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The linear stability of the axisymmetric steady thermocapillary flow in a liquid bridge
made from 2 cSt silicone oil (Prandtl number 28) is investigated numerically in the
framework of the Boussinesq approximation. The flow and temperature fields in the
surrounding gas phase (air) are taken into account for a generic cylindrical container
hosting the liquid bridge. The flows in the liquid and in the gas are fully coupled across the
hydrostatically deformed liquid–gas interface, neglecting dynamic interface deformations.
Originating from a common reference case, the linear stability boundary is computed
varying the length of the liquid bridge (aspect ratio), its volume and the gravity level,
providing accurate critical data. The qualitative dependence of the critical threshold on
these parameters is explained in terms of the characteristics of the critical mode. The
heat exchange between the ambient gas and the liquid bridge that is fully resolved has an
important influence on the critical conditions.

Key words: thermocapillarity, instability, liquid bridge, gas/liquid flow

1. Introduction

The interfacial free energy between two immiscible fluids depends on the local
temperature. If the temperature varies along the interface, then the associated energy
gradients lead to variations of the line tension. This is the thermocapillary effect (Thomson
1855; Scriven & Sternling 1960; Levich & Krylov 1969), which can be a major driving
force for fluid motion in pure fluids. Thermocapillary flows are of great importance for
industrial applications such as welding (Mills et al. 1998), combustion (Sirignano &

† Email addresses for correspondence: mario.stojanovic@tuwien.ac.at,
francesco.romano@ensam.eu, hendrik.kuhlmann@tuwien.ac.at

© The Author(s), 2022. Published by Cambridge University Press. This is an Open Access article,
distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/
licenses/by/4.0/), which permits unrestricted re-use, distribution and reproduction, provided the
original article is properly cited. 949 A5-1

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

72
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

mailto:mario.stojanovic@tuwien.ac.at
mailto:francesco.romano@ensam.eu
mailto:hendrik.kuhlmann@tuwien.ac.at
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/jfm.2022.724&domain=pdf
https://doi.org/10.1017/jfm.2022.724
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Glassman 1970), crystal growth (Schwabe 1981) and droplet manipulation in microfluidics
(Young, Goldstein & Block 1959).

To better understand thermocapillary flows, a number of paradigmatic configurations
have been investigated, ranging from flows in thin films (Smith & Davis 1983a, b; Oron,
Davis & Bankoff 1997; Diez & Kondic 2002; Craster & Matar 2009), flows in liquid-filled
cavities with a non-isothermal interface (Carpenter & Homsy 1989; Ohnishi, Azuma &
Doi 1992; Xu & Zebib 1998; Kuhlmann & Albensoeder 2008; Romanò & Kuhlmann
2017), and axisymmetric liquid bridges kept in place by the mean surface tension and
aligned with the gravity vector (Chun & Wuest 1979; Preisser, Schwabe & Scharmann
1983; Kuhlmann 1999; Kawamura & Ueno 2006; Schwabe 2014; Kumar 2015; Romanò &
Kuhlmann 2018). The canonical system of a liquid bridge is often employed to model the
fundamental transport processes in the floating-zone technique of crystal growth (Pfann
1962; Hurle & Jakeman 1981). A major aspect in floating-zone crystal growth is the onset
of time-dependent melt flow, because it is associated with a time-dependent propagation
of the solidification front, which leads to an uneven distribution of impurities (striations)
in the desired single crystal (Cröll et al. 1991).

In the floating-zone technique, the liquid bridge is supported by solid crystalline or
polycrystalline rods whose temperature near the melt zone is close to the melting point,
while the temperature of the interface, which is heated, exhibits a maximum midway
between the two supports. To simplify the problem while retaining the essential flow
physics, the half-zone model has been introduced by Schwabe et al. (1978). In their
half-zone model, two support rods of a material with a higher melting point than the
liquid are used and kept at different temperatures. The strength of the flow in the half-zone
depends on the applied temperature difference, often measured by a suitable Reynolds
number Re. As the Reynolds number is increased, the axisymmetric steady flow in the
half-zone becomes unstable. As these flow instabilities are related to the striations found
in crystals produced by the floating-zone technique, much effort has been devoted to flow
instabilities in the half-zone model (Kuhlmann 1999), which led to numerous experimental
(Preisser et al. 1983; Velten, Schwabe & Scharmann 1991; Takagi et al. 2001; Ueno,
Tanaka & Kawamura 2003; Kawamura & Ueno 2006; Gaponenko, Mialdun & Shevtsova
2012; Yano et al. 2017; Kang et al. 2019) and numerical (Wanschura et al. 1995; Leypoldt,
Kuhlmann & Rath 2000; Levenstam, Amberg & Winkler 2001; Lappa, Savino & Monti
2001; Nienhüser & Kuhlmann 2002; Shevtsova, Gaponenko & Nepomnyashchy 2013; Li
et al. 2015; Motegi, Fujimura & Ueno 2017a) investigations, only a few of which can be
cited here. Investigations of the full-zone problem are sparse (see, however, Wanschura,
Kuhlmann & Rath 1997a; Kasperski, Batoul & Labrosse 2000; Lappa 2003, 2004, 2005;
Hu, Tang & Li 2008; Motegi, Kudo & Ueno 2017b).

The stability of the flow in a thermocapillary liquid bridge is a complex problem,
because the flow and temperature fields in the gas and the liquid phase are coupled via
a deformable interface. For this reason, most of the theoretical and numerical studies
have made simplifying assumptions. The most popular approximation is to consider the
interface indeformable (Shevtsova & Legros 1998; Nienhüser & Kuhlmann 2002) or
even cylindrical (see e.g. Neitzel et al. 1993; Wanschura et al. 1995). Furthermore, the
ambient atmosphere is often considered a passive gas that does not exert any viscous
stresses on the interface and which may even be considered adiabatic. In this way, the
two-phase problem is approximated by a single-phase problem that depends on only a few
non-dimensional parameters. Within the single-fluid model, the dependence on the Prandtl
number of the critical Reynolds number at which the instability arises has been established
numerically by Wanschura et al. (1995) and Levenstam et al. (2001): for large Prandtl
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numbers (Pr � 1), the axisymmetric flow becomes unstable to hydrothermal waves upon
increasing the Reynolds number, while the first instability at low Prandtl numbers (Pr � 1)
is three-dimensional but steady.

The stationary three-dimensional instability was discovered by Levenstam & Amberg
(1994, 1995) using numerical simulation, and by Wanschura et al. (1995) using linear
stability analysis. The instability has been compared with the instability of vortex rings,
and its mechanics was further detailed by Wanschura et al. (1995) who noted that the
instability is purely inertial, while the temperature field serves only to drive the basic
flow. Leypoldt, Kuhlmann & Rath (2002) carried out numerical simulations and explained
the second instability at low Prandtl numbers when the steady three-dimensional flow
becomes time-dependent. The second critical Reynolds number was further investigated
by Motegi et al. (2017a) using a numerical Floquet stability analysis. Further investigation
of the low-Prandtl-number instabilities are due to Takagi et al. (2001), Imaishi et al. (2001),
Li et al. (2007, 2008) and Fujimura (2013).

For high Prandtl numbers, Wanschura et al. (1995) identified numerically the critical
mode as a hydrothermal wave, a concept first introduced by Smith & Davis (1983a).
Hydrothermal waves are characterised by locally strong temperature extrema in the bulk
while the thermal wave is very weak on the interface. At the onset, a weak perturbation
flow is driven primarily by azimuthal temperature gradients (thermocapillary stresses).
The associated return flow transports basic state temperature in the bulk, which leads to
the large internal perturbation temperature extrema that feed back on the free surface.
Preisser et al. (1983) found experimentally the approximate correlation m ≈ 2.2/Γ for the
dependence of the critical wavenumber m on the length-to-radius aspect ratio Γ = d/R
at the onset of oscillations. This dependence was confirmed within the linear stability
analysis of Wanschura et al. (1995) and others. However, the results of Wanschura et al.
(1995) were obtained for moderate Prandtl numbers, zero gravity and an indeformable
adiabatic free surface. Therefore, they deviate from the extensive measurements of Velten
et al. (1991), indicating that much finer and more realistic modelling is necessary.

The effect of the shape (slender/fat) of high-Prandtl-number liquid bridges on the
critical Reynolds number has been investigated experimentally by Hu et al. (1994), Masud,
Kamotani & Ostrach (1997) and Sakurai, Ohishi & Hirata (2004). Shevtsova & Legros
(1998) carried out numerical simulations. Using the assumption of an adiabatic free
surface, Nienhüser & Kuhlmann (2002) and Nienhüser (2002) calculated numerically the
impact of the static shape of the liquid bridge and of buoyancy forces on the linear stability
of an axisymmetric flow. Their study overcame the limits of stability analyses, which
were restricted before to cylindrical bridges. For volumes of liquid of approximately 90 %
of the straight cylindrical volume, the high-Prandtl-number axisymmetric steady flow is
remarkably stable (see e.g. Sakurai, Ohishi & Hirata 1996; Chen & Hu 1998).

Even though Fu & Ostrach (1985) computed rudimentarily a coupled liquid–gas flow,
early numerical attempts to model the heat transfer across the interface were typically
based on Newton’s law of heat transfer (see e.g. Shen 1989; Neitzel et al. 1993; Nienhüser
& Kuhlmann 2001; Fujimoto et al. 2019; Carrión, Herrada & Montanero 2020). A recent
study by Romanò & Kuhlmann (2019) has shown, however, that modelling the heat transfer
across the interface by Newton’s law tends to underestimate the thermocapillary driving,
except very close to the cold rod. Motivated by the experimental evidence of the strong
impact of the heat transfer across the interface (Kamotani et al. 2003; Yano et al. 2017),
and with improved computing capabilities, more recent numerical approaches take into
account the flow and heat transport in the surrounding gas phase (Shevtsova et al. 2014;
Watanabe et al. 2014). Also, the possibility of imposing an external gas flow shows
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M. Stojanović, F. Romanò and H.C. Kuhlmann

promise for a control of the onset of hydrothermal waves. This perspective stimulated
new experiments (Ueno, Kawazoe & Enomoto 2010; Irikura et al. 2005; Gaponenko et al.
2021) and numerical investigations (Yasnou et al. 2018) with imposed axial gas flow.

The present work is aimed at a linear stability analysis of the flow in a thermocapillary
liquid bridge including the gas phase. To that end, we use our linear stability code
MaranStable, which has been significantly extended and improved since its earlier version
(see e.g. Shevtsova et al. 2014). Owing to the large parameter space, a liquid bridge
made of 2 cSt silicone oil is considered (Pr = 28), which has often been employed
in experiments (Yano et al. 2018c), fully coupled to the surrounding air. The material
parameters are assumed constant, and the interface is indeformable. Stability analyses
are carried out quasi-continuously varying the aspect ratio, the volume fraction and the
gravity level. The relevance of such data is understood when considering that accurate
numerical studies in such high-Prandtl-number liquid bridges are hardly reported in
the literature, even though they are of great interest for experiments on stability and
particle accumulation studies on the ground and under zero gravity. On the ground
buoyancy-driven flow is always coupled to and interferes with a thermocapillary flow.
Under zero gravity, however, buoyancy can be eliminated. This property is utilised in space
experiments like MEIS (Kawamura et al. 2012), Dynamic Surf (Yano et al. 2018b) and
JEREMI (planned; Barmak, Romanò & Kuhlmann 2021).

To compute the linear stability of the axisymmetric flow and its dependence on the
parameters, we first formulate the governing equations and boundary conditions in § 2.
Thereafter, in § 3 the linear stability approach and the post-processing are described. The
results are presented and discussed in § 4, interpreting the stability boundaries in the light
of the multi-phase energy budgets. We close with a discussion and conclusions in § 5.

2. Problem formulation

2.1. The setup
We consider an axisymmetric liquid bridge of a Newtonian liquid captured between two
coaxial cylindrical rods both of length drod. The liquid bridge has axial length d and is
assumed to be pinned to the sharp circular edges of the rods of radius ri, as shown in
figure 1. The rods are aligned parallel to the acceleration of gravity g = −gez, where ez
is the axial unit vector, and mounted coaxially in a closed cylindrical chamber of radius
ro > ri and height 2drod + d filled with a gas. We use cylindrical coordinates (r, ϕ, z)
centred in the middle of the liquid bridge, and corresponding unit vectors (er, eϕ, ez) such
that the position vector is x = rer + zez, and the velocity field is represented by u = uer +
veϕ + wez. The characteristic geometrical parameters are

Γ = d
ri
, Γrod = drod

ri
, η = ro

ri
, (2.1a–c)

where Γ and Γrod are the aspect ratio of the liquid bridge and of the rods, respectively, and
η is the radius ratio of the chamber.

