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A B S T R A C T

The propagation and rupture of mucus plugs in human lungs is investigated experimentally by injecting
synthetic mucus in a pre-wetted capillary tube. The rheology of our test liquid is thoroughly characterized, and
four samples of synthetic mucus are considered in order to reproduce elastoviscoplastic regimes of physiological
interest for airway reopening. Our experiments demonstrate the significant impact of the viscoplasticity and
viscoelasticity of mucus. In support to our experiments, we propose a one-dimensional reduced-order model
that takes into account capillarity, and elastoviscoplasticity. Our model manages to capture the cross-section
averaged dynamics of the liquid plug and is used to elucidate and interpret the experimental evidence. Relying
on it, we show that the liquid film thickening due to non-Newtonian effects favors plug rupture, whereas the
increase of the effective viscosity due to higher yield stresses hinders plug rupture. As a result of such two
effects, increasing the polymeric concentration in the mucus phase leads to a net increase of the rupture time
and traveling length. Hence, non-Newtonian effects hinder airway reopening.

1. Introduction

Liquid plugs in conduits and pipes are typical flow regimes en-
countered in two-phase microfluidics [1]. At small scales inertial and
gravitational effects play a minor role in the dynamics of the flow, while
surface tension and Marangoni stresses gain an increasing importance
from millimetric down to nanometric characteristic lengths. Under-
standing, predicting and controlling liquid plugs in confined flows
is of crucial importance for designing micron-size and labs-on-a-chip
devices. Moreover, the presence of liquid plugs is commonly reported
in pulmonary flow due to disease or closure of distal airways and the
propagation of liquid plugs plays a major role in medical treatments
based on direct instillation of liquid solutions [2]. The fundamental
understanding of liquid plug dynamics in pulmonary flows represents
the main motivation of our study, with a special focus on the effect of
non-Newtonian rheological properties of the liquid phase.

The thin liquid film lining the inner airway walls is formed by
the mucus layer and the serous layer, with the latter in contact with
the airway walls [3]. The dynamics of such a thin film is of major
importance for the formation of liquid plugs in lungs. When the airway
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radius is of the order of a millimeter or smaller, the inertial and
gravitational forces on the thin film represent higher-order effects and
the dynamics of the film is governed, in fact, by viscous forces (in
the lubrication approximation) and, in particular, by capillary forces
due to surface tension. It results that, when the liquid film thickness
exceeds a critical value, the liquid film may undergo a Plateau–Rayleigh
instability [4,5] leading to the formation of liquid plugs across the
airway lumen and preventing gas exchange for distal airways [6]. This
phenomenon is termed airway closure, and it occurs in healthy subjects
at the end of the expiration cycle [6,7] or in pathological conditions
induced by pneumonia [8], asthma [9], bronchiolitis [10], chronic
obstructive pulmonary disease (COPD [11]), cystic fibrosis [12], and
acute respiratory distress syndrome (ARDS [13]).

The experimental and numerical investigations by Bian et al. [14],
Tai et al. [15], and Romanò et al. [16] focused on the potential
damage of airway closure on the epithelial cells. As pointed out by
Grotberg [17], the mechanical stresses and strains induced on the ep-
ithelium by repetitive airway closure and reopening events can cause,
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themselves, lung injury and disease. The protective impact of surfac-
tant, which reduces the mean surface tension, has been experimentally
and numerically demonstrated by Cassidy [18] and Halpern et al. [19],
respectively. All these investigations focused on the capillary instability
of the liquid film coating the airways. However, simultaneously to
the Plateau–Rayleigh instability, also the elastic instability of the de-
formable airway wall plays an important role in the airway closure (see
e.g. Halpern and Grotberg [20]). A detailed study of the interplay be-
tween interfacial and elastic instabilities is reported by Heil et al. [21],
who showed that both such instabilities play in favor of the occlusion
of the respiratory airways. Another element of complexity of the liquid
plug formation in human lungs is due to the non-Newtonian behavior
of mucus, which includes viscoelasticity [22,23], yield stress and shear-
dependent viscosity (shear-thinning [24]). The non-Newtonian effects
have a significant impact on airway closure as shown by Halpern
et al. [25] and their characterization represents an active field of
research in pulmonary fluid mechanics.

Once a liquid plug occludes the airway, the air-blown plug propa-
gates inside the lungs, either rupturing or persisting and splitting when
it encounters an airway bifurcation. The former scenario occurs when
the precursor liquid film is thinner than the trailing film [26–28] .
This phenomenon is called airway reopening, and it causes a pressure
wave detectable by a stethoscope [29]. The reopening of respiratory
airways has been extensively investigated because of its damaging
effects due to very high stress levels at the airway walls. The capillary
wave characteristic of the retracting air finger (see Bretherton [30],
Taylor [31]) and the dynamics immediately after rupture [32] are
responsible of such a high level of wall stresses and of the consequent
lethal or sub-lethal response of epithelial cells [32–34]. The strong
correlation between plug rupture and high wall stress levels has been
confirmed by the simulations of Fujioka and Grotberg [27,35], Fujioka
et al. [36], Hassan et al. [37], and Muradoglu et al. [38], who consid-
ered an airway modeled either as a rigid pipe or a rigid channel. Further
confirmations are reported by the in-vivo experiments by Muscedere
et al. [39] and Taskar et al. [40]. Other investigations focused on the
effect of surfactant that plays a crucial role in reducing the surface
tension at the liquid–air interface [41]. Fujioka and Grotberg [35]
numerically investigated the effect of surfactant on the steady prop-
agation of a liquid plug within a two-dimensional channel. The results
showed that the mechanical stresses induced by the plug propagation
is reduced even if the preexisting surfactant concentration is small.
The same observation has been also made by Tavana et al. [42], who
performed an experimental study on the effects of surfactant on cell
injury. Adding a physiologic amount of Survanta, they showed that plug
propagation significantly reduces the lethal response of epithelial cells.
This has been confirmed by the extensive simulations of Muradoglu
et al. [38], capable to reproduce the whole rupture process, including
the post-rupture phase. The effect of compliance of airway walls was
considered by Zheng et al. [43], who showed an enhancement of the
stress level on the airway walls due to wall deformability. The effect of
yield stress on plug rupture has been experimentally and numerically
investigated by Hu et al. [44,45], Low et al. [46] and Zamankhan
et al. [47]. They either dealt with liquid plugs on a dry or a pre-wetted
channel, focusing on the dynamics of the non-Newtonian liquid plug up
to the rupture event. Other numerical and experimental studies focused
on a train of plugs and discussed catastrophic events in the airway
network [48] or surfactant-replacement therapies where the liquid
plugs are formed due to the liquid instilled into airways for medical
treatment [2,49]. For literature reviews of respiratory airway closure,
liquid plug propagation, and rupture, we refer to Grotberg [28,50,51].

