as their backbone counterparts in
Fig. 8.

(a) (b) (c)

Figure 14: Surface plots depicting the (normalized) amplitude of H1 of 𝜃(𝑥, 𝑡) as a function of the position �̄� = 𝑥∕𝐿 and of
the amplitude of H1 of 𝜃(𝐿, 𝑡), for several values of 𝛼. These surface plots correspond to the backbones shown in Fig. 8(a).
In addition, the linear mode shapes Φ1(�̄�)∕Φ1(𝐿) and Φ′

1(�̄�)∕Φ
′
1(𝐿) are shown in blue and orange, respectively.

These surface plots can be interpreted as the evolution of the first mode shape of the beam as a function of the
amplitude of the motion. To understand this, consider first the case of the linearized model, valid for small amplitude.
In this case, the motion on the first mode would be exactly 𝜃(𝑥, 𝑡) = 𝑤′(𝑥, 𝑡) = Φ′

1(𝑥) cosΩ𝑡, with:

Φ′
𝑖(𝑥) = 𝛽𝑖

[

sin 𝛽𝑖𝑥 + sinh 𝛽𝑖𝑥 + 𝑎𝑖(cos 𝛽𝑖𝑥 − cosh 𝛽𝑖𝑥)
]

, 𝑖 ∈ ℕ∗, (29)

obtained by differentiating Eq. (47), showing naturally that the deformed shape Φ′
1(𝑥) of the motion does not depend on

the amplitude. The first mode shape Φ1(�̄�) and its derivative Φ′
1(�̄�), normalized by their values at 𝑥 = 𝐿, are overlaid

on top of the surfaces in Fig. 14.
Analyzing Fig. 14, it can be concluded that, similar to a linear system, the deformed shape of the first (leading)

harmonic of the cross-section rotation 𝜃(𝑥, 𝑡) motion on the first nonlinear mode is nearly independent of the motion
amplitude, since the surfaces are almost flat as a function of H1 of 𝜃(𝐿, 𝑡). Since the first harmonic is leading up to
large amplitude, this conclusion indicates that the motion can be approximated by:

𝜃(𝑥, 𝑡) =
+∞
∑

𝑖=1
Φ′

𝑖(𝑥)𝑞𝑖(𝑡), (30a)



(a) (b)

Figure 15: Surface plots depicting the (normalized) amplitude of H3 or H5 of 𝜃(𝑥, 𝑡) as a function of the position �̄� = 𝑥∕𝐿
and of the amplitude of H1 of 𝜃(𝐿, 𝑡): (a) H3, (b) H5. The linear mode shape Φ′

2(�̄�)∕Φ
′
2(𝐿) is shown in orange.

= Φ′
1(𝑥)𝑎

(1)
1 (Ω) cosΩ𝑡 +

[+∞
∑

𝑖=1
Φ′

𝑖(𝑥)𝑎
(3)
𝑖 (Ω)

]

cos 3Ω𝑡 +

[+∞
∑

𝑖=1
Φ′

𝑖(𝑥)𝑎
(5)
𝑖 (Ω)

]

cos 5Ω𝑡 + HH, (30b)

≃ Φ′
1(𝑥)𝑎

(1)
1 (Ω) cosΩ𝑡, (30c)

where 𝑎(ℎ)𝑖 (Ω) is the amplitude of the ℎth harmonic of the 𝑖th modal coordinate 𝑞𝑖(𝑡) and HH stands for “higher
harmonics.” Above, Eq. (30a) is a standard modal expansion, Eq. (30b) represents a Fourier series decomposition
explicitly enforcing the aforementioned conclusion that the deformed shape of the first harmonic is independent of
the amplitude, and Eq. (30c) neglects the higher harmonics. This result seems astonishing at first sight since the
motion of the beam at high amplitude appears very complex, as observed in Figs. 4(a) and 12. However, if the motion
characterized by 𝜃(𝑥, 𝑡) is a priori very simple, the geometrical nonlinearities appear strongly in the displacement
fields (𝑢,𝑤) of the points on the centerline of the beam through the kinematics relations (43) (valid if the beam is
inextensible), written:

𝑤(𝑥, 𝑡) = ∫

𝑥

0
sin 𝜃(𝜉, 𝑡) d𝜉 ≃ ∫

𝑥

0
sin

[

Φ′
1(𝜉) cosΩ𝑡

]

d𝜉, (31a)

𝑢(𝑥, 𝑡) = ∫

𝑥

0
(cos 𝜃(𝜉, 𝑡) − 1) d𝜉 ≃ ∫

𝑥

0

(

cos
[

Φ′
1(𝜉) cosΩ𝑡

]

− 1
)

d𝜉, (31b)

or, in other words, knowing 𝜃(𝑥, 𝑡), it is possible to reconstruct the full two-dimensional motion using Eqs. (31).
Then, in order to analyze the effect of the higher harmonics, Figs. 15 and 16 are traced as surfaces depicting the

evolution of H3 and H5 on the first nonlinear mode backbone curves in a way analogous to what was done for H1 in
Fig. 14(a) for 𝛼 = 0. In Fig. 15, H3 and H5 are normalized by (H3, H5) and by H1 in Fig. 16. Fig. 16 explicitly shows
that the amplitudes of H3 and H5 are small compared to the amplitude of H1 (a result also visible in Fig. 7), since their
amplitudes remain at 10% the amplitude of H1 or below on the entire backbone curve. Moreover, Fig. 15 reveals that
although the shapes of harmonics H3 and H5 depend slightly on the amplitude of the motion, the overall shape is close
to the second mode shape of the beam, leading to an approximation of 𝜃(𝑥, 𝑡) based on Eq. (30b) as:

𝜃(𝑥, 𝑡) ≃ Φ′
1(𝑥)𝑎

(1)
1 (Ω) cosΩ𝑡 + Φ′

2(𝑥)
(

𝑎(3)2 (Ω) cos 3Ω𝑡 + 𝑎(5)2 (Ω)
)

. (32)

Note that the local discontinuities in the H3 and H5 surfaces in Figs. 15 and 16 are related to some internal resonance
“offshoots,” mentioned in Section 4.1. The results presented in this section enable a more deep characterization of the
motion on the first nonlinear mode while also laying the groundwork for reduced order modeling of the beam. From
this perspective, choosing 𝜃(𝑥, 𝑡) as the principle variable to investigate seems an excellent idea, already pursued in a
series of articles [2, 1, 3].