While the cylindrical sidewall and the annular top and bottom walls of the chamber are
assumed to be adiabatic, the cylindrical support rods are kept at different but constant
temperatures Thot = T0 +�T/2 and Tcold = T0 −�T/2, respectively, where T0 =
(Thot + Tcold)/2 is the mean temperature, hereinafter used as the reference temperature.
The enforced temperature variation across the liquid bridge creates a variation of the
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g

d

z

r

h(z)

Liquid
Gas

drod

drod
Thot

Tcold

ri
ro

Figure 1. Schematic of the problem set-up and coordinates. The hot (red) and cold (blue) solid rods supporting
the liquid bridge (light blue) are mounted coaxially in a closed cylindrical gas container (grey, hatched). Gravity
acts in the negative z direction and leads to the hydrostatic shape h(z) of the liquid bridge. The system is
axisymmetric with respect to the dash-dotted line (r = 0).

surface tension that can be described, to first order, by the linear dependence

σ(T) = σ0 − γ (T − T0)+ O[(T − T0)
2], (2.2)

where σ0 = σ(T0) is the surface tension at the mean temperature, and γ = −∂σ/∂T|T=T0
is the negative surface tension coefficient. The resulting surface tension gradients induce
tangential shear stresses via the thermocapillary effect, which lead to an axisymmetric
thermocapillary flow on both sides of the interface (Kuhlmann 1999).

In addition to the thermocapillary stresses, the flow in the liquid is driven by buoyancy
forces due to the temperature dependence of the density of the liquid:

ρ(T) = ρ0{1 − β(T − T0)+ O[(T − T0)
2]}, (2.3)

where ρ0 = ρ(T0) is the liquid density at the reference temperature, and β =
−ρ−1

0 (∂ρ/∂T)p is the thermal expansion coefficient. Buoyancy forces also act in the
gas phase due to the temperature-induced density variation of the gas in contact with
the liquid–gas interface. For short liquid bridges employed in terrestrial laboratories,
thermocapillary surface forces typically dominate over buoyant volume forces.

2.2. Governing equations
To compute the axisymmetric flow and temperature fields, and to investigate the
hydrodynamic stability of the flow, the governing transport equations must be solved
subject to the respective boundary conditions.

2.2.1. Transport equations
To non-dimensionalise the governing equations, we adopt the thermocapillary diffusive
scaling given in table 1 (see e.g. Kuhlmann 1999), where ν is the constant kinematic
viscosity of the liquid at the reference temperature. The temperature dependence of the
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Variable x t u p T

Scale d d2/ν γ �T/ρ0ν γ �T/d �T

Table 1. Scaling.

density in the liquid and in the gas is taken into account within the Oberbeck–Boussinesq
approximation (Landau & Lifschitz 1959; Mihaljan 1962). In this formulation, the
Navier–Stokes, continuity and energy equations for the liquid phase read

∂u
∂t

+ Re u · ∇u = −∇p + ∇2u + Bd ϑez, (2.4a)

∇ · u = 0, (2.4b)

∂ϑ

∂t
+ Re u · ∇ϑ = 1

Pr
∇2ϑ, (2.4c)

where ϑ = (T − T0)/�T is the normalised deviation from the reference temperature.
The fluid motion depends on the thermocapillary Reynolds, Prandtl and dynamic Bond
numbers defined as

Re = γ �T d
ρ0ν2 , Pr = ν

κ
, Bd = ρ0gβd2

γ
, (2.5a–c)

where κ is the constant thermal diffusivity of the liquid at the reference temperature.
Instead of Re, the Marangoni number Ma = Re Pr can be used.

Using the same scaling, the flow in the gas phase is governed by

∂ug

∂t
+ Re ug · ∇ug = − 1

ρ̃
∇pg + ν̃ ∇2ug + β̃ Bd ϑgez, (2.6a)

∇ · ug = 0, (2.6b)

∂ϑg

∂t
+ Re ug · ∇ϑg = κ̃

Pr
∇2ϑg, (2.6c)

where the non-dimensional field quantities are indicated by the subscript g. The additional
non-dimensional parameters are the gas-to-liquid ratios of the density ρ̃ = ρg/ρ0,
the kinematic viscosity ν̃ = νg/ν, the thermal diffusivity κ̃ = κg/κ , and the thermal
expansion coefficient β̃ = βg/β. Introducing

α = (
αρ, αν, ακ, αβ

) =
{
(1, 1, 1, 1), for the liquid phase,
(ρ̃, ν̃, κ̃, β̃), for the gas phase,

(2.7)

allows us to refer to both phases at the same time, while keeping the notation succinct.

2.2.2. Boundary conditions
(i) Support rods. To be able to control experimentally the temperatures imposed on
the liquid bridge, the heating rods are typically made from good thermal conductors.
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Stability of liquid–gas thermocapillary flow

Accordingly, the surfaces of the rods are modelled as isothermal, no-slip and
no-penetration walls,

hot rod: u = ug = 0, ϑ = ϑg = 1/2, (2.8a,b)

cold rod: u = ug = 0, ϑ = ϑg = −1/2, (2.8c,d)

being in contact with the liquid along the faces of the rods and with the gas phase along
the cylindrical surface.

(ii) Chamber walls. The outer cylindrical wall and the top and bottom walls of the closed
chamber are considered as no-slip and adiabatic boundaries satisfying

r = η/Γ : ug = 0,
∂ϑg

∂r
= 0, (2.9a,b)

z = ± (1/2 + Γrod/Γ ) : ug = 0,
∂ϑg

∂z
= 0. (2.9c,d)

(iii) Liquid–gas interface. The contiguous non-axisymmetric liquid–gas interface is
described by a unique radial position r = h(ϕ, z, t) on which coupling conditions for u
and ϑ must be provided. The continuity of temperature and heat flux requires

r = h(ϕ, z, t) : ϑ = ϑg and n · ∇ϑ = κ̃n · ∇ϑg, (2.10a,b)

where n is the local unit vector normal to the interface directed from the liquid into the
gas phase. The kinematic coupling

r = h(ϕ, z, t) : u = ug and u = 1
Re

∂h
∂t

+ v

r
∂h
∂ϕ

+ w
∂h
∂z
, (2.11a,b)

forces material elements on the interface to remain on the interface. Finally, the dynamic
condition provided by the tangential stress balance

r = h(ϕ, z, t) : n · S · t = −∇ϑ · t + ρ̃ν̃n · Sg · t (2.12)

must be satisfied, where S = ∇u + (∇u)T and ρ̃ν̃Sg are the viscous stress tensors in the
liquid and the gas, respectively. The vector t can be any of the two orthogonal unit vectors
tangent to the interface.

2.3. Solution structure

2.3.1. Shape of the interface
The non-dimensional radial position r = h(ϕ, z, t) of the interface is part of the solution
and therefore a priori unknown. Motivated by the very small capillary numbers
Ca = γ �T/σ0 in typical experiments, we consider the limit of asymptotically large mean
surface tension σ0 in which Ca → 0. In this limit, dynamic free-surface deformations
can be neglected, and the problem of determining the liquid–gas interface decouples
from solving (2.4) and (2.6) together with (2.8)–(2.12). These circumstances allow for
an axisymmetric and stationary interface h(ϕ, z, t) → h(z) that is determined solely by
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the normal-stress balance, yielding the Young–Laplace equation

�ph = ∇ · n
Ca

+ Bo
Ca

z, (2.13)

where n = (1, 0,−hz)
T/
√

1 + h2
z is the outward surface normal vector, �ph is the

hydrostatic (subscript h) pressure jump across the liquid–gas interface, and

Bo = (ρ0 − ρg0)gd2

σ0
(2.14)

is the static Bond number. Note that the ratio λ = Bd/Bo = ρ0βσ0/[γ (ρ0 − ρg0)] is a
material parameter. The Young–Laplace equation (2.13) for h is of second order in z and
ϕ, and needs to be closed by additional conditions. The pinned contact lines require

h (z = ±1/2) = 1
Γ
. (2.15)

Owing to these constraints, (2.13) has an axisymmetric solution h(z), which we consider
within its stability limits (Slobozhanin & Perales 1993). To determine h(z) and the pressure
jump ph uniquely, (2.13) is solved subject to the volume constraint

Γ 2
∫ 1/2

−1/2
h2(z) dz = V, (2.16)

where V = Vl/V0 is the liquid volume Vl normalised by the volume V0 = πr2
i d of an

upright cylindrical liquid bridge. Within the range of V considered, the contact angle is a
bijective function of V (Nienhüser & Kuhlmann 2002).

2.3.2. Basic flow
For a given axisymmetric hydrostatic shape h(z) of the liquid bridge, the symmetries of
the problem allow for a steady axisymmetric flow (∂t = ∂ϕ = 0) with v0 = vg0 = 0, which
is denoted q0(r, z) = (u0,w0, p0, ϑ0) (liquid phase) and qg0(r, z) = (ug0,wg0, pg0, ϑg0)

(gas phase). The pressure fields pg0 and p0 are flow-induced and add, respectively, to the
ambient pressures pa (gas) and pa +�ph (liquid).

The flows q0 and qg0 are obtained by solving the steady axisymmetric versions of the
differential equations (2.4) and (2.6), subject to the steady axisymmetric versions of the
boundary conditions. On r = 0, axisymmetry requires

u0 = ∂w0

∂r
= ∂ϑ0

∂r
= 0, (2.17)

while on the free surface we obtain, from (2.11a,b),

u0

w0
= hz. (2.18)
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2.3.3. Linear stability analysis
For small Reynolds numbers Re, the basic flow (q0, qg0) is stable. When Re exceeds a
critical Reynolds number Rec, the basic flow becomes unstable. In order to calculate
the critical threshold, a linear stability analysis is carried out. To that end, the general
three-dimensional time-dependent flow q = (u, v,w, p, ϑ) and qg = (ug, vg,wg, pg, ϑg)
is written as

u = u0(r, z)+ u′(r, ϕ, z, t), ug = ug0(r, z)+ u′
g(r, ϕ, z, t), (2.19a,b)

v = 0 + v′(r, ϕ, z, t), vg = 0 + v′
g(r, ϕ, z, t), (2.19c,d)

w = w0(r, z)+ w′(r, ϕ, z, t), wg = wg0(r, z)+ w′
g(r, ϕ, z, t), (2.19e,f )

p = p0(r, z)+ p′(r, ϕ, z, t), pg = pg0(r, z)+ p′
g(r, ϕ, z, t), (2.19g,h)

ϑ = ϑ0(r, z)+ ϑ ′(r, ϕ, z, t), ϑg = ϑg0(r, z)+ ϑ ′
g(r, ϕ, z, t), (2.19i,j)

where deviations from the basic flow are indicated by a prime (′). Inserting this
decomposition into (2.4) and (2.6), and linearising with respect to the perturbation
quantities, yields the linear stability equations that have the same form,

∂u′

∂t
+ Re(u0 · ∇u′ + u′ · ∇u0) = − 1

αρ
∇p′ + αν ∇2u′ + αβ Bd ϑ ′ez, (2.20a)

∇ · u′ = 0, (2.20b)

∂ϑ ′

∂t
+ Re(u0 · ∇ϑ ′ + u′ · ∇ϑ0) = ακ

Pr
∇2ϑ ′, (2.20c)

for both phases. The subscript ‘g’ (for the gas phase) no longer appears, because the
distinction between the two phases is made, henceforth, by the set of coefficients α defined
in (2.7).

Due to the homogeneity of (2.20) in ϕ and t, the general solution q′ = (u′, v′,w′, p′, ϑ ′)
of (2.20) can be written as a superposition of normal modes

q′ =
∑
j,m

q̂j,m(r, z) exp(μj,mt + imϕ)+ c.c., (2.21)

where μ = μj,m ∈ C is a complex growth rate, and m ∈ N0 is the azimuthal wavenumber.
The index j numbers the discrete part of the spectrum, and c.c. denotes the complex
conjugate. Inserting the ansatz (2.21) into the linear perturbation equations (2.20), one
obtains linear differential equations for the perturbation amplitudes q̂ = (û, v̂, ŵ, p̂, ϑ̂) that
depend only on r and z:

μû + Re
[(

1
r

+ ∂

∂r

)
(2u0û)+ u0iv̂m

r
+ ∂(u0ŵ + ûw0)

∂z

]

= − 1
αρ

∂ p̂
∂r

+ αν

[
1
r
∂

∂r

(
r
∂ û
∂r

)
− (m2 + 1)

û
r2 − 2

r2 iv̂m + ∂2û
∂z2

]
, (2.22a)
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m = 0 :

m = 1 :

m > 1 :

û = 0

∂ û/∂r = 0

û = 0

v̂ = 0

∂v̂/∂r = 0

v̂ = 0

∂ŵ/∂r = 0

ŵ = 0

ŵ = 0

∂ϑ̂/∂r = 0

ϑ̂ = 0

ϑ̂ = 0

Table 2. Boundary conditions for the perturbation flow on r = 0.