In this paper we focus on the impact of the non-Newtonian prop-
erties of mucus on the liquid plug rupture. We perform a detailed
rheological analysis of various samples of synthetic mucus and em-
ploy such samples to study airway reopening. Finally, we derive a
reduced-order model to shed some light on the standalone effect of
viscoplasticity and viscoelasticity. The paper is structured as follows:

In Section 2 the experimental set-up and the corresponding results
are described; In Section 3 we define the framework of our reduced-
order model, derive such a model based on up-to-date correlations
reported in literature, and presents the corresponding results; finally,
the conclusions of our study are drawn in Section 4.

2. Experiments

2.1. Synthetic mucus samples

The synthetic mucus used in this study is a compound of water
and two polymers. The Scleroglucan Polysaccharide (Actigum®) is
employed as a chemical agent to increase the liquid viscosity and Locust
Bean Gum (Vidogum® L-175) is used as a thickening agent. We dissolve
0.25 g of Vidogum in 50 ml of distilled water for 2 h and then different
Actigum concentrations (𝑐act = 0.25, 0.5, 1 and 1.5 g/ml.) are added
to such aqueous solutions. Copper sulfate CuSO4 (0.05 g) is also added
as a stabilizer before keeping the mixtures under agitation conditions
for 24 h at room temperature (around 21 ◦C). After that, the aqueous
solutions are left at rest for 24 h in order to recover the gel structure
before performing any other manipulation. The solutions are stocked in
close containers that prevent significant evaporation as they are stored
at 4 ◦C. In the followings, we name them after their characteristic
Actigum concentrations, i.e., MUC-0.25%, MUC-0.5%, MUC-1% and
MUC-1.5% correspond to 𝑐act = 0.25, 0.5, 1 and 1.5 g/ml, respectively.

As aforementioned, we use vidogum and CuSO4 for preparing our
synthetic mucus. This is different from the experimental protocol pro-
posed by Lafforgue et al. [52], who rather employ viscogum and NaCl.
We stress that our choice of CuSO4 instead of NaCl is intended to avoid
the spontaneous development of microbiological culture through the
synthetic mucus. As a result, the lifetime of the final aqueous solutions
is increased.

2.2. Rheological measurements

The rheological behavior of the synthetic mucus is characterized
using a cone/plate geometry (50 mm/1◦) with truncation gap of 𝜃 =
0.104 mm. All measurements are carried out in an Anton-Paar MCR
302 rheometer at a constant temperature of 21 ◦C. Two flow sweep
protocols are applied to measure the rheological characteristics of the
synthetic mucus and the relaxation time. At first, in order to find vis-
cosity and fitting Herschel–Bulkley model the flow curve measurement
was done. This was happened by following a standard protocol of flow
sweep [53,54] within the shear-rate interval of 0.01/s < �̇� < 1000/s.
Then to get the dynamic, shear rate dependent, relaxation time 𝜆, we
followed step by step the protocol detailed by Casanellas et al. [55].
This experimental protocol is consisted of several incremental steps.
In each step a constant shear rate is imposed with multiple measuring
points. Right-after a flow sweep test is conducted where the solution
was sheared at a small shear rate of reference (�̇� = 1𝑠−1). On each step,
subtracting the means of two values of the first normal stress difference
𝑁1 gives a way to resolve the instrumental drift of the normal force and
find real value of 𝑁1(�̇�). This latter will be completed by removing the
contribution of fluid inertia to the normal force. Moreover, it can clarify
the non-linear rheological behavior of the different samples in which
the real rheological response of the samples is shear-rate dependent.

A shear-thinning behavior is observed for all the aqueous solu-
tions. The resulting rheological curves are characterized by fitting the
Herschel–Bulkley model, 𝜏 = 𝜏0 + 𝐾�̇�𝑛, where 𝜏, 𝜏0, 𝐾, and 𝑛 are
the shear stress, yield stress, consistency index, and power-law index,
respectively (see Fig. 1). The rheological parameters of the synthetic
mucus solutions are summarized in Table 1. The results show that the
yield stress for MUC-0.25% is 0.59 Pa and it increases upon an increase
of the Actigum concentration (𝑐𝑎𝑐𝑡). A similar trend is also observed for
the consistency index, the power-law index, 𝑛, slightly decreases as 𝑐act



Fig. 1. Flow curves of the synthetic mucus solutions obtained from rheological measurement at 21 ◦C. (a) Viscosity 𝑣𝑠 shear rate. The dashed line represents the rheometer
low-torque limit which is multiplied by 3 (𝜇 < 3𝑇𝑚𝑖𝑛∕(2𝜋𝑅3

1 �̇�), with 𝑅1 = 50 mm and 𝑇𝑚𝑖𝑛 = 0.5 μN m [57]). (b) Shear stress 𝑣𝑠 shear rate. The colored continuous lines represents
fits based on the Herschel–Bulkley model applied to flow curves. The discrepancy between fits and the experimental results is attributed to slip of solution in low torques.

Fig. 2. (a) First normal-stress difference as a function of shear rate. Data are fitted with a power law model. Black solid line of slope 𝛼 = 2 represents the Oldroyd-B model
(𝑁1 = 2𝜂𝑝𝜆�̇�2), considering an identical relaxation time at polymer contribution to the zero shear viscosity 𝜂𝑝. (b) Relaxation time as a function of shear rate for different
concentration of synthetic mucus using the White–Metzner model. Colored continuous lines are fitted to the experimental data by a power law model. The corresponding model
constants can be found in Table 1.

Table 1
Rheological parameters of the synthetic mucus suspensions derived by fitting the

Herschel–Bulkley model 𝜏 = 𝜏0 + 𝐾�̇�𝑛 as well as the White–Metzner model [56] in
order to find the relaxation time, 𝜆. All solutions follow the relations of 𝑁1 ∝ �̇�𝛼 and
𝜆 ∝ �̇�𝛽 , where the exponents 𝛼 and 𝛽 govern the viscoelastic behavior of the solutions.

Sample Herschel–Bulkley model viscoelastic behavior

𝜏0 (Pa) 𝐾 𝑛 𝛼 𝛽

MUC - 0.25% 0.59 0.28 0.61 1.10 −0.45
MUC - 0.5% 3.60 1.64 0.43 0.88 −0.53
MUC - 1% 17.63 1.88 0.44 0.77 −0.59
MUC - 1.5% 40.08 10 0.36 0.68 −0.62

increases. This shows that the solutions become more shear-thinning as
𝑐act increases.