(a) (b)

Figure 16: Surface plots depicting the amplitude of H3 or H5 of 𝜃(𝑥, 𝑡) normalized by H1 as a function of the position
�̄� = 𝑥∕𝐿 and of the amplitude of H1 of 𝜃(𝐿, 𝑡): (a) H3, (b) H5.

Lastly, it is noted that Fig. 14 also demonstrates the independence of the first harmonic of the deformed shape of
the beam from gravity, since the shape of Figs. 14(a-c) remain identical regardless of the value of 𝛼.

6. Analogy with a pendulum system

(a) (b) (c)
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Figure 17: (a) Pendulum shown in two positions along with restoring force 𝐟𝑟, (b) graph of the natural frequency 𝜔g of
the pendulum as a function of the gravity parameter �̃� (normalized), and (c) graph of the restoring force 𝑓𝑟 as a function
of angle 𝜃 (normalized).

In order to offer a more physical insight into the effect of gravity on both the linear and nonlinear frequencies of
the first mode of the cantilever, consider the inverted pendulum of Fig. 17(a). The pendulum is of length 𝑙, with all of
its inertia 𝑚 concentrated at its tip, and is subjected to a gravitational acceleration 𝐠 and a linear torsional spring of
stiffness Γ. The spring is at rest when the pendulum is vertical. For this system, the equation of motion governing the
angle 𝜃 of the pendulum with respect to the positive vertical axis can be written:

�̈� + Γ
𝑚𝑙2

𝜃 −
𝑔
𝑙
sin 𝜃 = 0 ⇒ �̈� + 𝜔2

0(1 − �̃�)𝜃 + 𝑓nl(𝜃) = 0, 𝜔0 =
√

Γ
𝑚𝑙2

, (33)

where 𝜔0 is the natural frequency of the pendulum without gravity. In Eq. (33), it is clear that the spring creates a
linear restoring force 𝑓𝑠 =

Γ
𝑚𝑙2 𝜃 while gravity creates a restoring force 𝑓𝑟 = − 𝑔

𝑙 sin 𝜃 of opposite sign, which works to
counteract the restoring force generated by the spring.



Separating the linear part of 𝑓𝑟 and denoting by 𝑓nl(𝜃) the remaining part, the gravity parameter �̃� and the natural
frequency of the pendulum with gravity 𝜔g(�̃�) can be defined such that:

�̃� =
𝑚𝑙𝑔
Γ

, 𝜔g = 𝜔0

√

1 − �̃�. (34)

In tracing 𝜔g(�̃�) shown in Fig. 17(b), the graph is found to be very similar to that of �̄�1(𝛼) for the first mode of the
cantilever, shown in Fig. 2(b). In the present case of the pendulum, the critical value for self-buckling of the pendulum
is �̃� = 1. The effect of gravity on the pendulum’s natural frequency 𝜔g is then clear: 𝜔g decreases as the gravity
parameter �̃� increases since it creates a restoring force opposed to that of the spring, thereby decreasing the overall
stiffness of the pendulum. Gravity, thus, has a softening linear effect.

Considering the nonlinear part of the restoring force 𝑓nl = 𝜔2
0�̃�(𝜃 − sin 𝜃), it appears to add a positive nonlinear

part to the linear restoring force −𝜔2
0�̃�𝜃, which explains why gravity has a hardening nonlinear effect; it is responsible

for a nonlinear frequency that increases with the amplitude of the motion. From a physical point of view, this can be
explained by a projection effect of the gravity force 𝑚𝐠 in the tangent direction (the direction of the restoring force 𝐟𝑠
of the spring, see Fig. 17(a)). As 𝜃 increases, the “full” 𝑓𝑟(𝜃) increases less in absolute value than its “linear part”, thus
creating a nonlinear effect of opposite nature (hardening) with respect to the linear one (softening). This is illustrated
by the graph of Fig. 17(c), where the “full” restoring force curve 𝑓𝑟(𝜃) is above its “linear part” −𝜔2

0�̃�𝜃 for 𝜃 > 0 and
below if 𝜃 < 0.

Returning to the case of the cantilever, it can be imagined that the distributed force due to gravity has the same
projection effect in each infinitesimal part of the cantilever beam. Since the curvature of the first mode shape is constant
along the beam as evidenced in §5, the analogy to the pendulum system holds. In the case of modes 2 and 3 of the
cantilever, a double or triple pendulum would likely lead to analogous results.

7. Conclusion
In this work, the influence of gravity on the dynamics of flexible slender cantilevers is studied. The cantilevers are

considered to be vertically-oriented in either a standing or hanging configuration and are subjected to a gravitational
acceleration 𝑔. It is found that by normalizing the system by the length of the cantilever, only two dimensionless
parameters, a “slenderness” parameter 𝜂 and a “gravity” parameter 𝛼, primarily govern the dynamics of the beam. In
the linear region, shown in Section 3, it is found that, globally, 𝜂 holds little influence over the linear natural frequencies
�̄�𝑚 of the first three bending modes 𝑚 = 1, 2, 3, while 𝛼 holds a much greater influence, particularly on the first mode.
In a hanging configuration (represented by 𝛼 < 0), increasing the magnitude of 𝛼 increases �̄�𝑚, while increasing the
magnitude of 𝛼 in a standing configuration (𝛼 > 0) decreases �̄�𝑚 up to a value of 𝛼crit, at which the standing cantilever
buckles under its own weight.