μv̂ + Re
[(

2
r

+ ∂

∂r

)
(u0v̂)+ ∂(v̂w0)

∂z

]

= − 1
αρ

1
r

p̂im + αν

[
1
r
∂

∂r

(
r
∂v̂

∂r

)
− (m2 + 1)

v̂

r2 + 2
r2 iûm + ∂2v̂

∂z2

]
, (2.22b)

μŵ + Re
[

1
r
∂(w0û + ŵu0)

∂r
+ w0iv̂m

r
+ 2

∂w0ŵ
∂z

]

= − 1
αρ

∂ p̂
∂z

+ αν

[
1
r
∂

∂r

(
r
∂ŵ
∂r

)
− m2 ŵ

r2 + ∂2ŵ
∂z2

]
+ αβ Bd ϑ̂, (2.22c)

1
r
∂(rû)
∂r

+ 1
r

iv̂m + ∂ŵ
∂z

= 0, (2.22d)

μϑ̂ + Re

[
1
r
∂(ϑ0û + ϑ̂u0)

∂r
+ ϑ0iv̂m

r
+ ∂(ϑ0ŵ + ϑ̂w0)

∂z

]

= ακ

Pr

[
1
r
∂

∂r

(
r
∂ϑ̂

∂r

)
− m2 ϑ̂

r2 + ∂2ϑ̂

∂z2

]
. (2.22e)

Using polar coordinates, the perturbation flow must satisfy boundary conditions on the
axis r = 0. These are provided in table 2 and can be derived from uniqueness conditions
for ∂u/∂ϕ and ∂ϑ/∂ϕ as r → 0 (Batchelor & Gill 1962; Xu & Davis 1984). Since the
imposed constant temperatures on the cylindrical rods are taken care of by the basic flow,
all perturbation quantities must vanish on the support rods:

û = ûg = 0 and ϑ̂ = ϑ̂g = 0. (2.23a,b)

Like the basic flow, the velocity and heat flux of the perturbations must vanish on the solid
adiabatic walls of the gas container:

ûg = 0 and n · ∇ϑ̂g = 0. (2.24a,b)

In the limit Ca → 0 considered, the liquid–gas interface is indeformable. From
(2.10a,b)–(2.12), the coupling on the axisymmetric interface at r = h(z) between the
liquid- and gas-phase perturbations is provided by

û = ûg, ϑ̂ = ϑ̂g, n · ∇ϑ̂ = κ̃n · ∇ϑ̂g and n · Ŝ · t = −∇ϑ̂ · t + ρ̃ν̃n · Ŝg · t,
(2.25a–d)

with Ŝ = ∇û + (∇û)T.
For each azimuthal wavenumber m, (2.22)–(2.25a–d) represent a linear eigenvalue

problem with an infinite number of eigenmodes q′. The eigenmodes and the corresponding
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Stability of liquid–gas thermocapillary flow

eigenvalues

μj,m = μ(j,m; Re, Γ,V,Pr, λ, ρ̃, ν̃, κ̃, β̃) (2.26)

depend on a number of parameters. Neutral values Ren (using subscript n) of
the Reynolds number associated with each mode (j,m) are characterised by a
vanishing real part (Re) of the eigenvalue, Re[μj,m(Ren)] = 0. These conditions
define neutral hypersurfaces Rej,m

n (Γ,V,Pr, λ, ρ̃, ν̃, κ̃, β̃) in the parameter space. The
envelope of all neutral hypersurfaces Rec = minj,m Rej,m

n is the critical Reynolds number
Rec(Γ,V,Pr, λ, ρ̃, ν̃, κ̃, β̃). For slightly supercritical Reynolds numbers with ε = (Re −
Rec)/Rec � 1, the basic flow is guaranteed to be unstable, because at least one eigenmode
exists that has a positive growth rate Re(μ) > 0. This does not preclude the rare case of
isolated islands in parameter space for larger Reynolds numbers (Re/Rec > 1) for which
the basic flow can be linearly stable, i.e. for which ∀j,m Re(μj,m) < 0. However, within
the present linear stability approach, which does not take care of nonlinear effects in the
perturbation flow, it cannot be decided if the basic flow q0 is stable to finite-amplitude
perturbations, either in these linearly stable islands or for Re < Rec. Experimental and
numerical evidence (Velten et al. 1991; Leypoldt et al. 2000; Sim & Zebib 2002) suggests,
however, that the first instability of the basic flow is typically supercritical.

2.4. Post-processing
Analysing the energy transfer between the basic flow and the neutral mode can provide
insights regarding the instability mechanism and helps us to understand the underlying
physics. To that end, we build on the energy analysis derived in Nienhüser & Kuhlmann
(2002) for a non-cylindrical axisymmetric liquid bridge, where the gas phase was
neglected, and extend the equations to the present two-phase model. Multiplying the
linearised momentum equation (2.20a) by the perturbation velocity vector u′, the resulting
equations for the liquid and gas are integrated over the volumes Vl and Vg, respectively,
occupied by each phase. After splitting all terms into volume and surface integrals by
means of Green’s theorem, we obtain the balance

dEkin

dt
= 1

Dkin

d
dt

∫
Vi

u′2

2
dV = −1 + Mr + Mϕ + Mz +

5∑
j=1

Ij + B, i ∈ [l, g], (2.27)

for the (normalised) rate of change of the kinetic energy Ekin, where all terms on the
right-hand side have been normalised by the mechanical dissipation rate Dkin. Similarly,
multiplication of (2.20c) by ϑ ′ and integration over the volume occupied by each phase
yields the thermal energy balance

dEth

dt
= 1

Dth

d
dt

∫
Vi

ϑ ′2

2
dV = −1 +

2∑
j=1

Jj + Hfs, i ∈ [l, g], (2.28)

where all terms now have been scaled by the thermal dissipation rate Dth. Thus the
scaled dissipation rates Dkin = Dth = 1 are constant. The subscripts l and g have been
omitted for all terms arising in (2.27) and (2.28) with the understanding that the balances
are valid separately for both the liquid and gas phases. Detailed expressions for the
individual terms are provided in Appendix A. The terms

∑
Ij = ∑∫

ij dV and
∑

Jj =∑∫
jj dV (see (A2)) represent the scaled total production rates of kinetic and thermal
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Fluid ρ (kg m−3) ν (m2 s−1) κ (m2 s−1) σ0 (N m−1) γ (N m−1 K−1) β (K−1)

2 cSt 871 2.00 × 10−6 7.14 × 10−8
18.3 × 10−3 7 × 10−5 1.24 × 10−3

Air 1.184 1.56 × 10−5 2.22 × 10−5 3.38 × 10−3

Table 3. Thermophysical properties of the working fluids 2 cSt silicone oil KF96L-2cs and air at 25 ◦C.

energy, respectively, which is transferred between the basic and perturbation flows, with
corresponding local production densities ij and jj. The terms Mr, Mϕ and Mz in the kinetic
energy balance (2.27) represent the work done per unit time by Marangoni forces in the
respective spatial directions. Furthermore, the contribution B (see (A4)) accounts for the
work done per unit time by buoyancy forces. In the thermal budget (2.28), Hfs (see (A5))
denotes the heat transferred through the liquid–gas interface. It appears in the budgets for
both the liquid and gas phases, albeit with opposite signs.

It is generally accepted to refer to Eth and Eth,g as thermal energies, even though it
contradicts the definition of the thermodynamic thermal energy. Hence, what we call
thermal energy is rather a measure for the temperature deviation from the axisymmetric
temperature field.

2.5. Reference case and parameter variation
Due to the large number of parameters governing the linear stability problem, it is
computationally too demanding to cover the whole parameter space. Therefore, we
consider the liquid–gas couple made of 2 cSt silicone oil (KF96L-2cs, Shin-Etsu Chemical
Co., Ltd., Japan) and air with constant material parameters, evaluated at T0 = 25 ◦C for
both fluids. This selection determines the non-dimensional material parameters Pr, λ, ρ̃,
ν̃, κ̃ and β̃. The thermophysical properties of both working fluids are listed in table 3.

Furthermore, we keep the aspect ratio of the support rods as well as the chamber radius
ratio constant at Γrod = 0.4 and η = 4, respectively. This configuration corresponds to
the experiments carried out by Romanò et al. (2017). We are left with the important
geometrical parameters V and Γ representing the volume of liquid and the geometric
aspect ratio of the liquid bridge, respectively. Finally, the gravity level can be varied via
the Bond number Bd.

The origin of all parameter variations is a common reference case. It is based on
the experimental geometry investigated by Romanò et al. (2017) with support rods of
radius ri = 2.5 mm and terrestrial gravity. Different from our objectives, however, Romanò
et al. (2017) kept the temperature difference constant at �T = 10 K < �Tc, which is far
subcritical. We define the reference case by Γref = 0.66, Vref = 1 and Bdref = 0.41. All
reference parameters are collected in table 4. Starting from the reference case, we perform
three parameter variations.

(i) A first variation, which is typically made in laboratory experiments, is a variation of
the length d of the liquid bridge (Velten et al. 1991; Monti, Savino & Lappa 2000;
Nienhüser & Kuhlmann 2003; Melnikov et al. 2015), corresponding to a variation
of Γ . Owing to the dependence of Bd ∼ d2, we simultaneously vary Bd such that
Bd = Bdref (Γ/Γref )

2, corresponding to a constant acceleration of gravity. The range
of variation is Γ ∈ [0.5, 1.8] and Bd ∈ [0.236, 3.07].
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Stability of liquid–gas thermocapillary flow

Γref Vref Bdref Pr λ ρ̃ ν̃ κ̃ β̃

0.66 1 0.41 28 0.32 1.36 × 10−3 7.80 310.16 2.73

Table 4. Constant non-dimensional parameters; Γ , V and Bd are varied around the reference values given.

(ii) In a second series of calculations, we vary V ∈ [0.65, 1.3] for Γ = Γref and Bd =
Bdref . This type of variation has also been used in experiments (Hu et al. 1994;
Sakurai et al. 1996; Tang & Hu 1999; Nienhüser & Kuhlmann 2002; Yano et al.
2016).

(iii) In a third step, we vary the acceleration of gravity for Γ = Γref and V = Vref . In this
series of calculations, the Bond number is varied in the range Bd ∈ [−1.25, 1.25].
This variation is intended to show how the instabilities for heating from above
(reference case) and below are related to each other and to the case of zero gravity in
which buoyancy forces and hydrostatic pressure are eliminated (Velten et al. 1991;
Wanschura, Kuhlmann & Rath 1997b; Kawamura et al. 2012).

3. Numerical methods

To compute the basic state and its linear stability, a revised version of the numerical code
MaranStable (Kuhlmann, Lukasser & Muldoon 2011; Stojanovic & Kuhlmann 2020b) is
used. It is based on an earlier version developed by M. Lukasser (see § 4.2 of Shevtsova
et al. 2014).

3.1. Shape of the interface
In a first step, the static axisymmetric shape h(z) of the liquid–gas interface is computed.
To that end, the Young–Laplace equation (2.13) is reformulated as a system of two ordinary
differential equations:

hzz = (1 + h2
z )

[
1
h

− (Ca�ph − Bo z)
√

1 + h2
z

]
, (3.1a)

�ph,z = 0, (3.1b)

where the subscript z denotes differentiation with respect to z. These equations, together
with the pinning conditions (2.15), represent a boundary value problem, which is
discretised by central finite differences on a uniform mesh. The pressure jump �ph
is determined by the volume constraint (2.16). The discretised set of nonlinear equations
is solved using the Newton–Raphson method. The iteration is terminated as soon as both
the L∞ and L2 norms of the residual have dropped below 10−6.

3.2. Basic flow
The steady axisymmetric versions of the nonlinear equations (2.4) and (2.6) determining
the basic state are discretised on a structured and staggered grid using second-order
finite volumes (Wesseling 2009). In order to implement the boundary conditions on
the liquid–gas interface, the grid is body-fitted to the interface, transforming the radial
coordinate to ξ = r/h(z). To perform this transformation, the previously determined
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�min,a
�min,l

�max,l

�
m

in
,l �min,g

�min,c

�
m

in
,c

�max,g

1.0

0.5

−0.5

−1.0

0 1 2 3
r

z

4 5 6

Figure 2. Example for the physical mesh inside the liquid (light blue) and the gas (grey). For better
visualisation, the total number of nodes was reduced to Ntot = 18 852, which is a reduction of more than 80 %
compared to the mesh used for the calculations.

h(z) is interpolated to the current grid using splines. Furthermore, the grid is refined
towards all boundaries using a hyperbolic-tangent profile (Thompson, Warsi & Mastin
1985). Inside the liquid, a minimum cell width of �min,l = 5 × 10−5 was chosen for the
wall-bounded cells and along the interface in order to guarantee that thermal boundary
layers will be resolved for all calculations. On the axis of symmetry (subscript a),
moderate temperature and velocity gradients are expected, justifying the larger minimum
cell width in radial direction �min,a = 10−3. The spatial resolution in the gas phase was
set to �min,g = 3�min,l along the interface, and �min,c = 10−3 × Γrod/Γ close to the
adiabatic chamber walls (subscript c). The cells are stretched towards the interior with
a stretching factor f = 1.15 until maximum cell widths�max,l = 0.0075 = 150�min,l and
�max,g = 0.02(η − 1)/Γ = 150�min,c ≈ 600�min,g are reached in the bulk of the liquid
and the gas, respectively. These conditions lead to a total of Ntot = 103 613 cells, of which
Nr × Nz = 244 × 197 cells belong to the liquid, and Nr × Nz = 115 × 483 cells belong to
the gas phase. Figure 2 shows the physical mesh, but at much lower resolution than used
for the actual calculations.