The viscoelastic behavior of the synthetic mucus can be described
by employing various rheological models. One way is to assume that
the relaxation time is independent of the shear rate. This approach is
typically employed in the Oldroyd-B, the FENE-P and FENE-CR models,

applied generally to solutions with low concentration of polymers.
However, in the case of non-linear rheological behavior, likely for
higher polymer concentrations, we can use the White–Metzner con-
stitutive equation [56]. This model (see Eq. (1)) assumes that the
relaxation time, shear viscosity and first normal-stress difference 𝑁1
are shear-dependent

𝑁1 = 2
[

𝜂(�̇�) − 𝜂s
]

𝜆(�̇�)�̇�2 (1)

where 𝜂(�̇�) and 𝜆(�̇�) are the shear rate dependent total viscosity and
relaxation time, respectively, and 𝜂𝑠 is the solvent viscosity. The dif-
ference, 𝜂(�̇�) − 𝜂𝑠, gives the polymer viscosity contribution 𝜂𝑝. Finally,
we can calculate the relaxation time by rewriting (1) to isolate 𝜆(�̇�) by
introducing the ratio of the first normal-stress difference 𝑁1 to shear
stress 𝜎 = 𝜂(�̇�)�̇�

𝜆(�̇�) = 1
2�̇�

𝜂(�̇�)
(

𝜂(�̇�) − 𝜂s
)

𝑁1
𝜎

(2)

Fig. 2 shows the results of the normal stress difference and re-
laxation time as a function of shear rate. Note that 𝑁1, 𝜎 and 𝜂(�̇�)



Fig. 3. Sketch of the experimental apparatus. (a) Experimental set-up. (b) Tracking of the rear and the front menisci, and space–time diagram.

are obtained experimentally using the rheometer. However, as already
mentioned, the raw data of 𝑁1 was corrected by subtracting the inertial
contribution. This was done by subtracting the negative inertial effect
which tends to pull down the cone due to the presence of liquid
between the cone-plate rheometer instrument [58]. The corresponding
correction is given by: 𝑁1 = 𝑁1,𝑡𝑜𝑡 + 0.15𝜌𝛺2𝑅2, where 𝑁1,𝑡𝑜𝑡 is the
total/row normal-stress difference directly given by the rheometer and
𝛺 = tan (𝜃) �̇� is the angular velocity. It is worth to mention that
these corrections rely on the accurate measurements of 𝑁1. This latter
depends on resolution of the normal force sensor of the rheometer,
especially at the low polymer concentrations and shear rates. As can be
seen in Fig. 2(a) the evolution of 𝑁1 as a function of shear rate shows
a power law like 𝑁1 ∝ �̇�𝛼 . The results show that the slope of 𝛼 decrease
by increasing of shear-thinning degree depending on the concentration
of Actigum 𝑐act (see Table 1). Indeed the value of 𝛼 determines the
complexity of non-linear rheological response of the fluids, for 𝛼 = 2,
the behavior follows the Oldroyd-B model. The relaxation time as a
function of shear rate (1)b is also represented by a power law function
as 𝜆 ∝ �̇�𝛽 . The values of 𝛽, summarized in Table 1, indicate larger
relaxation times as the concentration of Actigum increases. Fig. 2 also
demonstrates that as the shear-thinning degree increases the relaxation
time becomes more sensible to shear rate.

2.3. Experimental apparatus

The experiments of a liquid plug propagation in a pipe flow were
conducted using a cylindrical glass tube with inner diameter of 𝑑𝑖 =
2𝑎 = 4 mm corresponding to the diameter of bronchioles at 6th-to
−7th generation of an adult human lung. In order to reproduce the
dynamics of a liquid plug, a controlled volume of the synthetic mucus
is injected, at first, through the glass tube, and then pushed along using
two different gases as described in detail below.

The mucus and gas injections are performed at a constant flow rate
by using a flowmeter (Flow Unit, Fluigent), as shown in Fig. 3(a). A
systematic pre-wetting surface treatment of the glass tube is done by
cleaning with acetone, isopropanol and dichloromethane before each
experiment. The impact of the rheological properties of synthetic mucus
is studied under atmospheric conditions, using filtered air directly
coming from the room.

The dynamic rupture of liquid plugs was recorded using a CCD
camera (DMK 23U618, Monochrome, up to 120 images/s, The Imaging
Source, Bremen, Germany) connected to a PC. The color difference
between the liquid plug (white) and the background (dark gray) is
exploited in our in-house Matlab® code to post-process the dynamics of
the liquid plug (see Fig. 3(b)). Each snapshot is processed by extracting
a stripe of the width of one pixel along the projection of the pipe
axis. The corresponding space–time diagram is thereafter obtained by
gathering all the one-pixel stripes and sorting them in chronological
order. As the background of the experimental setup is dark-gray and the

liquid plug is white, the dynamics of the liquid plug is readily identified
as illustrated in Fig. 3(b). A final image polishing is performed by
using an in-house front-identification algorithm that takes advantage
of the sharpness of the space–time diagram, and it characterizes the
brightness contour between the white pixels of the plug and the dark-
gray pixels of the background. Within this final post-processing step, we
also remove the blind region of the space–time diagram (see vertical
gray stripe in Fig. 3(b) due to a metallic plate employed in our
experiment to hold the capillary pipe in place). The image-processing
protocol readily provides the parameters of interest in our statistics,
i.e. the initial plug length, 𝐿i = 𝐿p(𝑡 = 𝑡0), the final plug length,
𝐿f = 𝐿p(𝑡 = 𝑡r), the rupture time, 𝑡r, and the distance covered by the
plug before the rupture event takes place (rupture length 𝐿r = 𝑧(𝑡 = 𝑡r)).
A schematic of such quantities is presented in Fig. 3(b). Finally, the
average plug velocity is estimated by the ratio of the rupture length to
the rupture time, i.e. 𝑈p = 𝐿r∕𝑡r.