At larger amplitudes of vibration, the dynamics of the slender cantilever become nonlinear due to the influence
of the geometrical nonlinearities tied to the rotation of the cross-sections. In particular, the nonlinear modes, visually
represented as backbone curves in a traditional amplitude / frequency plot and as deformed “snapshots” of the structure
at high amplitude, are studied, the results of which are shown in Sections 4 and 5. In the nonlinear region, it is found
that, as in the linear region, 𝜂 globally holds little influence over the first three nonlinear modes, so long as 𝜂 remains
small (𝜂 ≤ 10−5 for modes 1 and 2 or 𝜂 ≤ 10−6 for mode 3). The backbone curves are also validated by an analytical
backbone computation based on the inextensible beam model of Crespo da Silva et al., valid up to moderate amplitudes
of vibration. Regarding the influence of 𝛼, it is found that 𝛼 has a very large effect on the first nonlinear mode in
particular, with much less effect on modes 2 and 3. Increasing the magnitude of 𝛼 in a standing configuration hardens
the backbone of the first nonlinear mode, while increasing the magnitude of 𝛼 in a hanging configuration softens the
backbone. Interestingly, however, the different values of 𝛼 do not influence the deformed shape of the first nonlinear
mode. Finally, 𝛼 is shown to have very little influence on the higher nonlinear modes 2 and 3. The behavior of the
first nonlinear mode under the influence of gravity is interpreted in another context through an analogy to a simple
pendulum system in Section 6. It is noted, however, that significant difficulties were encountered during computation
of some of the backbone curves, particularly on the higher modes, due to the detection of many complex internal
resonances (see Section 4.1). Further investigation of these internal resonances is required to better understand the
nonlinear behavior of the system at these locations.

The results of this work highlight the importance of incorporating gravity in any dynamical simulations, particularly
when investigating the first mode of a cantilever beam within a gravitational field. Future studies will aim to compare



numerical simulations including consideration of gravity to experimental measurements, in particular of the nonlinear
modes, in addition to studying the effects of gravity on different beam orientations (such as a “horizontal” cantilever
with gravity perpendicular to the axis of the beam) and types of systems.
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A. Effect of shear parameter 𝜇
As detailed in Section 2, a third dimensionless parameter related to the shear stiffness of the beam (which is present

exclusively in the case of Timoshenko kinematics), called 𝜇 in §2, appears in the equations of motion Eqs. (7) and (8).
Recalling Eq. (6), 𝜇 is found to depend on three parameters: the shear coefficient 𝑘, the Poisson’s ratio 𝜈 and the
slenderness parameter 𝜂. Considering only slender beams such that 𝜂 is very small (𝜂 ≤ 2 ⋅ 10−4) , it naturally follows
that 𝜇 is also very small, being proportional to 𝜂. Recalling Eq. (8), a very small 𝜇 tends the overall shear stiffness
towards infinity, i.e. to the point of no shearing of the cross-section as in Euler-Bernoulli kinematics. Therefore, for
very small 𝜇, it can be considered that there is very little effect of shearing of the cross-section (even at high amplitudes
of rotation) and little difference between Timoshenko and Euler-Bernoulli kinematics.

In order to confirm the minor influence of the dimensionless parameter 𝜇, the simulations of Section 4 were
performed again with different values of 𝑘 and 𝜈 while keeping 𝜂 and 𝛼 the same. As mentioned in Section 2.2, typical
values of 𝑘 and 𝜈 are in the ranges of 0.8 ≤ 𝑘 ≤ 0.9 and 0 ≤ 𝜈 ≤ 0.5, respectively. The two extremities of 𝜇 within
these ranges for 𝑘 and 𝜈 were selected, 𝜇 = 2.22 ⋅ 10−7 and 3.75 ⋅ 10−7 for 𝜂 = 1 ⋅ 10−7, in order to compare with the
simulations of Section 4, where 𝑘 = 1, 𝜈 = 0.3. The breakdown of these parameters is shown in Table 3.

Table 3
Values of 𝜇 for different values of 𝑘 and 𝜈, with 𝜂 = 1 ⋅ 10−7.

𝜇 = 2(1+𝜈)𝜂
𝑘

𝑘 𝜈 𝜂

2.22 ⋅ 10−7 0.9 0.0
2.60 ⋅ 10−7 1.0 0.3 1 ⋅ 10−7
3.75 ⋅ 10−7 0.8 0.5

The simulations of Section 4.1 and 4.2 (where 𝜇 = 2.60 ⋅ 10−7 for 𝜂 = 10−7) are recomputed using these two
additional values of 𝜇. For the latter, 𝛼 = 5 is chosen. The results of these simulations are summarized in Fig. 18; the
orange curves in both figures are the same as their counterparts in Section 4.

In both conditions, regardless of the presence of gravity in Fig. 18(b), the variation in 𝜇 between its minimum and
maximum values has next to no effect on the backbone curve of the first nonlinear mode; the three curves overlap to
the point of being indistinguishable. These comparisons prove the negligible influence of shearing on the mechanics
of very slender beams and, therefore, justify the omission of the third dimensionless parameter 𝜇 from the analyses
presented in this work.

B. Tangent stiffness computation
According to Eq. (24), the tangent stiffness 𝐊t is defined as the first derivative of the internal force vector 𝐟int with

respect to the vector of degrees of freedom:

𝐊t =
𝜕𝐟int
𝜕𝐪

. (35)



(a) (b)

Figure 18: Effect of dimensionless parameters on the first nonlinear mode, isolation of the effect of 𝜇: (a) amplitude of the
first harmonic H1 of 𝜃 at the free end of the beam for different values of 𝜇, no-gravity condition (𝛼 = 0); (b) the same as
(a) but with gravity condition (𝛼 = 5).