The nonlinear algebraic equations resulting from the discretisation are solved by
Newton–Raphson iteration:

J(q(k)0 ) · δq = −f (q(k)0 ), (3.2a)

q(k+1)
0 = q(k)0 + δq, (3.2b)

where δq is the increment of the approximation of the basic flow from the kth to the
(k + 1)th iteration step. Inserting (3.2b) into the steady axisymmetric versions of (2.4)
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Stability of liquid–gas thermocapillary flow

and (2.6) yields the equations governing δq:

Re(δu · ∇u(k)0 + u(k)0 · ∇δu)+ 1
αρ

∇δp − αν ∇2δu − αβ Bd δϑ ez

= −Re u(k)0 · ∇u(k)0 − 1
αρ

∇p(k)0 + αν ∇2u(k)0 + αβ Bd ϑ(k)0 ez, (3.3a)

∇ · δu = −∇ · u(k)0 , (3.3b)

δu · ∇ϑ(k)0 + u(k)0 · ∇δϑ − αk

Ma
∇2δϑ = −u(k)0 · ∇ϑ(k)0 + αk

Ma
∇2ϑ

(k)
0 , (3.3c)

where the nonlinear terms have been linearised with respect to δq. The Jacobian operator
J(q(k)0 ) and the nonlinear residual − f (q(k)0 ) are identified readily from (3.3). The Newton
iteration (3.2) is considered converged as soon as both the infinity norm ‖δq‖∞ and the L2

norm ‖δq‖2 of the residual have dropped below 10−6.

3.3. Linear stability of the basic flow
Once the basic state q0 is computed, it parametrically enters the linear stability equations
(2.22), which are discretized on the same mesh using the same finite volume method. The
resulting large generalised complex eigenvalue problem is converted into a generalised
eigenvalue problem with real matrices by introducing v̌ = iv̂ (Theofilis 2003). Defining
the decay rate χ = −μ, the generalised real eigenvalue problem has the form

A · q̂ = χB · q̂, (3.4)

where B is singular. For a Reynolds number Re ≈ Ren close to a neutral stability boundary
(subscript n), the most dangerous modes (numbered by i) belong to the eigenvalues χi with
the smallest real parts, satisfying Re(χi) ≈ 0. To find the most dangerous eigenvalue, i.e.
the one with the smallest real part of χ , twelve eigenvalues χ̃i with the smallest absolute
value are computed, in a first step, via an implicitly restarted Arnoldi method implemented
in ARPACK (Lehoucq, Sorensen & Yang 1998) and available under MATLAB. A Krylov
subspace of dimension K = 100 is employed. Based on the eigenvalue χ̃sr with the
smallest real part among the twelve eigenvalues χ̃i, i.e. χ̃sr : Re(χ̃sr) = min[Re(χ̃i)], we
adopt the method proposed by Meerbergen, Spence & Roose (1994) to validate that the
eigenvalue χ̃sr is indeed the one with the smallest real part among all the eigenvalues χi
and not only among the twelve eigenvalues χ̃i with the smallest absolute value. To that end,
17 eigenvalues ζ = (χ − a2)(χ − a1) with the largest magnitude of the Cayley transform

(A − a2B) · q̂ = ζ(A − a1B) · q̂ (3.5)

are computed, as described in Meerbergen et al. (1994). The parameters a1 and a2 are
determined by the five real eigenvalues with the smallest absolute value and a user-defined
parameter b = |(χi − a2)/(χi − a2)| = 1.2, where χi is one of the eigenvalues with the
smallest real part. The resulting 17 eigenvalues containing the most dangerous mode are
then sorted according to the magnitudes of their real parts.

At the neutral Reynolds number Ren, the real part of the eigenvalue of the most
dangerous mode, identified from the above procedure, crosses zero. To determine Ren for
a given azimuthal wavenumber m, the Reynolds number is varied in small steps, typically
by approximately 5 % of its value, until the sign of mini Re(χi)|m changes, signalling
that at least one root exists within this interval of Re. The root Ren is then computed
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1.0

0.5

0

–1.0

–0.5

0
r

z

1/Γ η/Γ

0.5

0

–0.5

ϑ
0, 
ϑ

g0

Figure 3. Streamlines and temperature fields ϑ0 and ϑg0 (colour) of the basic state for the reference case
(Γ = 0.66, V = 1, Bd = 0.41) at criticality Rec = 731. Streamline levels differ in the liquid and the gas, but
they are drawn equidistantly in each phase.

by the bisected direct quadratic regula falsi as described in Gottlieb & Thompson (2010),
using the convergence condition |mini Re(χi)|m| < 10−5, i.e. a sufficiently small absolute
value of the growth rate’s real part. Repeating this procedure for a series of wavenumbers
m = 0, 1, 2, . . . ,M allows us to detect the critical Reynolds number Rec as the envelope
gathering the lowest neutral Reynolds numbers over all Ren(m).

In order to track the neutral curves under a variation of one of the parameters Γ , V or Bd,
a natural continuation technique is used. The converged basic state and neutral Reynolds
number are used as initial conditions for the Newton iteration to compute the basic state
for the incremented parameter, followed by solving the new eigenvalue problem. The step
change of the parameter is typically 1 % of its value. If necessary, the parameter variation
is refined, e.g. near intersection points of neutral curves or when Ren depends sensitively
on the parameter varied.

The numerical code has been tested extensively. Grid convergence, verification and
validation are described in detail in Appendix B.

4. Results

4.1. Reference case

4.1.1. Basic flow
Since the basic two-dimensional flow enters the linear stability analysis parametrically,
it is important to examine its characteristics closely. Figure 3 shows the streamlines and
the temperature field at criticality for the reference case (Γ = 0.66, V = 1, Bd = 0.41).
The hydrostatic shape of the interface deviates only slightly from the cylindrical shape.
The thermocapillary stresses along the interface, directed from the hot corner to the cold
one, lead to a streamline crowding at the interface and drive a clockwise vortex in the
liquid phase (figure 3). Even though the absolute Rayleigh number for the liquid phase
is |Ra| = |Pr Bd Re| = 8392, buoyancy forces do not cause the instability, because of the
overall stable thermal stratification (see also Wanschura et al. 1997b). Buoyancy forces
are, however, responsible for the vortex in the liquid, which is more slender than under
zero gravity, because the hot fluid transported near the free surface to the cold wall has
the tendency to rise in the bulk. This causes the large separation bubble on the cold wall
(Romanò & Kuhlmann 2018), also visible in figure 3.

Owing to the geometry of the gas space, a much larger vortex is created in the gas phase
(counterclockwise in figure 3). Because the thermal diffusivity of the gas is much higher
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Figure 4. Tangential velocity ut0 = t · u0 (solid blue lines) and temperature distribution ϑ0 (solid red lines) of
the basic flow along the free surface (parametrised by z) for the reference case at criticality (Γ = 0.66, V = 1,
Bd = 0.41, Re = Rec = 731). Also shown, as dashed lines, are the corresponding profiles for the single-fluid
model at the same Reynolds number, and for an adiabatic free surface, neglecting viscous stresses from the
gas. (a) Profiles along the whole free surface. (b) Zoom into the red rectangle shown in (a). The black curve
indicates the shape h(z) of the interface.

than that of the liquid (table 4), the convective effect on the temperature distribution in
the gas phase is very weak. The temperature distribution along the interface (figure 4),
being larger than T0 on average, causes a mean temperature ϑg0 > 0 in the gas phase
far away from the liquid bridge. Furthermore, a weak flow arises in a large separation
bubble, while much smaller viscous eddies can be identified close to all four corners of the
annular gas container. Buoyancy in the gas phase is even weaker than in the liquid phase.
The ratio Rag/Ra = β̃d̃3/(ν̃κ̃) ≈ 10−2, where d̃ = 1 + 2Γrod/Γ , suggests that buoyancy
is negligible in the gas.

The distributions of the velocity (blue) and temperature (red) on the free surface are
shown in figure 4(a) for the reference case (solid lines). Also shown are the profiles for the
single-fluid model with an adiabatic free surface (dashed lines), neglecting viscous stresses
from the gas. For both models, the boundary layer character is obvious from the steep
variation of the temperature near the hot and cold corners. Associated with the temperature
gradients are peaks of the surface velocity very close to the hot and cold corners. Of
these, the cold-corner peak is particularly sharp, because the fluid at the interface is
accelerated towards the wall, where it must get decelerated to zero. Since the finite volume
method employed does not require any regularisation of the boundary conditions near
the corners, the velocity peaks are fully resolved (zoom in figure 4b). The temperature
is almost constant along the free surface midway between the two surface velocity peaks
(figure 4b) as well as inside the main vortex in the liquid (figure 3). The two-fluid model
exhibits a lower surface temperature in the plateau region than the adiabatic single-fluid
model. This indicates that the two-fluid model exhibits a heat loss, i.e. a net heat flux
outwards through the free surface (free-surface Nusselt number Nufs < 0 defined in (B2)),
a stronger thermocapillary driving along the hotter part of the interface as compared to the
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Figure 5. Distances�i of the surface velocity peaks of the basic flow from the cold corner (blue dots, i = cold)
and the hot corner (red dots, i = hot) compared to the theoretical scalings of the respective thermal boundary
layer thicknesses (lines).

single-fluid model, and thus a larger surface velocity along most parts of the free surface.
As a consequence, the flow obtained with the adiabatic single-fluid model is approximately
twice as stable than the one obtained with the two-fluid model for the same conditions; cf.
figure 29 in § B.1.

For high-Prandtl-number flows, the thermal boundary layers in the liquid near the hot
and cold corners, i.e. on the circular rigid end walls and at the interface, are more relevant
than the viscous boundary layers. For pure thermocapillary flow in the single-fluid model
with contact angle α = 90◦, the thermal boundary layer thickness on the cold wall near
the contact line is expected to scale ∼ Ma−1 in the viscous convective limit (Ma → ∞,
Re � Ma) (Canright 1994). On the hot wall, the thermal boundary layer thickness should
scale ∼ Ma−1/2 in this limit (Kamotani & Ostrach 1998). The thickness of the thermal
boundary layers can be measured by the distances �hot and �cold of the velocity peaks
from the hot and cold corners, respectively. Both distances are shown in figure 5 as
functions of Ma for the present two-fluid model. The locations of the velocity peaks
�hot(Ma) and �cold(Ma) exhibit the same scaling with Ma as predicted theoretically for
the single-fluid model in the viscous convective limit.

4.1.2. Hydrothermal wave instability
At Rec = 731, the basic flow becomes unstable with respect to a pair of azimuthally
propagating modes with ωc = Im(γc) = ±14.85 and m = 3. One of the two critical modes
is illustrated in figure 6. The global temperature distribution in the horizontal plane at
z = 0.20 shown in figure 6(a) indicates that the temperature perturbations arise essentially
in the liquid phase, while the gas phase temperature perturbations are weak. A close-up,
including the velocity vector field, is shown figure 6(b). It reveals the characteristic
structures of the internal perturbation temperature field and axial vortices known from
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Figure 6. Critical velocity field (black arrows) and critical temperature field (colour) for the reference case
(Rec = 731, mc = 3) in the horizontal plane z = 0.20 in which the local thermal production ϑ ′u′ · ∇ϑ0 takes
its maximum in the bulk of the liquid. The grey arrow indicates the rotation direction of the mode. (a) Complete
domain. (b) Close-up of the liquid phase.

smaller Prandtl numbers (Wanschura et al. 1995). The perturbation vortices are driven
in the azimuthal direction by the mainly azimuthal temperature gradients on the free
surface (figure 7). These vortices transport cold (hot) fluid (note the basic state temperature
distribution shown in figure 3) from the interior (from the free surface) just ahead of the
cold (hot) interior perturbation temperature extrema, thus feeding the existing extrema
and determining the azimuthal direction of propagation (indicated by the grey arrow) of
the wave. The perturbation flow, on the other hand, is maintained by radial conduction
of perturbation temperature from the internal extrema to the free surface such that the
(mainly axial) perturbation vortices seen in figure 6(b) are driven by (mainly azimuthal)
thermocapillary stresses. The structure of the perturbation flow confirms its character as a
hydrothermal wave (Smith & Davis 1983a; Wanschura et al. 1995).
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M. Stojanović, F. Romanò and H.C. Kuhlmann

0.5

–0.5

z

–π –π /2 0 π /2

ϕ
π

ϑ′

Figure 7. Critical mode (black arrows, colour) for the reference case evaluated on the free surface and
projected radially (Rec = 731, mc = 3). The arrow indicates the direction of propagation.
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Figure 8. Thermal energy budget of the critical mode for the reference case (Rec = 731, mc = 3). (a) Liquid
phase. (b) Gas phase.