2.4. Dynamics of plug ruptures

The dynamics of the liquid plug in the capillary tube is characterized
for several flow conditions using the four samples of synthetic mucus
and varying the initial plug length 𝐿i. Fig. 4 depicts the space–time
diagram of the liquid plug rupture for two different concentrations,
i.e. MUC-0.5% and MUC-1.5%, and three different initial plug lengths,
𝐿i = 5, 13 and 22 mm. The markers denote the data resulting from
our image post-processing protocol, and the dashed lines are cubic
polynomials obtained by least-squares fit for tracking the rear and the
front menisci. Cubic polynomials are employed because they result
in a smooth and seamless interpolation while avoiding oscillations
known as Runge phenomena [59]. Each subfigure includes two insets
representing two experimental snapshots where the plug moves from
left to right. On the top-right corner we depict the liquid plug as soon
as both front and rear menisci entered the observation window of our
experimental setup. This condition defines 𝐿i = 𝐿p(𝑡 = 0). On the
bottom-left corner we depict the liquid plug right before rupture and
we identify the final plug length 𝐿f = 𝐿p(𝑡 = 𝑡r). Hence, the time taken
to pass from 𝐿p = 𝐿i to 𝐿p = 𝐿f is the rupture time 𝑡r. The white stripe
at about two thirds from the pipe inlet (see Fig. 3(b)) is a fixed metal
plate employed to hold the capillary tube in place. Due to it, the plug
cannot be detected when passing below such a metal plate (gray stripe
in Fig. 4).

The four panels of Fig. 4 report four representative experimental
space–time diagrams. Fig. 4(a) shows a typical space–time diagram
observed for short plugs (𝐿i = (𝑎)). Regardless of the Actigum con-
centration, the short plugs of our experiments always rupture following
an axi-symmetric dynamics. The progressive drainage of the plug up
to 𝐿p(𝑡r) = 𝐿r ≈ 0 is also observed for low Actigum concentrations,
i.e. MUC-0.25% and MUC-0.5%, regardless of the initial plug length.
This is demonstrated in Fig. 4(b). Upon an increase of the Actigum



Fig. 4. Space–time diagram of the liquid plug rupture for (a, b) MUC-0.5% and (c, d) MUC-1.5%, and three initial plug lengths, i.e. (a) 𝐿𝑝(𝑡0) = 𝐿i = 5, (c) 13 and (b,d) 22 mm.
The markers denote the post-processed data along the pipe centerline, the dashed lines are least-squares cubic fits. Top-right inset: snapshot of the liquid plug as soon as the front
and the rear menisci entered the observation window. Bottom-left inset: snapshot of the liquid plug rupture (a–c) or exit of the liquid plug from the observation window. The
identified contour of the liquid plug is highlighted in red.

Fig. 5. Development of an asymmetric plug propagation for MUC-1.0% and 𝐿𝑝(𝑡0) = 𝐿𝑖 = 13 mm.

concentration, the liquid plug becomes more prone to asymmetric
ruptures (see bottom-left inset of Fig. 4(c)). A detailed dynamics of the
asymmetric plug rupture for MUC-1.0% and 𝐿i = 13 mm is depicted in
Fig. 5. By increasing the viscoplastic character of the liquid plug, the
deposition of the liquid film becomes wavy and loses the axi-symmetry
observed for low Actigum concentrations. This same phenomenon has
been reported in figs. 14 to 16 by Caliman et al. [60] and it results
in a non-zero centerline plug length at rupture (see also space–time
diagram of Fig. 4(c)). Another scenario is finally depicted in Fig. 4(d):
A long liquid plug undergoes an initial drainage and then gets steadily
advected in the capillary pipe without rupturing.

Fig. 6 depicts the experimental findings for our four samples of syn-
thetic mucus upon a change of the average plug speed 𝑈 𝑝, the effective
viscosity 𝜇, the relaxation time 𝜆, and the yield stress 𝜏0. Two quantities
are employed for characterizing the dynamics of the liquid plug: (i) the
rupture length non-dimensionalized by the difference between initial
and final length 𝐿𝑟∕(𝐿𝑖 − 𝐿𝑓 ) and (ii) the rupture time. The first non-
dimensional group is employed to compare the distance traveled by
a liquid plug with the total plug-length reduction until the rupture.
Fig. 6(a,b) show increasing the average plug length does not correlate
with a change of non-dimensional plug length, but it rather impacts on
the rupture time. This is a combined effect of (i) the faster propagating



Fig. 6. Rupture time 𝑡𝑅 (right) and non-dimensional rupture length 𝐿𝑟∕(𝐿𝑖 − 𝐿𝑓 ) (left) plotted against: the average plug speed 𝑈p (a, b), the effective viscosity 𝜇 (c, d), the
relaxation time 𝜆 (e, f), and the yield stress 𝜏0 (g, h). Same color coding of Fig. 2 is employed.

plug that experiences higher capillary numbers, hence thicker coatings,
and (ii) the higher-strained plug with therefore a lower effective vis-
cosity (shear thinning) and lower relaxation times (see Figs. 1 and 2).
Also the yield stress plays a role in delaying the rupture, even if the
component of the delay due to higher yield stresses seem to be a higher-
order correction when compared to the capillary-number effect. The

change of the plug rheology is rather more impactful on the normalized
rupture length, that grows upon an increase of 𝜇, 𝜆 and 𝜏0. This is
consistent with the physiological observations of non-Newtonian mucus
plugs that develop a higher resistance to rupture when the polymeric
concentration is increased. We further stress that our trend for 𝑡𝑟 is in
agreement with the results of Hu et al. [44], who showed that the liquid



Fig. 7. Schematic of the reduced-order model for the liquid plug rupture in an airway of constant radius 𝑎. The rear air finger (dark blue) has a film thickness ℎr and moves
with tip velocity 𝑈r, while the front air finger (dark red) has a film thickness ℎf and recedes with tip velocity 𝑈f. The core fluid (dotted box) is described by the recirculating
flow 𝑢p superposed to the averaged velocity 𝑈p = (𝑈r + 𝑈f)∕2.

plug takes a longer time to deform and rupture at higher Bingham
numbers. Therefore, they attributed the longer rupture time to the
slowed plug deformation induced by high yield stresses. Moreover, a
larger scatter of the experimental data is observed when 𝑐𝑎𝑐𝑡 ↑, which
is due to a higher probability to run into an asymmetric rupture of the
liquid plug.

3. Reduced-order model of the liquid plug rupture

A reduced-order model of our experiment is formulated as a one-
dimensional model based on the concept of flow resistance across a
liquid plug. Referring to Fig. 7, we assume that the pressure in the
advancing air finger at the trailing meniscus (rear film, subscript r)
of the liquid plug, 𝑃r, and the pressure in the receding air finger at
the leading meniscus (front film, subscript f) of the liquid plug, 𝑃f, are
constant. The liquid plug moves therefore under the effect of a given
pressure difference across the plug, 𝛥𝑃 = 𝑃r−𝑃f. This imposed pressure
difference is opposed by the pressure drop 𝛥𝑃p due to the capillary
and viscous forces. In the absence of inertia, the pressure drop is
proportional to the liquid flow rate 𝑄 and can be written as 𝛥𝑃p = 𝑅p𝑄,
where 𝑅𝑝 is the liquid plug resistance. Assuming that the front and the
rear menisci do not interact, the resistance of the plug can be expressed
as a system of three resistances in series, i.e. 𝑅p = 𝑅r+𝑅c+𝑅f, where 𝑅r
and 𝑅f are the resistances due to the interaction of surface tension with
the viscous rear and front thin film, respectively, and 𝑅c is the viscous
resistance of the core. Similar modeling approaches have been proposed
in literature by Howell et al. [61] and Waters and Grotberg [62], who
treated the plug core inviscid, and relegated the resistance to the thin
films ahead and behind the liquid plug.