In practice, it can be computed at the elementary level and then assembled according to standard finite element
procedures.

All details having been explained in previous work [4, 44], we recall here only the main parts of the reasoning.
First, the strains of Eqs. (2) are discretized according to Eq. (12), yielding the elementary strain expressions:

𝑒𝑒 =
(

1 +
𝑢2 − 𝑢1
𝐿𝑒

)

cos 𝜃𝑒 +
(𝑤2 −𝑤1

𝐿𝑒

)

sin 𝜃𝑒 − 1, (36a)

𝛾𝑒 =
(𝑤2 −𝑤1

𝐿𝑒

)

cos 𝜃𝑒 −
(

1 +
𝑢2 − 𝑢1
𝐿𝑒

)

sin 𝜃𝑒, (36b)

𝜅𝑒 =
𝜃2 − 𝜃1
𝐿𝑒 . (36c)

Then, the elementary discretized gradient matrix is defined as:

𝛿𝜺𝑒 = 𝐁𝑒𝛿𝐪𝑒 ⇒ 𝐁𝑒 = 1
𝐿𝑒

⎡

⎢

⎢

⎣

−cos 𝜃𝑒 − sin 𝜃𝑒 𝑁1(𝑥)𝐿𝑒𝛾𝑒 cos 𝜃𝑒 sin 𝜃𝑒 𝑁2(𝑥)𝐿𝑒𝛾𝑒
sin 𝜃𝑒 −cos 𝜃𝑒 −𝑁1(𝑥)𝐿𝑒(1 + 𝑒𝑒) − sin 𝜃𝑒 cos 𝜃𝑒 −𝑁2(𝑥)𝐿𝑒(1 + 𝑒𝑒)
0 0 −1 0 0 1

⎤

⎥

⎥

⎦

,

(37)

with 𝜺𝑒 = [𝑒𝑒 𝛾𝑒 𝜅𝑒]T. Considering the internal virtual work (see [4, 44]), the elementary internal force vector is
written:

𝐟𝑒int(𝐪
𝑒) = ∫

𝐿𝑒

0
(𝐁𝑒)T𝐂𝜺𝑒 d𝑥, (38)

with:

𝐂 =
⎡

⎢

⎢

⎣

𝐸𝐴 0 0
𝑘𝐺𝐴 0

𝐸𝐼

⎤

⎥

⎥

⎦

. (39)

Recalling Eqs. (35) and (36), the first variation of Eq. (38) can be written:

𝛿𝐟𝑒int(𝐪
𝑒) =

{

∫

𝐿𝑒

0
(𝐁𝑒)T𝐂𝐁𝑒 d𝑥 + ∫

𝐿𝑒

0

(

𝜕𝐁𝑒

𝜕𝐪𝑒

)T
𝐂𝜺𝑒 d𝑥

}

𝛿𝐪𝑒 = 𝐊𝑒
t 𝛿𝐪

𝑒, (40)



where 𝐊𝑒
t is the elementary tangent stiffness matrix. Finally, 𝐊𝑒

t is computed 𝐊𝑒
t = 𝐊𝑒

𝑒 +𝐊𝑒
𝛾 +𝐊𝑒

𝜅 , with:

𝐊𝑒
𝑒 =

𝐸𝐴
𝐿𝑒

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝐾1 𝐾3 𝐾4 −𝐾1 −𝐾3 𝐾4
𝐾2 𝐾5 −𝐾3 −𝐾2 𝐾5

𝐾6 −𝐾4 −𝐾5 𝐾6
𝐾1 𝐾3 −𝐾4

𝐾2 −𝐾5
𝐾6

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (41a)

𝐊𝑒
𝛾 =

𝑘𝐺𝐴
𝐿𝑒

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝐾2 −𝐾3 𝐾7 −𝐾2 𝐾3 𝐾7
𝐾1 𝐾8 𝐾3 −𝐾1 𝐾8

𝐾9 −𝐾7 −𝐾8 𝐾9
𝐾2 −𝐾3 −𝐾7

𝐾1 −𝐾8
𝐾9

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (41b)

𝐊𝑒
𝜅 = 𝐸𝐼

𝐿𝑒

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 0 0 0 0 0
0 0 0 0 0

1 0 0 −1
0 0 0

0 0
1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (41c)

and with:

𝐾1 = cos2 �̄�, 𝐾2 = sin2 �̄�, 𝐾3 = cos �̄� sin �̄�, 𝐾4 =
𝐿𝑒

2
(𝑒𝑒 sin �̄� − �̄�𝑒 cos �̄�),

𝐾5 = −𝐿𝑒

2
(𝑒𝑒 cos �̄� + �̄�𝑒 sin �̄�), 𝐾6 =

(𝐿𝑒)2

4
[(�̄�𝑒)2 − 𝑒𝑒(𝑒𝑒 + 1)], 𝐾7 =

𝐿𝑒

2
[�̄�𝑒 cos �̄� − sin �̄�(𝑒𝑒 + 1)],

𝐾8 =
𝐿𝑒

2
[�̄�𝑒 sin �̄� + cos �̄�(𝑒𝑒 + 1)], 𝐾9 =

(𝐿𝑒)2

4
[(𝑒𝑒 + 1)2 − (�̄�𝑒)2].

In the above expressions for 𝐾𝑖, 𝑖 = 1,…9, �̄� = (𝜃1 + 𝜃2)∕2, 𝑒 = 𝑒(�̄�), and �̄� = 𝛾(�̄�) since the internal force vector
integration is evaluated using a single-point Gaussian quadrature at 𝑥 = 𝐿𝑒∕2 to avoid shear locking (see [49, 44, 4]).
Then, 𝐊𝑒

t is assembly according to standard finite element procedures in order to obtain the full tangent stiffness matrix
𝐊t.