The relevance of the temperature transport described is also confirmed by the total
thermal energy budgets shown in figure 8. From figure 8(a), thermal perturbation energy
in the liquid phase is produced mainly by J1 (production due to radial convection of basic
state temperature; see (A2b)) and dissipated in the bulk. Note that the instability cannot be
due to axial temperature gradients, because their total contribution to the thermal energy
budget is negative: J2 < 0. Only a very small fraction of thermal perturbation energy
(Hfs) is lost to the gas phase (in accordance with figure 6a), which appears as the major
source term Hfs,g = −Hfs(Dth/Dth,g) in the gas phase (figure 8b) and which gets dissipated
readily. In the present two-phase system with a cylindrical gas confinement, the gas phase
thus merely plays a passive role when it comes to the instability mechanism. Moreover, due
to the very high Prandtl number, inertial effects are not causing the instability (Wanschura
et al. 1995). Likewise, buoyancy is not of key importance for the instability for the
reference case (for stronger buoyancy, see Wanschura et al. 1997b).

The three-dimensional structure of the travelling temperature perturbation field and of
the total thermal energy production is shown by isosurfaces in figure 9. A cross-section
at an azimuthal angle at which the local thermal energy production in the bulk reaches
its maximum is shown in figure 10. It is seen that the thermal energy production is
strong where large interior gradients of the basic temperature field arise, i.e. near the
region ϑ0 ≈ 0 (white colour in figure 3), which is aligned with the streamlines on the
interior side of the basic vortex in the liquid phase. Further, from figure 9, one can
notice that the perturbation temperature isosurfaces and those for the energy production
form an approximate spiral around the basic vortex. The phase relation between the
internal temperature perturbations and the thermal energy transfer rate j is shown in
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Figure 9. (a) Contours of the perturbation temperature ϑ ′ in the liquid. The isosurface values are
±0.25 × max |ϑ ′| (light colours) and ±0.75 × max |ϑ ′| (dark colours). (b) Contours of the local thermal
production rate j1 + j2 = ϑ ′u′ · ∇ϑ0 shown at the isosurface values 0.1 × max |ϑ ′u′ · ∇ϑ0| (light red) and
0.7 × max |ϑ ′u′ · ∇ϑ0| (dark red).
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Figure 10. Critical mode mc = 3 for the reference case at Rec = 731. Shown are streamlines of the basic flow,
the critical velocity field (arrows) and the critical temperature field (colour) in the (r, z) plane in which the
local thermal production ϑ ′u′ · ∇ϑ0 takes one of its maxima in the bulk.

figure 11 for z = 0.20. Similar to the Pr = 4 case (Wanschura et al. 1995), the thermal
perturbation energy is created just ahead of the instantaneous perturbation temperature
extrema, consistent with the clockwise propagation of the hydrothermal wave.

We find that the critical Reynolds number for the single-fluid model and Γ = 0.66, V =
1, Bo = 0.41 is more than twice that for the present two-fluid model (see also figure 29 in
§ B.1). The basic flow for the single-fluid model with adiabatic interface exhibits a higher
surface temperature than the two-fluid model. This might suggest that the radial basic state
temperature gradients are higher for the single-fluid model, thus providing a better source
of energy for the instability. This effect, however, is counteracted by the lower surface and
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Figure 11. Isolines of the positive (red) and negative (blue) perturbation temperature, and of the local
production density j = j1 + j2 (black) in the horizontal plane z = 0.20. Dashed lines are central lines through
the maxima of the perturbation temperature (red) and of the related energy transfer (black). The grey arrow
indicates the rotation direction of the mode.

return-flow velocity (figure 4), which tends to reduce the radial temperature gradients at
midplane. While we cannot pinpoint exactly the reason for the large difference in Rec,
we notice that the critical temperature field in case of the single-fluid model is distinct
from that of the present two-fluid model, exhibiting a finer structure with a much more
pronounced spiral character (not shown, but similar to the mode for Pr = 68 reported in
Stojanovic & Kuhlmann 2020a). It is thus expected that the relative importance of the
thermal dissipation for the critical mode in the single-fluid model is considerable larger
than for the critical mode of the two-fluid model, resulting in a considerable stabilisation
of the basic flow in the single-fluid model.

4.2. Dependence of the linear stability boundary on the length of the liquid bridge
Figure 12 shows the dependence of the critical Reynolds number Rec (figure 12a) and
the critical oscillation frequency ωc (figure 12b) on the length of the liquid bridge,
expressed by the aspect ratio Γ . The relative volume of the liquid bridge is kept constant
at V = Vref = 1 and Bd = Bdref × (Γ/Γref )

2. In addition, neutral Reynolds numbers
and associated neutral frequencies are displayed as thin lines for Re > Rec. The critical
azimuthal wavenumber m is coded by colour.

Within the range of Γ considered, only critical modes with m = 1, m = 3 and
m = 4 arise. The aspect ratios at which the critical mode changes are Γ 3,4 =
0.5590 (m = 3 ↔ 4) with Rec(Γ

3,4) = 643.1, and Γ 1,3 = 0.9020 (m = 1 ↔ 3) with
Rec(Γ

1,3) = 1645.9. We find the basic flow to be particularly stable near Γ 1,3. The
variation of the critical wavenumber with Γ follows the well-known trend according
to which mc decreases as Γ increases (as the liquid bridge becomes longer). For
Pr = 7, Preisser et al. (1983) found experimentally that mc ≈ 2.2/Γ (for Pr = 28; see
also Ueno et al. (2003), and others). A mode with m = 2 does not become critical in
the range of Γ . But near Γ = 0.9, the many neutral Reynolds numbers do not differ
much, with Ren(m = 1) = 1690, Ren(m = 2) = 1681 and Rec(m = 3) = 1635, such that a
complicated supercritical dynamics can be expected near this aspect ratio.
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Figure 12. (a) Neutral Reynolds numbers (thin lines) and critical Reynolds numbers Rec (thick lines) as
functions of the aspect ratio Γ for V = 1 and Bd = Bdref × (Γ/Γref )

2. (b) Corresponding neutral (thin lines)
and critical (thick lines) frequencies ω. The wavenumbers (colour), symbols and abbreviations are explained in
the legend, with TFM meaning two-fluid model, SFM meaning adiabatic single-fluid model, Ueno10 meaning
Ueno & Torii (2010), and Yano16 meaning Yano et al. (2016).

In addition to the critical mode for the reference case Γ = 0.66 with mc = 3 discussed
above, two other critical modes are visualised in figures 13 and 14 for a short (Γ = 0.51,
mc = 4) and a long (Γ = 1.66, mc = 1) liquid bridge, respectively. These aspect ratios are
indicated in figure 12(a) by vertical thin lines. Note that the interface is deformed in both
cases. However, the static surface deformation is hardly visible for Γ = 0.51 (figure 13),
because the liquid bridge is much shorter and lighter than for the longer bridge with Γ =
1.66 (figure 14), because the radius is the same in both cases. Even though the flow for
Γ = 1.66 is affected much more strongly by the hydrostatic deformation of the liquid
bridge and by buoyancy forces for the present parameter variation, all critical modes show
the generic structure of axial vortices and internal perturbation temperature extrema of
hydrothermal waves. The instability mechanism is qualitatively the same for all modes,
and similar arguments hold as for the reference case discussed in § 4.1. In particular, from
figure 15, the energy budgets do not change very much with Γ . While there is a visible
jump of the energy terms in the liquid at Γ 1,3, as expected for a modal change, the jump
at Γ 3,4 is hardly visible. The jump at Γ 1,3 is related to the particular structure of the
m = 1 mode, which admits a flow across the axis of symmetry (cf. table 2) representing a
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Figure 13. Critical velocity (black arrows) and temperature (colour) fields for Γ = 0.51, Rec = 597, Bd =
Bdref × (Γ/Γref )

2 and mc = 4. (a) Horizontal cross-section at z = 0.03 in which the local thermal production
ϑ ′u′ · ∇ϑ0 (isolines) takes its maximum (white crosses) in the bulk. (b) Vertical (r, z) plane in which the
local thermal production ϑ ′u′ · ∇ϑ0 (not shown) takes its maximum (white cross) in the bulk. Lines indicate
isotherms of the basic state. (c) Perturbation velocity and temperature fields on the free surface. The grey
arrows in (a,c) indicate the direction of propagation of the critical mode. The black dashed lines represent the
locations of the corresponding cuts. The green circle in (a) indicates the diameter of the support rods.

qualitative difference compared to all other three-dimensional modes. Due to this property,
the role of the radial transport of basic state temperature, hence J1, is more important for
m = 1 and Γ > Γ 1,3, associated with a particularly strong stabilising effect by J2 in the
liquid (figure 15a). As Γ increases beyond Γ 1,3, the critical Reynolds number reduces
drastically due to the geometrical constraint that rules the wavenumber selection, and the
stabilising effect of J2 diminishes. For Γ > 1.66 (liquid) and Γ > 1.24 (gas), both J1 and
J2 become positive (not shown).

Also shown in figure 12(a) is a critical Reynolds number (green square) for Γ = 1
obtained by Yano et al. (2016) for the same volume, and a similar radius ratio and Bond
number. Note, however, that the thermal conditions on r = η/Γ differ in that Yano et al.
(2016) have imposed a constant temperature T(r = η/Γ ) = 20 ◦C on the outer cylindrical
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Figure 14. Same as figure 13, but for Γ = 1.66, Rec = 492, Bd = Bdref × (Γ/Γref )
2, mc = 1 and z = 0.23.

wall of the gas container, and fixed Tcold = 14 ◦C. These conditions lead to a cooling of
the liquid bridge from the outer shield as soon as Thot � 26 ◦C, which is indeed the case
in the reported experiments. Also, the aspect ratio Γrod = 4.8 of the support rods in Yano
et al. (2016) is much larger than the present value Γrod = 0.4. In view of the importance
of the gas phase for the critical Reynolds number (orange and white squares in figure 12,
see also Kamotani et al. 2003), it is not surprising that Rec and mc obtained by Yano et al.

949 A5-25

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

72
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.724


M. Stojanović, F. Romanò and H.C. Kuhlmann

0.5 0.6 0.7 0.8 0.9 1.0
Γ

0

0.5

1.0

J1,g

J2,g

Hfs,g

4 m = 3 m = 1

0.6 0.8 1.0
Γ

–1

0

1
J1
J2

4 m = 1m = 3

(b)(a)

Figure 15. Normalised contributions J1, J2 and Hfs to the thermal energy budget as functions of Γ for the
critical conditions shown in figure 12(a). The vertical dotted lines indicate Γ 1,3 and Γ 3,4 where mc (indicated
by labels) changes. (a) Liquid phase; throughout −0.0037 < Hfs < 0. (b) Gas phase.

(2016) differ from the present critical data. The deviation of the critical Reynolds number
obtained by Ueno et al. (2010) for Γ = 0.64 (bright blue square in figure 12a) from the
present data may be due to similar reasons. These comparisons demonstrate the important
influence of the geometrical and thermal properties of the gas phase on the critical onset.

The effect on the critical Marangoni number of a partial confinement of the gas
phase by partition disks was investigated experimentally by Irikura et al. (2005) in a
geometry similar to the present one, also using the same working fluids. Since the critical
temperature difference was always less than 17 ◦C, the thermal properties of the gas phase
near the onset are comparable to the present ones. However, the geometry was slightly
different: in our computations, the gas phase is radially confined by an adiabatic rigid
wall, whereas it was open to the ambient in the experiments of Irikura et al. (2005).
In their experiments, the effective length of the hot support rod was varied by axially
moving a partition disk on the rod. For comparison, we adapted our geometry accordingly
by selecting Γ = 1, η = 6.55 and drod,c = 1 mm, and computed the critical Marangoni
number as a function of the length drod,h of the hot (upper) support rod for the data
provided by Irikura et al. (2005). The result is shown as a line in figure 16. In qualitative
agreement with Irikura et al. (2005) (circles in figure 16), we find a reduction of the critical
Marangoni number (line) as the length of the hot rod drod,h is increased. The systematically
larger numerical critical Marangoni numbers are attributed mainly to the different radial
boundary conditions: an adiabatic wall in the numerics versus a gas phase open to the
ambient atmosphere in the experiment. The coupling of the gas phase to the ambient air in
the experiment may have caused mechanical and thermal perturbation, which may explain
the scatter of the experimental data.

4.3. Effect of the volume ratio
The influence of the volume ratio V on the stability of the basic flow with Γref = 0.66
and Bdref = 0.41 is shown in figure 17. The critical curve is made of segments of neutral
Reynolds number belonging to all wavenumbers from m = 0 to m = 4. The critical modes
change at the codimension-two points given in table 5. The well-known strong stabilisation
of the flow near V = 0.9 for 2 and 10 cSt silicone oils found by Sakurai et al. (1996) and Hu
et al. (1994), respectively, is confirmed (see also Tang & Hu 1999). We find the maximum
stabilisation at V0,1 = 0.8917 with Rec = 2319. The experimental critical data of Sakurai
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Figure 16. Critical Marangoni number Mac = Pr Rec (m = 1, line) as a function of the length drod,h of the
upper (hot, subscript h) supporting rod. The length of the lower (cold, subscript c) support rod was kept constant
at drod,c = 1 mm, corresponding to the experiment of Irikura et al. (2005) whose data are reproduced as circles.
The liquid bridge has length d = 2.5 mm and aspect ratio Γ = 1. The radius ratio η = 6.55 is estimated from
figure 1 of Irikura et al. (2005).

et al. (1996) for 2 cSt silicone oil, with Γ = 1, Bd = 0.95 and otherwise uncontrolled
ambient conditions, are shown in figure 17 as crosses. They agree qualitatively (despite
the deviation in Γ and Bd), but differ quantitatively.