Following the model of Fujioka et al. [63] for a clean Newtonian
liquid plug, the following system of ODEs can be used to represent the
plug propagation.
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, (3)

where 𝜌 is the density of the liquid, 𝑡 is the time, 𝑈p, 𝑈r and 𝑈f are
the plug, rear-bubble and front-bubble velocities, respectively, 𝐿p is
the plug length, and 𝜀r = ℎr∕𝑎 and 𝜀f = ℎf∕𝑎 are the non-dimensional
rear and front liquid film thicknesses, respectively (see Fig. 7). The
first equation describes the location of the center of the liquid plug,
𝑍p, with 𝑑𝑍p∕𝑑𝑡 = 𝑈p, the second equation is derived from the one-
dimensional Navier–Stokes equation, and the third one is the continuity
equation. A detailed characterization of the Newtonian resistances is
reported in the following section, partially modifying the model of
Fujioka et al. [63] to take into account the recirculation resistance
in the liquid plug (see 𝑢p in Fig. 7). The derivation of the last two
equations is briefly summarized in Appendix. We further generalize
this model by including non-Newtonian effects. Such extension of the
model of Fujioka et al. represents an original contribution of our study.

3.1. Newtonian plug resistance

A Newtonian liquid plug travels in a capillary tube of radius 𝑎 and
is characterized by trailing and a leading film thicknesses ℎr and ℎf,
respectively, a length 𝐿p and a mean traveling velocity 𝑈p. Under
the hypothesis that the rear and the front menisci do not interact,
the rear meniscus can be characterized by the Bretherton lubrication
model of a steady Taylor bubble advancing with velocity 𝑈r. The
pioneering work of Bretherton [30] is concerned with asymptotically
small capillary numbers of the rear meniscus, i.e. 𝐶𝑎r = 𝜇𝑈r∕𝜎 → 0,
where 𝜎 is the surface tension at the liquid–gas interface and 𝜇 is the
dynamic viscosity of the liquid phase. The results of Bretherton [30]
have successively been extended by several other authors that corrected
the Bretherton’s correlation for finite 𝐶𝑎r. The most refined correction
has recently been proposed by Fujioka et al. [63], who confirmed
the formula given by Aussillous and Quéré [64] for the steady film
thickness ℎr and improved the result for the resistance 𝑅r by fitting
Stokesian numerical simulations of an advancing, steady, semi-infinite
Bretherton bubble. The formulae by Fujioka et al. [63] read

𝜀r =
ℎr
𝑎

=
1.34𝐶𝑎2∕3r

1 + 1.34 × 2.5𝐶𝑎2∕3r
,

𝑅r =
𝜇

𝜋𝑎3
(

1 − 𝜀r
)2

(

2 × 1.79 × 22∕3𝐶𝑎−1∕3r

1 + 1.41𝐶𝑎1∕3r
+ 1.1

)

.

(4)

The film resistance of the front meniscus is considered by the
correction proposed by Fujioka et al. [63] that takes into account a
finite capillary number and does not require ℎf ≪ 𝑎. The formula
derived by fitting the Stokes flow for a rear front of a semi-infinite
Bretherton bubble is

𝑅f =
𝜇

𝜋𝑎3
(

1 − 𝜀f
)2

(

−2 × 32∕3𝑓𝐶𝑎−1∕3f

)

,

𝑓 =
5
∑

𝑘=0
𝐶𝑘

(

log10 𝛼
)𝑘 +

1.02𝜀0.348f 𝛼−0.594

1 + 0.0778𝛼−0.594

(5)

where 𝐶𝑎f = 𝜇𝑈f∕𝜎, 𝑈f is the velocity of the front bubble, 𝜀f = ℎf∕𝑎,
𝛼 = 𝜀f∕

(

3𝐶𝑎f
)2∕3, 𝐶0 = −0.149, 𝐶1 = 2.04, 𝐶2 = 0.570, 𝐶3 = 0.233,

𝐶4 = 0.064, and 𝐶5 = 0.00689.
The last component of the liquid plug resistance is 𝑅c that is

obtained following the approach of Che et al. [65], who considered the
recirculating axisymmetric flow 𝑢𝑝 in the reference frame co-moving
with the plug at speed 𝑈p. Since a change of reference frame does
not affect the flow resistance, we employ the formula reported in Che
et al. [65]

𝑅c = −
2𝜇𝐿p

𝜋2𝑎4

∞
∑

𝑛=1

1 − (−1)𝑛
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)
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(
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)



Fig. 8. The markers are derived from the resistance formula in form of infinite series
(6), data extracted from fig. 8 by Che et al. [65], while the solid line is obtained
from the power-law fit (7). The dashed line denotes the Hagen–Poiseuille asymptote
lim𝐿p∕𝑎→∞ 2𝜋𝑎4𝑅c∕𝜇𝐿p = 16. The inset depicts a cutout of the interval 𝐿p∕𝑎 ∈ [0, 10].
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(6)

where 𝐼0, 𝐼1 and 𝐼2 are the modified Bessel function of the first
kind of order 0, 1 and 2, respectively. The core resistance reported
in (6) assumes straight menisci, dry plug transport and tends to the
viscous resistance of a fully-developed Hagen–Poiseuille profile for long
liquid plugs, i.e. 𝐿p ≫ 𝑎. Owing to the slow convergence of (6), it
is computationally expensive to evaluate the infinite series, hence we
rather prefer to employ a least-square fit built on the following power
law

𝑅c =
𝜇𝐿p

2𝜋𝑎4

[

16 + 77.9725
(𝐿p

𝑎
+ 0.5546

)−1.7670]

, (7)

where the Hagen–Poiseuille asymptote enters enforcing the first coeffi-
cient of the fit, i.e. 16. A comparison between (6) and (7) is reported
in Fig. 8.