Notice that 𝐊𝑒
t = 𝐊𝑒

t (𝐪
𝑒) and, by extension, 𝐊t = 𝐊t(𝐪) depend on the degrees of freedom 𝑢𝑖, 𝑤𝑖 and 𝜃𝑖 through

their presence in �̄�, 𝑒 and �̄� (see Eq. (36)); in other words, due to the presence of geometrical nonlinearities, the tangent
stiffness of the structure is a function of its deformed state. This serves to explain the dependence of the natural
frequencies of the cantilever on the gravitational field, as seen in Eq. (26) and Section 3.

As explained in Section 2.4, the tangent stiffness matrix is also used in computing the equilibrium solution 𝐪s of
the cantilever subjected to the gravitational field. In this case, the tangent stiffness is evaluated at 𝐪 = 𝟎, such that the
elementary tangent stiffness prior to assembly takes the form of Eq. (41) with 𝐪𝑒 = 𝟎 ⇒ 𝑢1 = 𝑢2 = 𝑤1 = 𝑤2 =
𝜃1 = 𝜃2 = 0 ⇒ �̄� = 𝑒𝑒 = 𝛾𝑒 = 0, which is with 𝐾1 = 1, 𝐾2 = 𝐾3 = 𝐾4 = 𝐾5 = 𝐾6 = 𝐾7 = 0, 𝐾8 = 𝐿𝑒∕2 and
𝐾9 = (𝐿𝑒)2∕4.

C. Analytical backbone computation with the third-order inextensible beam model
In this appendix, additional details are provided regarding the approximate inextensible cantilever beam model first

introduced by Crespo da Silva et al. in [26, 27], serving in Section 4 (represented as the black dashed lines in Figs. 5 and
9) as a comparison to the geometrically exact finite element model. This model is very interesting as it is both analytical
and valid up to a moderate (but not inconsiderable) amplitude of vibration and has thus been used widely in the literature
on nonlinear beam dynamics [63, 54]. In our case, it is advantageous to use this model for comparison since, when
restricting the modal projection to a single mode and solving via a first-order harmonic balance, the computation of
the backbone curve itself becomes analytical.



The derivation of the full inextensible beam model is shown in detail in Section 3.2 of [44], which we use as the
starting point for our development. We begin with the strong form of the geometrically exact model, Eqs. (3), to which
four assumptions are added:

1. The condition of inextensibility;
2. Euler-Bernoulli kinematics along with elimination of the rotatory inertia;
3. Truncation of the the geometrical nonlinearities up to order 3 in 𝑤;
4. A free end boundary condition.

Based on assumptions 1 and 2, 𝑒 = 𝛾 = 0, so that Eq. (3c), taking into account the constitutive Eqs. (4), simplifies
to 𝑇 = −𝑀 ′ − 𝑞 = −𝐸𝐼𝜃′′ − 𝑞. Then, eliminating 𝑁 in Eq. (3b) using (3a) and assumption 4 (𝑁(𝐿, 𝑡) = 𝑇 (𝐿, 𝑡) = 0
∀𝑡), the following partial differential equation is obtained:

𝜌𝐴�̈� +
(

𝐸𝐼𝜃′′ + 𝑞
cos 𝜃

)′
−
[

tan 𝜃 ∫

𝑥

𝐿
(𝜌𝐴�̈� − 𝑛) d𝑥

]′
= 𝑝. (42)

To recover the model of Crespo da Silva et al., we first assume no external axial load (𝑛 = 0) or moment (𝑞 = 0).
Then, the inextensibility condition, written explicitly as

√

(1 + 𝑢′)2 +𝑤′2 − 1 = 0 [44], is used in order to rewrite the
axial displacement as a function of 𝑤 in Eq. (42) according to 𝑢′ =

√

1 −𝑤′2 −1. In addition, the geometrically exact
kinematics of the beam with the inclusion of the inextensibility condition simplify to:

sin 𝜃 = 𝑤′, cos 𝜃 = 1 + 𝑢′ =
√

1 −𝑤′2. (43)

Finally, performing a Taylor expansion up to order three in 𝑤 leads to:

𝜌𝐴�̈� + 𝐸𝐼
(

𝑤′′′ +𝑤′𝑤′′2 +𝑤′′′𝑤′2)′ +
𝜌𝐴
2

[

𝑤′
∫

𝑥

𝐿

𝜕2

𝜕𝑡2

(

∫

𝑥

0
𝑤′2d𝑥

)

d𝑥
]′

= 𝑝. (44)

The same normalization as that of Section 2 (Eqs. (6)) is carried out, so that Eq. (44) becomes:

̈̄𝑤 + �̄�′′′′ +
(

�̄�′�̄�′′2 + �̄�′′′�̄�′2)′ + 1
2

[

�̄�′
∫

�̄�

1

𝜕2

𝜕𝑡2

(

∫

�̄�

0
�̄�′2d�̄�

)

d�̄�
]′

= �̄�, (45)

where all terms are now dimensionless.
Next, the model is discretized via a projection of the transverse displacement 𝑤 onto a single eigenmode Φ𝑘(𝑥),

for a given 𝑘 ∈ ℕ:

�̄�(�̄�, 𝑡) = Φ𝑘(�̄�)𝑞𝑘(𝑡), (46)

where 𝑞𝑘(𝑡) are the modal coordinates and the transverse mode shapesΦ𝑘 represent those of a cantilever beam, solutions
of the linear part of the equations of motion, i.e. Φ′′′′ + 𝛽4Φ = 0 with boundary conditions Φ(0) = Φ′(0) = Φ′′(1) =
Φ′′′(1) = 0. Written explicitly:

Φ𝑘(�̄�) = cos 𝛽𝑘�̄� − cosh 𝛽𝑘�̄� − 𝑎𝑘
(

sin 𝛽𝑘�̄� − sinh 𝛽𝑘�̄�
)

. (47)

In Eq. (47), the coefficients 𝛽𝑘 are related to the dimensionless natural frequencies, such that �̄�𝑘 = 𝛽2𝑘 [50], and the
coefficient 𝑎𝑘 can be calculated by normalizing the mode shapes Φ𝑘 such that ∫ 1

0 Φ2
𝑘d�̄� = 1. The values of 𝛽𝑘 and 𝑎𝑘

for the first three bending modes are shown in Table 4.
In a standard procedure, the modal projection (46) is injected into Eq. (45), the result is multiplied by Φ𝑘(�̄�) and

integrated over the length of the beam. Additionally, as we are here deriving an expression for the nonlinear modes
/ backbone curve (i.e. the free and undamped solution), the damping terms and external forcing are removed, so that
Eq. (45) after the modal projection becomes:

𝑞𝑘 + �̄�2
𝑘𝑞𝑘 + Γ𝑘𝑞3𝑘 + Π𝑘

(

𝑞𝑘𝑞𝑘 + �̇�2𝑘
)

𝑞𝑘 = 0, (48)



Table 4
Bending parameters of the 𝑘-th bending mode for the first three bending modes of a cantilever beam.

𝑘-the bending mode 𝛽𝑘 𝑎𝑘 Γ𝑘 Π𝑘

1 1.875 0.7341 40.441 4.597
2 4.694 1.0185 13418 144.726
3 7.855 0.9992 269710 1006.43

with:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

Γ𝑘 = ∫

1

0

(

Φ′
𝑘Φ

′′
𝑘Φ

′′
𝑘 + Φ′′′

𝑘 Φ′
𝑘Φ

′
𝑘
)′Φ𝑘d�̄�,

Π𝑘 = ∫

1

0

[

Φ′
𝑘 ∫

�̄�

1 ∫

�̄�

0
Φ′

𝑘Φ
′
𝑘d�̄�d�̄�

]′

Φ𝑘d�̄�,

(49a)

(49b)

where the expressions for Γ𝑘 and Π𝑘 have been evaluated for the first three bending modes based on Eq. (47) and are
shown in Table 4.

Next, we seek to solve Eq. (48) using a harmonic balance (HBM) expansion truncated to a single harmonic:
𝑞𝑘(𝑡) = 𝑄𝑘 cosΩ𝑡 with 𝑄𝑘 the amplitude of the oscillation. Injecting this expression for 𝑞𝑘(𝑡) into Eq. (48) and keeping
only terms in cosΩ𝑡 leads to the analytical expression for the amplitude 𝑄𝑘 as a function of the frequency Ω and thus
of the backbone curve:

𝑄𝑘 = 2

√

Ω2 − 𝜔2
𝑘

3Γ𝑘 − 2Ω2Π𝑘
. (50)

Finally, the dimensionless transverse displacement is recovered according to Eq. (46) restricted to one mode
as �̄�(�̄�, 𝑡) = Φ𝑘(�̄�)𝑄𝑘 cosΩ𝑡. The black dashed backbone curve in Fig. 5(b) is traced by sweeping its amplitude
Φ𝑘(1)𝑄𝑘(Ω) as a function of Ω. Then, �̄� is used to compute the amplitudes of the cross-section rotation according to
Eq. (43): 𝜃(�̄�, 𝑡) = sin−1[�̄�′(�̄�, 𝑡)]. To trace the analytical black dashed curves in Figs. 5(a) and 6 in 𝜃, the first harmonic
of 𝜃(1, 𝑡) is computed as the amplitude of the first Fourier coefficient of sin−1[Φ𝑘(1)𝑄𝑘(Ω) cosΩ𝑡]. It is noted that this
Fourier coefficient necessarily has an amplitude less than ≃ 0.4𝜋 rad due to the limitations of the inverse sine function
itself, limiting in turn the maximum amplitude of 𝜃(𝐿, 𝑡) plotted in Figs. 5(a) and 6.

References
[1] H. Farokhi, Y. Xia, and A. Erturk. Experimentally validated geometrically exact model for extreme nonlinear motions of cantilevers. Nonlinear

dynamics, 107(457-475), 2022.
[2] H. Farokhi and M. H. Ghayesh. Geometrically exact extreme vibrations of cantilevers. International Journal of Mechanical Sciences,

168:105051, 2020.
[3] M. H. Ghayesh and H. Farokhi. Extremely large dynamics of axially excited cantilevers. Thin Walled Structures, 154:106275, 2020.
[4] M. Debeurre, A. Grolet, B. Cochelin, and O. Thomas. Finite element computation of nonlinear modes and frequency response of geometrically

exact beam structures. Journal of Sound and Vibration, 548:117534, 2023.
[5] A. G. Greenhill. Determination of the greatest height consistent with stability that a vertical pole or mast can be made, and the greatest height

to which a tree of given proportions can grow. Proceedings of the Cambridge Philosophical Society, 4:65–73, 1881.
[6] M. P. Paidoussis and P. E. Des Trois Maisons. Free vibration of a heavy, damped, vertical cantilever. Journal of Applied Mechanics, 38(2):524–

526, 1971.
[7] B. Schäfer. Free vibrations of a gravity-loaded clamped-free beam. Ingenieur-Archiv, 55:66–80, 1985.
[8] T. Yokoyama. Vibrations of a hanging Timoshenko beam under gravity. Journal of Sound and Vibration, 141(2):245–258, 1990.
[9] S. Naguleswaran. Vibration of a vertical cantilever with and without axial freedom at clamped end. Journal of Sound and Vibration,

146(2):191–198, 1991.
[10] S. Naguleswaran. Transverse vibration of an uniform Euler-Bernoulli beam under linearly varying axial force. Journal of Sound and Vibration,

275:47–57, 2004.
[11] A. Bokaian. Natural frequencies of beams under compressive axial loads. Journal of Sound and Vibration, 126(1):49–65, 1988.
[12] A. Bokaian. Natural frequencies of beams under tensile axial loads. Journal of Sound and Vibration, 142(3):481–498, 1990.
[13] H. Abramovich. Free vibrations of gravity loaded composite beams. Composite Structures, 23:17–26, 1993.