Surprisingly, a very small window of the volume ratio exists within which the critical
mode is axisymmetric with m = 0. A similar axisymmetric oscillatory mode near the
so-called gap region was found by Xun, Li & Hu (2010) near V ≈ 0.8 by a linear stability
analysis, although for a single-fluid model with Pr = 68.6 (5 cSt silicone oil) and an
adiabatic free surface.

Similarly to before, the contribution to the thermal energy budget is dominated by
J1 (building on radial gradients of ϑ0) for all critical modes, with J2 (building on
axial gradients of ϑ0) being small or negative (stabilising; figure 18). This indicates the
predominance of axial vorticity in the critical mode, except for the axisymmetric mode.
As another observation, the critical wavenumber does not depend monotonically on V .
Considering the structure of the neutral modes, it is possible to understand qualitatively
the non-monotonic dependence of the critical Reynolds number on V : for a small volume
fraction V = 0.8 (mc = 2; figure 19), the internal temperature extrema of the hydrothermal
wave are located quite close to the free surface. This facilitates the coupling between
the temperature and velocity perturbations, because the free-surface temperature spots
are more easily created by the internal temperature extrema. Hence the critical Reynolds
number is relatively small for small V . As V increases, the internal temperature extrema
must be stronger to be able to heat/cool the more distant free surface and to generate the
perturbation flow (V = 0.87, mc = 1; figure 20). This may explain the increase of the
critical Reynolds number with V before reaching its maximum. However, as the volume
gets very large (V = 1.3, mc = 3; figure 21), the basic flow and the perturbation flow suffer
less viscous dissipation, because the liquid volume is bounded mainly by a free surface,
only coupled to the gas phase. As a result, the critical Reynolds number decreases again
after V has exceeded the point of maximum stabilisation (for V > 0.8917).

Near the volume ratio V > 0.8917 at which the maximum stabilisation is observed, a
small window arises in which the critical mode is axisymmetric. Contrary to the other
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Figure 17. (a) Neutral Reynolds numbers (thin lines) and critical Reynolds numbers Rec (thick lines) as
functions of the volume ration V for Γ = 0.66 and Bd = 0.41. Crosses indicate data taken from Sakurai et al.
(1996) for Γ = 1 and Bd = 0.95. (b) Corresponding frequencies ω. The yellow square indicates the reference
case.

m 1 ↔ 2 0 ↔ 1 0 ↔ 4 3 ↔ 4

Vm1,m2 0.8296 0.8917 0.8983 0.9286
Rec(Vm1,m2 ) 1264 2319 2268 1662

Table 5. Codimension-two points where critical curves for constant m intersect, with Γ = 0.66, Bd = 0.41.

modes, the axisymmetric mode mc = 0 draws its thermal energy from both axial and radial
temperature gradients, with both J1 and J2 being positive (figure 18). The mode arises as a
toroidal vortex (V = 0.8939; figure 22) whose sense of rotation oscillates with ωc(m = 0).
The total nonlinear flow in an experiment would thus appear as a toroidal vortex whose
strength, position and size change periodically in time.

4.4. Effect of buoyancy
The linear stability boundary and oscillation frequency as functions of the dynamic Bond
number for Γref = 0.66 and Vref = 1 are displayed in figure 23 for heating from above
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Figure 18. Normalised contributions J1, J2 and Hfs to the thermal energy budget as functions of V along the
critical curve shown in figure 17(a). The vertical dotted lines indicate V1,2, V0,1, V0,4 and V3,4 at which mc
(indicated by labels) changes. (a) Liquid phase; throughout −0.007 < Hfs < 0. (b) Gas phase.

(Bd > 0) and heating from below (Bd < 0). The crossover points at which the wavenumber
of the critical mode changes are listed in table 6. It should be noted that a quiescent liquid
bridge of Γ = 0.66 and V = 1 would break mechanically due to the capillary instability
at Bo = ±31.75 (Slobozhanin & Perales 1993). For the present working fluid, this limit
corresponds to Bd = ±10.31. Therefore, the range shown in figure 17 is safely within the
mechanical stability limits of the liquid bridge, even if dynamic surface deformations were
taken into account.

In the range −0.25 � Bd � 0.35, buoyancy has only a small effect on the shape of the
liquid bridge and on the magnitude of the critical Reynolds number. Since the governing
equations are not invariant under Bd → −Bd, the slope of the critical curve at zero gravity
(Bd = 0) does not vanish. This was also found by Wanschura et al. (1997b) for small values
of Bd and a cylindrical liquid bridge with Pr = 4, Γ = 1 and an adiabatic free surface.
For weak stabilising buoyancy and Bd > Bd2,3, the critical mode has mc = 3 (yellow),
whereas for Bd < Bd2,3 and for destabilising buoyancy, the critical wavenumber is mc = 2
(red). The Bond numbers corresponding to the gravity levels on the Moon, Mars and Earth
are indicated by yellow vertical dashed lines. For zero gravity conditions, the critical mode
with mc = 2 is illustrated in figure 24. The basic flow in an upright cylindrical liquid
bridge, exclusively driven by thermocapillarity, is a standard case within the single-fluid
model. Here, however, the flow is modified by the presence of the ambient gas phase.
The properties of the hydrothermal wave are similar to those discussed in § 4.1.2 for the
reference case, which differs by the Bond number.

As the Bond number is increased beyond Bd > 0.41 (Earth gravity level), the critical
Reynolds number increases significantly. This seems to be consistent with a more
stable density stratification as Bd increases. However, for Bd > Bd1,5 ≈ 0.91, the critical
Reynolds number decreases again, mainly due to an m = 2 mode. A possible explanation
is that the hot fluid transported downward along the free surface by the thermocapillary
surface flow has a strong tendency to rise in the bulk, owing to its buoyancy. As a result,
the basic thermocapillary-driven vortex has little radial extent, and the internal temperature
gradients, which provide the source of the thermal perturbation energy, arise in the close
vicinity of the free surface. This can be seen in figure 25, which shows the critical mode
for Bd = 1.1. Since the thermocapillary flow does not penetrate very much inwards from
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Figure 19. Same as figure 13, but for Γ = 0.66, V = 0.8, Rec = 995, mc = 2 and z = 0.12.

the free surface, the free-surface temperature perturbations of the critical mode are much
easier to create as compared to lower Bond numbers, in particular as compared to Bd ≈ 0
(figure 24). This facilitates the coupling between temperature and velocity perturbations,
and leads to a reduction of the critical Reynolds number despite the nominally stabilising
buoyancy forces.

The critical mode for Bd = 1.1 is also affected by buoyancy. To analyse this effect, we
separate the buoyancy effect on the critical mode from the buoyancy effect on the basic
flow, by using the same basic state solution (Bd = 1.1), but artificially setting Bd ≡ 0 in
the perturbation equations. Compared to figure 25, the spatial structure of the perturbation
temperature ϑ ′ remains similar, while the vertical perturbation velocity is very small
everywhere (w′ ≈ 0), except close to the free surface (not shown). Due to the nearly
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Figure 20. Same as figure 13, but for Γ = 0.66, V = 0.87, Rec = 1664, mc = 1 and z = −0.06.

horizontal velocity perturbation in the bulk (axial vorticity), more thermal perturbation
energy is generated, which would destabilise the basic state. This means that for Bd = 1.1,
the action of buoyancy in the perturbation flow has a stabilising effect on the basic state.
Therefore, the destabilising trend for increasing Bond number for Bd > Bd1,5 = 0.9083 is
caused by the facilitated feedback between internal and surface temperature extrema due
to the structure of the basic flow, and not by the action of buoyancy on the perturbation
flow.

Contrary to what one would expect for destabilising buoyancy (heating from below,
Bd < 0) the critical Reynolds number also increases as Bd is decreased. This effect is
related to a similar mechanism as discussed before: the hot fluid that is transported to the
cold wall along the free surface has little tendency to return to the hot wall in the bulk due
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Figure 21. Same as figure 13, but for Γ = 0.66, V = 1.3, Rec = 356, mc = 3 and z = 0.01.

to buoyancy. As a result, the thermocapillary basic state vortex (not shown) has a larger
radial extension and the energy source for the hydrothermal wave arises closer to the axis
of the liquid bridge. Therefore, the internal perturbation temperature extrema cannot easily
heat/cool the distant free surface to drive the velocity field necessary for the hydrothermal
wave feedback mechanism. As a result, Rec increases.

The black dotted curve in figure 23(a) indicates a Rayleigh number Ra = 1700,
where Ra = −Pr Bd Re is defined in agreement with the usual convention for pure
buoyancy-driven flows. This is roughly the Rayleigh number at which the flow
becomes buoyantly unstable in a cylindrical adiabatic liquid bridge in the absence of
thermocapillarity (Wanschura, Kuhlmann & Rath 1996). To the left of it, destabilising
buoyancy forces get even stronger. However, pure buoyant instabilities are absent here,
mainly because the basic thermocapillary flow significantly deforms the basic temperature
field that would be conducting in the absence of thermocapillarity. Nevertheless,

949 A5-32

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

72
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.724


Stability of liquid–gas thermocapillary flow

Hot

Cold

0.5

0

–0.5

ϑ
', 
ϑ

' g

r
1/Γ0

z

Figure 22. Axisymmetric critical mode for V = 0.8939, Rec = 2301 and mc = 0. Shown are the basic state
isotherms (lines), the critical velocity field (arrows) and the critical temperature field (colour).

destabilising buoyancy is expected to promote the instability of the basic flow for
decreasing Bd. Such destabilisation is not seen, however, until Bd = Bd1,2.

Only for Bd < Bd1,2 = −0.5645, a critical mode with mc = 1 (blue) arises that seems
to be affected by destabilising buoyancy. The critical mode for Bd = −1.25 < Bd1,2 is
shown in figure 26. At a first inspection of figures 26(a,c), the critical mode seems to
be driven by an azimuthal thermocapillary effect. The associated radial flow in the bulk
crosses the axis and creates a cold spot and a hot spot very close to the axis, since this
is the region of largest radial gradients of the basic temperature field. However, in the
absence of the action of buoyancy on the perturbation flow, there would be no obvious
reason why the perturbation flow should not be essentially horizontal near the axis, as
for Bd = 0 (figure 24b). Instead, we find a strong vertical upward (downward) flow near
the hot (cold) near-axis perturbation temperature spots. This leads to a localised convection
role in the plane of maximum thermal energy production shown in figure 26(b). Artificially
switching off the Bond number in the perturbation equation only (setting Bd ≡ 0), while
keeping Bd = −1.25 for the basic state, reveals (not shown) that the perturbation flow
in this artificial case is indeed horizontal near the axis. Thus the vertical component
of the velocity of the perturbation vortex near the axis must be driven essentially by
buoyancy acting on the perturbation mode. The buoyancy effect on the perturbation mode
should be particularly high in this case, because the horizontal temperature gradient
of the perturbation flow (generated by the thermocapillary return flow) is particularly
large when the perturbation temperature spots arise over a very small distance close to
the axis.

This interpretation is confirmed by inspecting the major terms of the kinetic energy
budget. These terms, corresponding to the work per time driving the perturbation flow,
are given in table 7. Compared to Bd = 0.41, the work done by buoyant forces in case
of Bd = −1.25 is more than ten times as large and amounts to approximately 14 % of
the total kinetic energy production. But the major driving of the perturbation flow field
is still caused by the work done by thermocapillary forces Mz and Mϕ . Among these,
the production Mz due to axial thermocapillary stresses for Bd = −1.25 is surprisingly
more important than the azimuthal production. This might be related to the strong vertical
component of the perturbation flow near the axis.
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Figure 23. (a) Neutral Reynolds numbers (thin lines) and critical Reynolds numbers Rec (thick lines) as
functions of the dynamic Bond number Bd for Γref = 0.66 and Vref = 1. (b) Corresponding neutral and critical
frequencies ω.

m 1 ↔ 2 2 ↔ 3 3 ↔ 4 4 ↔ 5 1 ↔ 5 1 ↔ 2

Bdm1,m2 −0.5645 0.0483 0.5214 0.8457 0.9083 0.9162
Rec(Bdm1,m2 ) 1257 650 935 1420 1455 1419

Table 6. Codimension-two points where critical curves for constant m intersect, with Γref = 0.66, Vref = 1.

The thermal energy budget as function of the Bond number is shown in figure 27. As in
the previous cases, the thermal energy per time Hfs,g supplied to the gas phase through the
interface is essentially dissipated, with the thermal energy production rates J1,g and J2,g
being insignificant. Therefore, the instability is always triggered in the liquid phase. While
for Bd < Bd2,3 ≈ 0.05 both J1 and J2 are positive and contribute to the destabilisation
of the basic flow, J2 is negative for Bd > Bd2,3, which, on the stability boundary, is
compensated by a much larger positive value of J1. This indicates the dominant role for
the instability of radial temperature gradients of the basic state when the liquid bridge
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Figure 24. Same as figure 13, but for Γ = 0.66, Bd = 0, Rec = 635, mc = 2 and z = 0.04.

is heated from above (buoyancy forces are opposing basic state thermocapillarity forces
on the free surface, Bd > 0), consistent with the above-described small radial penetration
depth of the basic flow when buoyancy forces are large. For heating from below (buoyancy
forces are augmenting the basic state thermocapillary forces on the free surface, Bd < 0),
the perturbation flow can also extract thermal energy from the axial gradients of the basic
temperature field via J2 > 0, albeit radial temperature gradients of the basic state remain
more important.