3.2. Corrections for non-Newtonian effects

The effect of the non-Newtonian behavior of the liquid phase mod-
ifies all three flow resistances of our reduced-order model. To the
best of the authors’ knowledge, no empirical, numerical or theoretical
correlations are present in the literature for taking into account the
viscous, elastic and plastic behavior of the mucus simultaneously. In
our model, therefore, we assume that the viscoelastic and viscoplastic
corrections can be superposed.

Following Gauri and Koelling [66], the viscoelasticity of a liquid
strongly affects the film thickness. Based on their experimental mea-
surements, they propose the following correction to pass from the
Newtonian to the viscoelastic (VE) case

𝜀∗
VE(2 − 𝜀∗

VE) = 𝜀∗(2 − 𝜀∗)[0.1217 ln(𝐷𝑒∗) + 0.8461] (8)

where 𝐷𝑒∗ = 2𝑈∗𝜆∕𝑎 is the Deborah number and 𝜆 is the relaxation
time of the liquid. This correlation is valid for 𝐷𝑒∗ ≥ 3, and higher-
order corrections required for 𝐷𝑒∗ < 3 are neglected in our model.
No viscoelastic correction is taken into account for the core resistance.
This is consistent with the limit of the Hagen–Poiseuille profile for long
plugs.

Several studies have focused on the correction of the rear- and front-
bubble resistances and the corresponding non-dimensional thicknesses

for Herschel–Bulkley liquids (see e.g. Laborie et al. [68] and Jalaal
and Balmforth [69]). However, a comprehensive explicit correlation
for 𝑅𝑝 and 𝜀∗ between Newtonian and Herschel–Bulkley liquids (hence
as a function of 𝐾, 𝜏0, and 𝑛) is still missing. Hence, we limit the
viscoplastic correction of our model to Bingham fluids (𝑛 = 1) and
correct the film thickness and the plug resistance by fitting the results
of Zamankhan et al. [47,67]. In this case 𝐶𝑎∗ reduces to the classic
definition 𝐶𝑎∗ = 𝜇𝑈∗∕𝜎. The resulting corrections are

𝛥𝑃 VP
p = 𝛥𝑃p + 2.3𝐵𝑖p

𝜇𝑈p

𝑎
, (9a)

𝜀𝑉 𝑃
∗ (2 − 𝜀𝑉 𝑃

∗ )
𝜀∗(2 − 𝜀∗)

= 1 +
𝐵𝑖∗
𝐶𝑎∗

{

0.06
[

tanh
(

20 − 𝐵𝑖∗∕𝐶𝑎∗
𝜋

)

+ 1
]

+0.03
[

tanh
(

𝐵𝑖∗∕𝐶𝑎∗ − 20
𝜋

)

+ 1
]}

(9b)

where 𝐵𝑖 is the Bingham number 𝐵𝑖∗ = 𝜏0𝑎∕𝜇𝑈∗, 𝜏0 is the yield stress,
and the fits are reported in Fig. 9. In our fitting model, the control
parameter 𝐵𝑖∕𝐶𝑎 plays a relevant role in describing the viscoplastic
correction of the thin film thickness. To better understand it, we
consider the dynamics of a thin liquid film, i.e. 𝜀 = ℎ∕𝑎 ≪ 1. Within
the framework of the thin-film approximation, the pressure inside the
liquid film is simply projected in direction normal to the wall. Hence,
to leading order, the pressure inside the liquid (𝑝 relative to the air
core pressure) is 𝑝𝜎 = 𝜎∕(𝑎 − ℎ) ≈ 𝜎∕𝑎. For slow viscoplastic liquid
plugs, and especially in the thin film coating the capillary pipe, inertial
effects are negligible and the film thickness results out of the balance
between viscoplasticity (hence yield stress 𝜏0), capillary pressure (𝑝𝜎)
and viscous stresses (𝜏𝑣 = 𝜇𝑈∗∕𝑎). Hence, the ratio between the
Bingham number 𝐵𝑖 = 𝜏0𝑎∕𝜇𝑈∗ and the capillary number 𝐶𝑎 =
𝜇𝑈∗∕𝜎 represents a dimensionless group that quantifies the relative
importance of yield and capillary-induced normal stresses inside the
liquid film against the viscous stresses, i.e. 𝐵𝑖∕𝐶𝑎 = 𝜏0𝑝𝜎∕𝜏2𝑣 . In this
sense, the non-dimensional group 𝐵𝑖∕𝐶𝑎 represents a parameter that
involves all the stresses relevant for the dynamics of a viscoplastic
thin film. The choice of 𝐵𝑖∕𝐶𝑎 as a control parameter is confirmed
by the data of the independent study of Zamankhan et al. where data
almost collapse on the 𝐵𝑖∕𝐶𝑎−dependent fitting curve employed by our
model. Considering that three very different capillary numbers have
been simulated for producing the data used in Fig. 9, the remarkable
data collapse is a strong indication that 𝐵𝑖∕𝐶𝑎 is a significant control
parameter. We stress that the ranges of capillary and Bingham numbers
used in the original study of Zamankhan et al. and fitted in (8) cover
the range of physiological 𝐶𝑎 and 𝐵𝑖 of interest for the reopening of
a distal airway. In this sense, the fit is expected to be general for the
purpose of its application.

Since the elastoviscoplastic corrections include a change of the
non-dimensional film thicknesses, two variants M1 and M2 of the
reduced-order model should be taken into account. When the thickness
of the liquid films is corrected, either we consider the bubble-tip
velocity constant (model M1) or we assume that the flow rate does
not change (model M2). Further details are provided in the following
subsection.

3.3. Algorithm of the reduced-order model

We model the liquid plug rupture of an elastoviscoplastic liquid plug
assuming:

(a) A fully-developed flow profile in the liquid plug core;
(b) Superposition of viscoelastic- and viscoplastic-induced correc-

tions for the non-dimensional film thickness of the advancing
and the retracting air fingers;

(c) Correction of the capillary resistances of the liquid plug menisci
determined by the viscoplastic dynamics of a Bingham fluid.



Fig. 9. Effects of viscoplasticity. The solid lines in the left panel denote the two asymptotes observed for 𝐵𝑖∗∕𝐶𝑎∗ < 20 and 𝐵𝑖∗∕𝐶𝑎∗ > 20, the dashed line includes the smoothed
transition between them and depicts (9)(b), the solid lines in the right panel depict the fit (9)(a),while the markers are the data of Zamankhan et al. [47,67]. Left panel:
Non-dimensional film thickness for 𝐶𝑎 = 0.25 (triangles), 𝐶𝑎 = 0.1 (squares), and 𝐶𝑎 = 0.05 (circles) taken from Zamankhan et al. [67]. Right panel: Non-dimensional pressure drop
for 𝐶𝑎 = 0.025 (triangles), 𝐶𝑎 = 0.05 (squares), and 𝐶𝑎 = 0.025 (circles) taken from Zamankhan et al. [47].