[14] L.-Y. Xi, X.-F. Li, and G.-J. Tang. Free vibration of standing and hanging gravity-loaded Rayleigh cantilevers. International Journal of
Mechanical Sciences, 66:233–238, 2013.

[15] J.W. Hijmissen and W.T. van Horssen. On transverse vibrations of a vertical Timoshenko beam. Journal of Sound and Vibration, 314:161–179,
2008.

[16] L. N. Virgin and R. H. Plaut. Postbuckling and vibration of linearly elastic and softening columns under self-weight. International Journal of
Solids and Structures, 41:4989–5001, 2004.

[17] L. N. Virgin, S. T. Santillan, and D. B. Holland. Effect of gravity on the vibration of vertical cantilevers. Mechanics Research Communications,
34:312–317, 2007.

[18] S.T. Santillan, R.H. Plaut, T.P. Witelski, and L.N. Virgin. Large oscillations of beams and columns including self-weight. International
Journal of Non-Linear Mechanics, 43:761–771, 2008.

[19] A. Luongo, G. Rega, and F. Vestroni. On nonlinear dynamics of planar shear indeformable beams. Journal of Applied Mechanics, 53:619–624,
1986.

[20] H. Farokhi, E. Kohtanen, and A. Erturk. Extreme parametric resonance oscillations of a cantilever: An exact theory and experimental validation.
Mechanical Systems and Signal Processing, 196(110342), 2023.

[21] E. Reissner. On one-dimensional finite-strain beam theory: The plane problem. Journal of Applied Mathematics and Physics, 23:795–804,
1972.

[22] E. Reissner. On finite deformations of space-curved beams. Journal of Applied Mathematics and Physics, 32:734–744, 1981.
[23] J. C. Simo. A finite strain beam formulation. The three-dimensional dynamic problem. Part I. Computational Methods in Applied Mechanics

and Engineering, 49:55–70, 1985.
[24] L. Le Marrec, J. Lerbet, and L. R. Rakotomanana. Vibration of a timoshenko beam supporting arbitrary large pre-deformation. Acta Mechanica,

229:109–132, 2018.
[25] C. Meier, A. Popp, and W. A. Wall. Geometrically exact finite element formulations for slender beams: Kirchhoff-love theory versus simo-

reissner theory. Archives of Computational Methods in Engineering, 26:163–243, 2019.
[26] M. R. M. Crespo da Silva and C. C. Glynn. Nonlinear flexural-flexural-torsional dynamics of inextensible beams. I. equations of motion.

Journal of Structural Mechanics, 6:437–448, 1978.
[27] M. R. M. Crespo da Silva and C. C. Glynn. Nonlinear flexural-flexural-torsional dynamics of inextensible beams. II. forced motions. Journal

of Structural Mechanics, 6:449–461, 1978.
[28] N. Damil and M. Potier-Ferry. A new method to compute perturbed bifurcation: application to the buckling of imperfect elastic structures.

International Journal of Engineering Sciences, 26:943–957, 1990.
[29] B. Cochelin, N. Damil, and M. Potier-Ferry. Asymptotic-numerical method and Padé approximations for non-linear elastic structures.

International Journal for Numerical Methods in Engineering, 37:1187–1213, 1994.
[30] B. Cochelin and C. Vergez. A high order purely frequency-based harmonic balance formulation for continuation of periodic solutions. Journal

of Sound and Vibration, 324(1-2):243–262, 2009.
[31] S. Karkar, B. Cochelin, and C. Vergez. A high-order, purely frequency based harmonic balance formulation for continuation of periodic

solutions: The case of non-polynomial nonlinearities. Journal of Sound and Vibration, 332(4):968–277, 2013.
[32] L. Guillot, A. Lazarus, O. Thomas, C. Vergez, and B. Cochelin. A purely frequency based Floquet-Hill formulation for the efficient stability

computation of periodic solutions of ordinary differential systems. Journal of Computational Physics, 416, 2020.
[33] S. Leyendecker, P. Betsch, and P. Steinmann. Objective energy-momentum conserving integration for the constrained dynamics of

geometrically exact beams. Computer Methods in Applied Mechanics and Engineering, 195:2313–2333, 2006.
[34] H. Lang, J. Linn, and M. Arnold. Multi-body dynamics simulation of geometrically exact Cosserat rods. Multibody System Dynamics,

25:285–312, 2011.
[35] O. Brüls, A. Cardona, and M. Arnold. Lie group generalized-𝛼 time integration of constrained flexible multibody systems. Mechanism and

Machine Theory, 48:121–137, 2012.
[36] V. Sonneville, A. Cardona, and O. Brüls. Geometrically exact beam finite element formulated on the special Euclidean group SE(3). Computer

Methods in Applied Mechanics and Engineering, 268:451–474, 2014.
[37] J. Rong, Z. Wu, C. Liu, and O. Brüls. Geometrically exact thin-walled beam including warping formulated on the special euclidean group

se(3). Computer Methods in Applied Mechanics and Engineering, 369, 2020.
[38] C. Touzé, A. Vizzaccaro, and O. Thomas. Model order reduction methods for geometrically nonlinear structures: a review of nonlinear

techniques. Nonlinear Dynamics, 105:1141–1190, 2021.
[39] A.H. Nayfeh and D.T. Mook. Nonlinear Oscillations. John Wiley & Sons, Inc., New York, 1995.
[40] Z.A. Shami, C. Giraud-Audine, and O. Thomas. A nonlinear piezoelectric shunt absorber with a 2:1 internal resonance: Theory. Mechanical

Systems and Signal Processing, 170(108768), 2022.
[41] L. Guillot, P. Vigué, C. Vergez, and B. Cochelin. Continuation of quasi-periodic solutions with two-frequency Harmonic Balance Method.