For heating from below and in the absence of thermocapillary effects, Wanschura
et al. (1996) found that the onset of thermal convection in cylindrical liquid bridges is
always non-axisymmetric. Nevertheless, steady axisymmetric solutions exist for Rayleigh
numbers Ra = gβ �Td3/νκ larger than the neutral stability boundary for m = 0. These
axisymmetric flows have either up- or down-flow at the free surface. Thermocapillary
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Figure 25. Same as figure 13, but for Γ = 0.66, Bd = 1.1, Rec = 900, mc = 2 and z = −0.26.

forces can either augment or oppose the buoyant flow on the free surface. To illustrate the
resulting buoyant-thermocapillary flows, the coefficient γ = −3.828 × 10−7 N m−1 K−1

is selected small due to e.g. impurities or surfactants dissolved in the liquid. For
Γ = 0.66, V = 1, Ra = 3200, Re = 0.5 and Bd = −229, the augmenting and opposing
axisymmetric flows are illustrated in figures 28(a) and 28(b), respectively. For the
opposing case (figure 28b), the direction of the surface flow is reversed near each of the
two triple-phase contact lines such that a small eddy arises in the hot as well as in the cold
corner. In addition to these two states, an intermediate weak state exists (figure 28c) in
which the velocity field near the liquid–gas interface is very weak and which is unstable
with respect to two-dimensional perturbations. This result is similar to the behaviour in
adiabatic cylindrical liquid bridges using the single-fluid model (Wanschura et al. 1997b).
We find that the flow in the augmenting case (strong solution; figure 28a) is linearly stable
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Figure 26. Same as figure 13, but for Γ = 0.66, Bd = −1.25, Rec = 804, mc = 1 and z = 0.12. Note that for
Bd < 0, the hot wall is located at the bottom (heated from below).

with respect to all modes, with m ∈ [0, 5], the most dangerous mode having m = 3 and a
growth rate μ = −0.03 + 0i. The flow in the opposing case (weak solution; figure 28b) is
stable with respect to m ∈ [0, 2], but unstable for m ∈ [3, 5], with the most dangerous
mode m = 4 and μ = 0.15 + 0i. Finally, the third weak state (figure 28c) is unstable
to all modes with m ∈ [0, 5], the most dangerous having the wavenumber m = 4 with
μ = 0.53 + 0i.

5. Discussion and conclusions

The linear stability of axisymmetric steady flow in liquid bridges of silicone oil with
Pr = 28 in air has been investigated numerically. This pair of fluids is used also in
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Bd Mr Mϕ Mz B

+0.41 0.002 0.531 0.481 0.013
−1.25 0.040 0.185 0.521 0.142

Table 7. Main contributions to the kinetic energy production at the critical point for Γref = 0.66 and
Vref = 1.
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Figure 27. Normalised contributions J1, J2 and Hfs to the thermal energy budget at criticality (figure 23a)
as functions of Bd for Γref = 0.66 and Vref = 1. The vertical dotted lines indicate Bd1,2, Bd2,3, Bd3,4, Bd4,5,
Bd1,5 and Bd1,2 where mc (indicated by labels) changes. (a) Liquid phase; throughout −0.0035 < Hfs < 0.
(b) Gas phase.

many experimental investigations (see e.g. Ueno et al. 2003; Irikura et al. 2005; Tanaka
et al. 2006; Yano, Hirotani & Nishino 2018a). While taking into account the hydrostatic
deformation of the liquid bridge, the liquid and gas flows are treated in Boussinesq
approximation in order to reduce the large parameter space. Furthermore, the radii of the
support cylinders and the cylindrical gas container relative to the radius of the liquid bridge
were kept fixed. This set-up allowed us to investigate the effects of the relative length of
the liquid bridge (Γ ), the relative volume of liquid (V), and buoyancy forces (Bd) on the
threshold for the onset of three-dimensional flow. The linear stability boundary of the basic
axisymmetric flow was calculated quasi-continuously varying these three parameters. All
parameter variations originated from a common reference case, defined by Γref = 0.66,
Vref = 1 and Bdref = 0.41.

Throughout the range of parameters considered, the flow becomes unstable to
hydrothermal waves, except for sufficiently strong heating from below when the critical
mode arises as a convection roll in the centre of the liquid bridge. Quite generally, the
hydrothermal waves exhibit 2m strong azimuthally periodic temperature extrema in the
bulk of the liquid. As expected for hydrothermal waves, inertia effects are insignificant for
the critical mode, which can hardly extract momentum from the basic vortex flow. On the
other hand, advection of basic state temperature by the weak perturbation flow is of key
importance for the creation of the characteristic internal temperature extrema. Considering
the thermal energy budget of the critical mode, and its spatial structure, allowed us to
understand the global trends of the critical Reynolds number Rec.

The critical wavenumber m is found to depend on Γ , V and Bd. Within the parameter
space considered, the critical wavenumber cannot be predicted based on a simple
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Figure 28. Three different axisymmetric flows for Γ = 0.66, V = 1, Ra = 3200, Re = 0.5 and Bd = −229.
(a) Thermocapillarity is augmenting the buoyant flow. (b,c) Thermocapillarity is opposing the buoyant flow
with the strong state shown in (b) and the weak state shown in (c).

correlation like mc ≈ 2.2 × Γ proposed by Preisser et al. (1983) for the instability in
NaNO3 (Pr ≈ 7), normal gravity and V ≈ 1, because the Preisser et al. (1983) correlation
does not include the gravity level and the volume fraction of the liquid. For Pr = 28
and including the surrounding air in the analysis, we find that the critical wavenumber
increases with decreasing Γ (for V = 1 and Bd = 0.41 × (Γ/Γref )

2), but misses out
mc = 2. The dependence of mc on V does not exhibit any monotonic trend, while the
critical wavenumbers are well ordered from mc = 1 to mc = 5 when the Bond number
is increased from Bd = −1.25 (heating from below) to Bd = 0.9083 (heating from
above). Interestingly, we find an axisymmetric oscillatory instability (m = 0) for Γ = 0.66
and Bd = 0.41 within a small window of V ∈ [0.8917, 0.8983] where the basic flow is
extremely stable with a critical Reynolds number of approximately Rec ≈ 2300.

As a major result, the gas phase has a strong effect on the stability boundary. For
instance, the critical Reynolds number taking into account the gas phase can be less
than one-half of the critical Reynolds number for a single-fluid model with a passive
adiabatic interface (cf. figures 12a and 29). This effect is caused primarily by the change
of the thermal environment of the liquid bridge, i.e. by the heat exchange characteristics
between the liquid and the gas. The gas phase, however, does not play an active role for the
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instability, because neither mechanical nor thermal perturbation energy is produced from
the velocity or temperature gradients of the basic state in the gas phase.

Since the Prandtl number of the liquid is quite large, the basic flow exhibits pronounced
thermal boundary layers. The scalings of the boundary layer thicknesses on the cold and
hot walls that we find in our numerical calculations for the reference case (Γref = 0.66,
Vref = 1, Bdref = 0.41) are in excellent agreement with theoretical scalings predicted for
a contact angle α = 90◦ and the single-fluid model. This finding is particularly notable for
two reasons. First, in the presence of gravity, the hydrostatic free surface exhibits a contact
angle α = 84◦ for the reference case. Second, in our model the liquid bridge is surrounded
by a gaseous phase, which was excluded in the theoretical investigations.

The mathematical model employed (Oberbeck–Boussinesq approximation) is based
on the assumption of constant thermophysical properties of the fluids, evaluated at
T0 = 25 ◦C, except for ρ, ρg and σ , which are linearised around T0. Despite the
relatively moderate critical temperature differences �Tc found throughout our numerical
investigation, the peak values reach �Tc ≈ 36 ◦C, 70 ◦C and 44 ◦C when varying Γ , V
and Bd, respectively. Additional preliminary computations taking into account the full
temperature dependence of all thermophysical properties of the fluids indicate that the
temperature dependence can become important near sharp peaks of the critical curve,
because it can suffer a certain shift with respect to the parameters varied (Γ , V or Bd).
But the linear stability boundaries computed for V ≥ 1.05 using temperature-dependent
fluid properties deviate only less than 1 % from the present results. Taking into account
temperature-dependent fluid properties affects the linear stability boundary in a non-trivial
way. Therefore, it deserves a comprehensive analysis that is beyond the scope of this
paper. A dedicated study of the linear stability analysis for a multiphase liquid bridge
with variable fluids properties is currently underway and will be reported in the future.

The 2 cSt silicone oil used in our study has a pour point below −120 ◦C and boiling
temperature 88 ◦C (Shin-Etsu 2004). All critical temperatures found in the present
investigation go into this range. For �T close to the highest critical values computed
(�Tc ≈ 70 ◦C), evaporation, which is not included in our model, may play a significant
role. In fact, Simic-Stefani, Kawaji & Yoda (2006) found a strong stabilising effect due to
evaporation using the highly volatile liquid acetone (Pr = 4.3). On the other hand, Yano
et al. (2016) claim that the effect of evaporation for the 2 cSt silicone oil is negligible
for typical critical temperature differences found in their experiments. Their statement is
confirmed by figure 31, as our estimate of the linear stability boundary is in agreement with
their experimental data. Nevertheless, the numerical model would benefit by including
the mass exchange between the liquid and gas phases, in particular, for large critical
temperature differences.

An experimental measurement of the critical Reynolds number for thermocapillary
liquid bridges is usually quite error-prone due to the small size of the bridge in terrestrial
laboratories, possible chemical contaminations of the interface, and the difficulty to
control accurately the thermal environment. The current results provide accurate numerical
stability data (Rec, mc, ωc) for a particular geometrical setting, and the dependence of
these data on the important control parameters Γ , V and Bd. Since the critical onset is
affected by the gas phase due mainly to the amount and structure of the heat transfer
through the liquid–gas interface, a variation of the relative geometry of the axisymmetric
gas space (radius, height) is expected to have only a minor influence on the critical data
as long as the heat transfer characteristics are not much affected. This can be expected,
for example, if only the radius is increased from the current value. If, however, the heat
transfer between the liquid and the gas phase is changed – e.g. by a forced axial gas flow
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with a given temperature (Gaponenko et al. 2021), or by natural convection in a cold gas
(Kamotani et al. 2003) – then the critical Reynolds number can be modified strongly.
While the control of the critical onset by an imposed gas flow is the objective of ongoing
work in the framework of the JEREMI project (Shevtsova et al. 2014), a systematic study
of the effect of the temperature contrast between the liquid bridge and the gas environment
would be an interesting problem for future investigations.
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Appendix A. Kinetic and thermal energy budgets of the perturbation flow

Here, we present all terms entering the kinetic (2.27) and the thermal energy budget (2.28).
The structures of the budgets for the liquid and gas phases are identical, i.e. formally the
same terms arise. However, the budgets are obtained by integration over different volumes
that the liquid and the gas occupy. In the following equations, the distinction between the
liquid and gas phases is taken care of by using the integration volume Vi occupied by the
liquid or the gas, i ∈ [l, g], and by using the corresponding set of coefficients α (see (2.7)).
Furthermore, the integrals over the free surface carry different signs, where the lower sign
applies to the gas phase.

The viscous and thermal energy dissipations can be expressed as

Dkin = αν

2

∫
Vi

|S′|2 dV = αν

∫
Vi

(∇ × u′)2 dV ± 8παν

∫ 1/2

−1/2
(hhzzŵ2 − v̂2)dz (A1a)

where S′ = ∇u′ + (∇u′)T and

Dth = ακ

Pr

∫
Vi

(∇ϑ ′)2 dV, (A1b)

respectively. Since the neutral modes are determined only up to an arbitrary factor, Dkin
and Dth are used to normalise all terms in the respective kinetic and thermal energy
balances. This allows us to determine the relative importance of each term in the budget
for the instability mechanism.