The following algorithm defines our reduced-order model for an elas-
toviscoplastic liquid plug:

1. Enforce the front-bubble film thickness 𝜀f = 𝜀EVP
f ;

2. Enforce the Bingham-to-capillary ratio and the Deborah number
of the front-bubble, i.e. 𝐵𝑖f∕𝐶𝑎f and 𝐷𝑒f, respectively;

3. Remove the effect of the fluid elastoviscoplasticity by inverting
Eqs. (9)(right) and (8) to compute the non-dimensional film
thickness of a bubble retracting in a Newtonian liquid 𝜀f;

Note: We test two variants for the non-Newtonian film thickness
corrections (superscript corr) of the reduced-order model:

M1: velocity-matched model 𝑈 corr
f = 𝑈f with 𝛥𝑃f =

−2𝜎𝑓 (3𝐶𝑎f)2∕3∕𝑎;
M2: flow-rate-matched model 𝑈 corr

f = 𝑈f[(1 − 𝜀f)∕(1 −
𝜀surf

f )]2 with 𝛥𝑃f = −2𝜎𝑓 (3𝐶𝑎f)2∕3∕𝑎;

4. Compute the capillary number and the film thickness of the front
bubble by inverting (4)(left), which holds for retracting bubbles,
too;

5. Compute the front-bubble velocity 𝑈f from the capillary number
of a Newtonian bubble;

6. Compute the pressure drop of a Newtonian bubble at the front-
bubble tip using 𝛥𝑃f;

7. Based on the selected 𝐵𝑖f∕𝐶𝑎f and 𝐷𝑒f, compute the correspond-
ing 𝜏0 and 𝜆;

Note: 𝑈f and 𝛥𝑃f are derived by the enforced front-bubble film
thickness 𝜀f, and by the rheological properties of mucus.
Hence, none among 𝑈f, 𝛥𝑃f and 𝜀f is affected by the liquid
plug dynamics;

8. Compute the variation in time of the liquid plug velocity by
using the following algorithm:

(viii.a) Compute the core pressure drop 𝛥𝑃 𝑘
c of a Newtonian bub-

ble employing 𝑈𝑘
p = 𝑈p(𝑡 = 𝑡𝑘) and 𝐿𝑘

p = 𝐿p(𝑡 = 𝑡𝑘)
resulting from the previous time step;

(viii.b) Assuming that the plug moves at the average velocity
between the two bubble tip velocities, i.e. 𝑈p = (𝑈r+𝑈f)∕2,
the rear-bubble tip velocity at 𝑡 = 𝑡𝑘 is computed as 𝑈𝑘

r =
2𝑈𝑘

p − 𝑈f, that leads to the rear-bubble capillary number;
(viii.c) Compute the capillary number for the bubble;
(viii.d) Compute the non-dimensional film thickness for a bubble

advancing in a Newtonian fluid;
(viii.e) Compute the pressure drop at the rear-bubble tip 𝛥𝑃 𝑘

r for
a Newtonian fluid;

(viii.f) Compute the Bingham and Deborah number of the rear
bubble and use them to calculate the elastoviscoplastic
correction 𝜀𝑘r = 𝜀EVP

r ;
(viii.g) Compute the viscoplastic correction of 𝛥𝑃 𝑘

p by summing up
all the Newtonian resistances (selecting either M1 or M2)
and applying (9)(left);

(viii.h) Enforce a driving pressure difference across the plug, 𝛥𝑃 ;
combining the momentum and continuity equations, the
time derivative of the plug velocity is expressed as

𝑑𝑈p

𝑑𝑡
=

𝛥𝑃 − 𝛥𝑃 𝑘
p

𝜌𝐿𝑘
p

−
𝑈𝑘

p
[

𝜀f
(

2 − 𝜀f
)

𝑈f − 𝜀𝑘r
(

2 − 𝜀𝑘r
)

𝑈𝑘
r
]

𝐿𝑘
p

;

(10)

9. Compute the variation in time of the liquid plug length by using
the continuity equation:
𝑑𝐿p

𝑑𝑡
= 𝜀f

(

2 − 𝜀f
)

𝑈f − 𝜀𝑘r
(

2 − 𝜀𝑘r
)

𝑈𝑘
r (11)

10. Compute the time variation of the axial displacement by inte-
grating the liquid plug velocity:
𝑑𝑍p

𝑑𝑡
= 𝑈𝑘

p (12)

11. Integrate the three ODEs and re-initialize 𝑈p, 𝐿p and 𝑍p before
iterating from (viii.a) on.

The algorithm is initialized by setting 𝑈p(𝑡 = 𝑡0), 𝐿p(𝑡 = 𝑡0) and
assuming 𝑍p(𝑡 = 𝑡0) = 0.

3.4. Validation against experimental measurements and numerical simula-
tions

The experimental validation of our reduced-order model is pre-
sented for two test fluids (0.25% and 1% of Actigum concentration)
and three plug driving conditions per each test fluid. Owing to the
limitations of the experimental apparatus in use, our equipment does
not allow for an accurate control of the driving pressure 𝛥𝑃 and for a
precise measurement of the front film thickness 𝜀f. These are three of
the ten parameters of our reduced-order model, namely 𝐷𝑒, 𝐵𝑖, 𝐶𝑎, 𝜇,
𝜌, 𝐿0, 𝑈𝑝(𝑡 = 0), 𝑎, 𝛥𝑃 , and 𝜀f.

All the parameters measured experimentally, i.e. 𝐷𝑒, 𝐵𝑖, 𝐶𝑎, 𝜇,
𝜌, 𝐿0, 𝑈p(𝑡 = 0), and 𝑎, are used in the model in order to compare
the modeled and the experimental centerline plug dynamics. In our
experiments, 𝛥𝑃 and 𝜀f are not measured, and they are therefore
assumed as fitting parameters of our reduced-order model to match the
experimental average plug speed 𝑈p.



Fig. 10. Comparison between the space–time diagrams resulting from the reduced-order model (dashed line) and the experimental measurements (light-color markers) for Act.
0.25% (left) and Act. 1% (right). Three cases are compared for each concentration: blue (Case 1), green (Case 2), and red (Case 3).

Table 2
Parameters of the comparison between the experiments and the reduced-order model.
Two concentrations are considered, i.e. Act. 0.25% and Act. 1%, for three driving
conditions per test liquid (Cases 1 to 3).