Journal of Sound and Vibration, 394:434–450, 2017.
[42] H. Farokhi and A. Erturk. Three-dimensional nonlinear extreme vibrations of cantilevers based on a geometrically exact model. Journal of

Sound and Vibration, 510(116295), 2021.
[43] G. Kerschen, M. Peeters, J.C. Golinval, and A.F. Vakakis. Nonlinear normal modes, Part I: A useful framework for the structural dynamicist.

Mechanical Systems and Signal Processing, 23:170–194, 2009.
[44] O. Thomas, A. Sénéchal, and J.-F. Deü. Hardening/softening behavior and reduced order modeling of nonlinear vibrations of rotating cantilever

beams. Nonlinear Dynamics, 86:1293–1318, 2016.
[45] R. W. Ogden. Non-Linear Elastic Deformations. Dover, 1997.
[46] A. Föppl. Vorlesungen über Technische Mechanik. Dritter Band Festigkeitslehre. Druck & Verlag von B. G. Teubner, Leipzig, 1897.
[47] T. Kaneko. On timoshenko’s correction for shear in vibrating beams. Journal of Physics D: Applied Physics, 8:1927–1936, 1975.



[48] J. D. Renton. Generalized beam theory applied to shear stiffness. International Journal of Solids and Structures, 27(15):1955–1967, 1991.
[49] C. Felippa. Nonlinear Finite Element Methods, chapter 9: The TL Timoshenko Plane Beam Element. University of Colorado, Boulder, 2001.
[50] M. Géradin and D. Rixen. Mechanical Vibrations, Theory and Application to Structural Dynamics. Wiley, New York, 1997.
[51] S. Neukirch, J. Frelat, A. Goriely, and C. Maurini. Vibrations of post-buckled rods: The singular inextensible limit. Journal of Sound and

Vibration, 331:704–720, 2012.
[52] S. Neukirch, A. Goriely, and O. Thomas. Singular inextensible limit in the vibrations of post-buckled rods: Analytical derivation and role of

boundary conditions. Journal of Sound and Vibration, 333(3):962–970, 2014.
[53] S. Neukirch, M. Yavari, N. Challamel, and O. Thomas. Comparison of the von Kármán and kirchhoff models for the post-buckling and

vibrations of elastic beams. Journal of Theoretical, Computational and Applied Mechanics, May 2021.
[54] A. H. Nayfeh and P. F. Paï. Linear and nonlinear structural mechanics. John Wiley & sons, 2004.
[55] A. Givois, A. Grolet, O. Thomas, and J.-F. Deü. On the frequency response computation of geometrically nonlinear flat structures using

reduced-order finite element models. Nonlinear Dynamics, 97(2):1747–1781, 2019.
[56] C. Touzé, C. Camier, G. Favraud, and O. Thomas. Effect of imperfections and damping on the type of nonlinearity of circular plates and

shallow spherical shells. Mathematical Problems in Engineering, 2008(678307), 2008.
[57] C. Camier, C. Touzé, and O. Thomas. Non-linear vibrations of imperfect free-edge circular plates and shells. European Journal of Mechanics

A/ Solids, 28(3):500–515, 2009.
[58] A. Vizzaccaro, A. Opreni, L. Salles, A. Frangi, and C. Touzé. High order direct parametrisation of invariant manifolds for model order reduction

of finite element structures: application to large amplitude vibrations and uncovering of a folding point. Nonlinear Dynamics, 110(1):525–571,
2022.

[59] J. Marconi, P. Tiso, D. E. Quadrelli, and F. Braghin. A higher-order parametric nonlinear reduced-order model for imperfect structures using
neumann expansion. Nonlinear Dynamics, 104:3039–3063, 2021.

[60] W. Qiao, T. Guo, H. Kang, and Y. Zhao. Softening-hardening transition in nonlinear structures with an initial curvature: A refined asymptotic
analysis. Nonlinear Dynamics, 107:357–374, 2022.

[61] X. Sun, G. Kerschen, and L. Cheng. Geometrical nonlinearities in a curved cantilever beam: A condensation model and inertia-induced
nonlinear features. Nonlinear Dynamics, 111:6533–6556, 2023.

[62] A. Martin, A. Opreni, A. Vizzaccaro, M. Debeurre, L. Salles, A. Frangi, O. Thomas, and C. Touzé. Reduced order modeling of geometrically
nonlinear rotating structures using the direct parametrisation of invariant manifolds. Journal of Theoretical, Computational and Applied
Mechanics, 2023. submitted, https://hal.science/hal-03886793.

[63] M. Colin, O. Thomas, S. Grondel, and E. Cattan. Very large amplitude vibrations of flexible structures: Experimental identification and
validation of a quadratic drag damping model. Journal of Fluids and Structures, 97(103056), 2020.

Statements and Declarations
Funding

This project has received funding from the European Union’s Horizon 2020 research and innovation programme
under the Marie Skłodowska-Curie grant agreement No. 860124.

Competing interests
The authors declare that they have no known competing financial or non-financial interests that could have appeared

to influence this work.

Data availability
The data generated and analyzed in this study is available upon request.

CRediT authorship contribution statement
Marielle Debeurre: software, investigation, visualization, writing - original draft preparation, review & editing.

Aurélien Grolet: conceptualization, methodology, supervision, writing - review & editing. Olivier Thomas: concep-
tualization, methodology, supervision, writing - review & editing.