The normalised mechanical and thermal production terms in (2.27) and (2.28),
respectively, are defined as

5∑
j=1

Ij = − Re
Dkin

∫
Vi

(
v′2 u0

r
+ u′2 ∂u0

∂r
+ u′w′ ∂u0

∂z
+ u′w′ ∂w0

∂r
+ w′2 ∂w0

∂z

)
dV, (A2a)

2∑
j=1

Jj = − Re
Dth

∫
Vi

ϑ ′
(

u′ ∂ϑ0

∂r
+ w′ ∂ϑ0

∂z

)
dV, (A2b)
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with j consecutively numbering the individual integrals Ij and Jj of the sums. The works
done per unit time by thermocapillary forces acting at the liquid–gas interface are obtained
as

Mr = ±4παν

Dkin

∫ 1/2

−1/2
hhzû

(
∂ŵ
∂r

− ∂ û
∂z

)
dz, (A3a)

Mϕ = ±4παν

Dkin

∫ 1/2

−1/2
hv̂
(
∂v̂

∂r
− v̂2

h
− hz

∂v̂

∂z

)
dz, (A3b)

Mz = ±4παν

Dkin

∫ 1/2

−1/2
hŵ
(
∂ŵ
∂r

+ hzŵ − hz
∂ŵ
∂z

)
dz. (A3c)

The quantity

B = αβ Bd
Dkin

∫
Vi

w′ϑ ′ dV (A4)

represents the work done per unit time by buoyancy forces. Further, the heat transfer across
the liquid–gas interface can be written as

Hfs = ± 2πακ

Dth Pr

∫ 1/2

−1/2
h

(
∂ϑ̂2

∂r
− hz

∂ϑ̂2

∂z

)
dz. (A5)

The sign of the rate of change of the total kinetic (and thermal) energy is related directly
to the growth rate of the normal mode for which the energy budget is evaluated. Thus
if one of the integral terms in (2.27) or (2.28) is positive (negative), then it contributes
to a destabilisation (stabilisation) of the basic flow. Since each of the above integrands
describes a particular local transport process, each term can be associated with a particular
physical mechanism, either stabilising or destabilising the basic flow.

As in Nienhüser & Kuhlmann (2002), the normalised residuals of the kinetic and
thermal energy budgets are defined as

δEkin :=
∣∣∣∣∣∣−

dEkin

dt
− 1 + Mr + Mϕ + Mz +

5∑
j=1

Ij + B

∣∣∣∣∣∣ , (A6a)

δEth :=
∣∣∣∣∣∣−

dEth

dt
− 1 +

2∑
j=1

Jj + Hfs

∣∣∣∣∣∣ , (A6b)

respectively. They serve as an additional verification for the numerics. Since (2.27) and
(2.28) must be satisfied exactly, the residuals must vanish. We typically find δEkin < 0.03
and δEth < 0.01.

For the high Prandtl number Pr = 28 investigated, we find the inertial terms to be
always small with Ij < 0.05. Therefore, the velocity field of the basic flow does not enter
practically the energy budget of the linear mode, and the work done by thermocapillary
stresses Mr, Mϕ and Mz is almost perfectly balanced by the viscous dissipation. The basic
velocity field merely serves to create a basic temperature field from which temperature
perturbations can gain thermal energy via J1 and J2.
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Figure 29. Critical data Rec (blue symbols) and ωc (red symbols) as functions of the grid size N for the
reference case with Pr = 28, Γref = 0.66, Vref = 1 and Bdref = 0.41. (a) Single-fluid model with adiabatic
free surface, disregarding viscous stresses in the gas phase. The linear extrapolated critical data, using the four
finest grids (dashed curves), are (Rec, ωc)

extra = (1560, 28.62). (b) Reference case (two-fluid model) including
the gas phase. The critical data extrapolate quadratically (dashed curves) to (Rec, ωc)

extra = (733.5, 14.89).
The solid symbols in (b) indicate the resolution used for production runs.

Appendix B. Numerical tests

B.1. Grid convergence
To prove grid convergence, we carry out a linear stability analysis for the reference
case defined in § 2.5 – i.e. for Pr = 28, Γref = 0.66, Vref = 1 and Bdref = 0.41 – and
monitor the dependence of the critical Reynolds number Rec and the critical frequency
ωc = Im(μc) as functions of N = √

Ntot, where Ntot is the total number of finite volumes
employed. For a second-order numerical scheme, the critical Reynolds number Rec should
scale ∼ N−2 for large N. This behaviour is confirmed for the single-fluid model in which
viscous stresses in the gas phase are neglected and the free surface is assumed to be
adiabatic. The critical data for this simplified model (mc = 4) are shown in figure 29(a).
It should be noted that the difference between Rec(m = 4) and the closest neutral
Reynolds number Ren(m = 3) is less than 1 %. Linear regression of the data for the four
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Figure 30. (a) Comparison of the catenoid profile hcat(z) (line) according to (B1) with the numerical solution
h(z) (red dots) of (3.1) for Γ = 1 and h0 = 0.848 using an equidistant grid with Nz = 34 grid points. (b) L2
and L∞ norms of the deviation ε of the numerical solution from the exact catenoid as functions of the number
of grid points Nz.

finest grids (dashed lines in figure 29a) yields the extrapolated values (Rec, ωc)
extra =

(1560, 28.62). These extrapolated values deviate by only (0.4 %, 0.4 %) from the critical
data (Rec, ωc)

N=305 = (1554, 28.52) obtained on the finest mesh.
For the present two-fluid model that takes into account the gas phase, the critical

wavenumber changes to mc = 3 and the Reynolds number is remarkably lower. The data
do not show a linear convergence (figure 29b), because the grid is not homogeneous
and involves grid points in the gas as well as in the liquid phase that are refined
differently. Nevertheless, a regression with a polynomial of second order (dashed lines
in figure 29b) yields (Rec, ωc)

extra = (733.5, 14.89). Since the finest mesh used in
figure 29(b) is numerically too expensive for the intended quasi-continuous parameter
variations, production runs were carried out using the resolution N = 322 (solid symbols
in figure 29b). The error is estimated by comparison of the extrapolated values
(Rec, ωc)

extra with the result (Rec, ωc)
N=322 = (730.5, 14.85). Again, we arrive at an error

estimate of at most 0.4 % for both the critical Reynolds number and the critical frequency.
From these results, we conclude grid convergence and proceed using the grid N = 322 for
all stability analyses.

B.2. Code verification
In a first verification step the interfacial shape is considered. In the case of weightlessness
(Bo = 0) the Young–Laplace equation (3.1) has the closed-form solution of a catenoid
(Kenmotsu 1980; Langbein 2002):

hcat(z) = h0 cosh
(

z
h0

)
, (B1)

where h0 = h(0) is related to Γ by h0 cosh(1/2h0) = 1/Γ (cf. (2.15)). In figure 30(a), we
compare the numerically computed shape of the free surface with the catenoid profile for
Γ = 1 and h0 = 0.848. The L2 and L∞ norms of the deviation ε = h(z)− hcat(z) of the
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Grid/ Re = 3000 Re = 5000 Re = 7000

Reference ψ̃max log(|δNu|) ψ̃max log(|δNu|) ψ̃max log(|δNu|)
121 × 121 2.1093 −12.3 2.0274 −12.2 1.9567 −12.4
160 × 160 2.1171 −12.2 2.0306 −12.2 1.9622 −12.4
260 × 260 2.1188 −13.1 2.0321 −12.9 1.9632 −12.5
360 × 360 2.1193 −12.3 2.0324 −12.3 1.9634 −12.4
Leypoldt et al. (2000) 2.09 — 1.97 — 1.86 —
Nienhüser (2002) — — 2.03 −2.52 — —
Romanò et al. (2017) 2.1783 — 2.0605 — 1.9735 —

Table 8. Scaled maximum absolute value of the Stokes stream function ψ̃max = max |ψ | × 103 and relative
(logarithmic) error δNu = ∑

i Nui/max |Nui| of the total Nusselt number for the flow in a cylindrical liquid
bridge with Γ = 1, V = 1, Pr = 4, Bd = 0 and an adiabatic free surface for different grid resolutions. The
comparison is made with Leypoldt et al. (2000), Nienhüser (2002) and Romanò et al. (2017).

numerical solution h(z) from the analytical counterpart hcat(z) are displayed in figure 30(b)
as functions of the number of grid points Nz, distributed uniformly over the height of the
liquid bridge. From the graphs, a second-order convergence is obvious.

To verify the computations of the basic flow, the maximum absolute value of the Stokes
stream function ψ arising in the centre of the thermocapillary vortex is compared with
literature data of Leypoldt et al. (2000), Nienhüser (2002) and Romanò et al. (2017) for the
single-fluid model. Data for different grids Nr × Nz and Reynolds numbers are provided
in table 8 for Γ = 1, V = 1, Bd = 0 and an adiabatic free surface. As can be seen, the
present results are in good agreement with the literature data.

Apart from this local test, we checked the energy preservation by computing the total
heat flux through the liquid bridge in non-dimensional form:∑

i

Nui = −
∑

i

∫
Si

ni · ∇ϑ dS = 0, (B2)

where Nui is the Nusselt number for the circular hot and cold walls in contact with
the liquid, and for the free surface (i ∈ [h, c, fs]). Since the free surface is adiabatic,
Nufs = 0 and the heat flux through the cold wall must balance the heat flux through
the hot wall. The relative error in the energy preservation of the basic state expressed
by δNu = ∑

i Nui/max |Nui| is also provided in table 8. We find that the thermal energy
of the basic state is conserved up to δNu < 10−12 for all presented calculations. The same
order of magnitude of δNu was also obtained for cases with a non-vanishing heat flux
through the free surface (Nufs /= 0, not shown).

Finally, the linear stability analysis is verified by comparing with the critical parameters
for the common benchmark of a cylindrical liquid bridge with Γ = 1, Pr = 4, Bd = 0 and
adiabatic free surface. Table 9 shows that our results for Rec and ωc, and a resolution of
N = 176 × 197 grid points in the radial and axial directions, respectively, deviate less than
0.2 % from the data of Levenstam et al. (2001) and Carrión et al. (2020). The deviation
of Rec by 0.8 % from the result of Levenstam et al. (2001) for Pr = 7 is slightly larger.
The somewhat larger deviation by 4.5 % of Rec from the result of Wanschura et al. (1995)
for Pr = 4 can be explained by the regularisation of the thermocapillary stresses within
10 % of d from each corner employed by Wanschura et al. (1995). Since the regularisation
tends to reduce the driving force, a higher critical Reynolds number was obtained by these
authors. Furthermore, the deviation of Rec by 2.8 % with respect to the result of Shevtsova,
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Pr = 4 Pr = 7

Authors Resolution Rec ωc Rec ωc

Present 176 × 197 (FV) 1002 28.43 876 22.91
Wanschura et al. (1995) 20 × 80 1047 27.9 — —

(Spectral, FD)
Shevtsova et al. (2001) (Nr,Nϕ,Nz) = (25, 16, 21) 1030 28.72 — —

(FV simulation)
Levenstam et al. (2001) 41 × 41 (FE) 1002 28.5 869 22.9
Carrión et al. (2020) 91 × 91 (FD) 1000 28.45 — —

Table 9. Critical data for common benchmarks (Pr = 4 and 7) of a cylindrical liquid bridge with Γ = 1,
adiabatic free surface, zero gravity, and negligible viscous stresses from the gas phase. A comparison is made
with Wanschura et al. (1995), Shevtsova et al. (2001), Levenstam et al. (2001) and Carrión et al. (2020). Here,
FV indicates finite volumes, FD indicates finite differences, and FE indicates finite elements.

V
0.850.80 0.90 0.95 1.00 1.05 1.10

m = 1
m = 2

m = 2

Ma

m = 1
m = 1&2

10

8

6

4

2

0

(×104)

Figure 31. Neutral Marangoni numbers (lines) as function of the volume ratio V for Pr = 28, Bd = 0.92,
Γ = 1, Γrod = 4.8 and η = 5. A comparison is made with the experimental critical Marangoni numbers
(symbols) extracted from figure 6(a) of Yano et al. (2016) for zero gas flow rate in the ambient air. The
wavenumbers are m = 1 (blue symbols) and m = 2 (red symbols).

Melnikov & Legros (2001) could be related to their method of determining the critical
onset by numerical simulation and by using a coarser mesh (25 × 21) in the (r, z) plane.
In view of these comparisons, we consider our code verified.

B.3. Code validation
For the purpose of validation, we also compared our linear stability analysis for Pr = 28,
Γ = 1 and Bd = 0.92 with the experimental data measured by Yano et al. (2016). To
match with the experimental geometry, we adopted not only Γ and Bd, but also η = 5
and Γrod = 4.8. Figure 31 shows the neutral and critical Marangoni numbers as functions
of the volume ratio V . As can be seen, the numerical critical Marangoni numbers, using
resolution N = 322, agree with the experimental data within the experimental error bar.
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Only for V = 0.95 does some deviation exist. This can be explained, however, by the
nearby codimension-two points at which the azimuthal wavenumber of the critical mode
changes from m = 1 to m = 2. Near these points, the dynamics of the supercritical flow
can be complicated. In fact, for V = 0.95, Yano et al. (2016) found what they called a
mixed mode with m = 1 and m = 2, which must be a result of supercritical nonlinear
interactions. Moreover, the critical curve for m = 1 has a large slope with respect to V
such that small uncertainties in V result in large deviations of the critical data. When
comparing with the experiments, one has to keep in mind that the detailed experimental
conditions may deviate to some degree from the numerical ones, and that the effect of
temperature-dependent material parameters is not taken into account within the present
modelling (except for ρ, ρg and σ ). Given the remaining differences between experiment
and numerics, and the relatively large error bar for the experimental critical Marangoni
numbers measured by other authors, our code can also be considered validated.
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