Test Liquid Parameter Case 1 Case 2 Case 3

Act 0.25% 𝐷𝑒f 11.540 26.185 31.478
𝐵𝑖f∕𝐶𝑎f 5.981 3.004 2.570
𝜇 (Pa s) 0.0835 0.0670 0.0638
𝜌 (kg/m3) 990 990 990
𝐿0 (m) 0.0180 0.0252 0.0322
𝑈𝑝(𝑡 = 0) (m/s) 0.0445 0.0783 0.0889
𝑎 (m) 0.002 0.002 0.002
𝛥𝑃 (Pa) 216.0 287.0 437.0
𝜀f 0.145 0.165 0.195

Act 1.0% 𝐷𝑒f 63.667 141.394 196.953
𝐵𝑖f∕𝐶𝑎f 12.148 7.793 6.479
𝜇 (Pa s) 0.3168 0.2387 0.2123
𝜌 (kg/m3) 990 990 990
𝐿0 (m) 0.0272 0.0222 0.0262
𝑈𝑝(𝑡 = 0) (m/s) 0.0481 0.0797 0.0983
𝑎 (m) 0.002 0.002 0.002
𝛥𝑃 (Pa) 815.7 1029.5 1189.3
𝜀f 0.32 0.38 0.39

The parameters of our comparison are summarized in Table 2 for
the six experiments considered. As shown in Fig. 10, the comparison
between the dynamics predicted by the model and the experimental
space–time diagram is satisfactory. We stress that only a narrow neigh-
borhood of the selected parameter tuple (𝛥𝑃 , 𝜀f) allows to reproduce
the average plug speed of the experiments. Hence the degree of freedom
of our parameter matching is very narrow, which shows that our
quantitative matching is not made arbitrarily. Still, the model results
are robust to small parameters variations. We further stress that, based
on the results of Fig. 10 the non-linear interplay between viscoelasticity
and viscoplasticity seems to play a significant role only in the final
phase of the rupture, when the interface curvature (partially neglected
in our model) must also play a significant role. We also expect that
local interesting features are determined by the complex rheology of
the fluid, but their investigation would require detailed simulations and
experimental techniques which are out of the scope of our study.

A second validation of our reduced-order model is carried out by
comparing the conditions of steady propagation for a viscoplastic liquid
plug. The results of Zamankhan et al. [47] are assumed as reference,
as they result form the numerical simulation of a two-dimensional
Stokes flow for a viscoplastic liquid plug. Fig. 11 depicts the comparison

Fig. 11. Comparison between the equilibrium non-dimensional film thickness from the
reduced-order model (markers) and the numerical simulations (lines) for 𝐶𝑎∗ = 0.1
(light-blue), 0.05 (violet), and 0.025 (orange). The Bingham number is varied to
determine the equilibrium conditions for the propagation of a viscoplastic liquid plug.

between our reduced order model (markers), and the full numerical
simulations of Zamankhan et al. [47] (lines) for 𝐶𝑎∗ = 0.1, 0.05,
and 0.025. The equilibrium film thickness to achieve a steady plug
propagation is well predicted by our reduced-order model for the whole
interval of Bingham numbers considered 𝐵𝑖∗ ∈ [0, 1]. The differences
between the model results and the numerical simulations are partially
due to the difference in the geometrical set-up, as our reduced-order
model assumes an axisymmetric flow, while Zamankhan et al. solve
the steady liquid plug flow in a plane channel.

3.5. Parametric study on the standalone non-Newtonian non-dimensional
groups

The reduced-order model formulated in Section 3 is here employed
to investigate the effect of viscoelasticity and viscoplasticity. Since
these two effects have been superposed in the model equations pro-
posed in Section 3.3, we will consider them separately in the following
subsections. In this parametric study, we will employ our reduced-order
model to characterize the trends of 𝐿𝑟 and 𝑡𝑟 upon a change of 𝐶𝑎∕𝐵𝑖,
and 𝐷𝑒 for physiologically-relevant regimes that exceed the parameters
range investigated experimentally.

All the following results presented in Section 3.5.1 and 3.5.2 are
obtained for the same baseline clean Newtonian set-up, indicated as
the solid black line in Figs. 12 and 13. The baseline parameters are:
𝜀f = 0.05, 𝜇 = 0.005 Pa s, 𝜌 = 1000 kg/m3, 𝜎 = 0.070 N/m, 𝑎 = 0.005
m, 𝐿p(𝑡 = 0) = 0.1 m, 𝑈p(𝑡 = 0) = 0.01 m/s and 𝛥𝑃 = 150 Pa. All



Fig. 12. Effect of the viscoplastic rheological properties on the liquid plug rupture. The Newtonian case (𝐵𝑖f∕𝐶𝑎f = 0) is depicted in black solid line, while the viscoplastic cases
are shown in red (𝐵𝑖f∕𝐶𝑎f = 5), blue (𝐵𝑖f∕𝐶𝑎f = 10), green (𝐵𝑖f∕𝐶𝑎f = 50) and magenta (𝐵𝑖f∕𝐶𝑎f = 100). In all simulations, we set 𝜀f = 0.05, 𝜇 = 0.005 Pa s, 𝜌 = 1000 kg/m3,
𝜎 = 0.070 N/m, 𝑎 = 0.005 m, 𝐿p(𝑡 = 0) = 0.1 m, 𝑈p(𝑡 = 0) = 0.01 m/s, 𝛥𝑃 = 150 Pa, 𝐷𝑒f = 0 and 𝛽 = 0. The two versions of the reduced-order model for clean plugs are tested: M1
(dashed lines), M2 (solid lines). Left panels: Liquid plug dynamics in terms of plug velocity 𝑈p, traveling distance 𝑍p, and length 𝐿p. Right panel: spatio-temporal diagram of the
plug rear and front meniscus tips.

simulations are carried out until plug rupture by integrating the ODEs
of Section 3 by an explicit Euler method and employing 𝛥𝑡 = 0.001 s as
time step.

3.5.1. Effect of viscoplasticity
The effect of viscoplasticity is taken into account by increasing the

leading plug resistance and the film thickness as shown in Fig. 12. The
increase of liquid plug resistance has a direct effect on the liquid plug
by decelerating it. On the other hand, the increase of film thickness
reduces the menisci curvatures, reducing the capillary resistance of the
plug and inducing an acceleration of the plug. We stress that in this
and in the following subsections we use our reduced-order model to
isolate the effect of 𝐵𝑖f∕𝐶𝑎f on the pressure drop and the film thickness,
and we compare with Newtonian plugs keeping the dynamic viscosity
constant. The goal of such an analysis is to better understand the net
deceleration of the liquid plug observed for higher yield stresses (see
Fig. 10). For 𝐵𝑖f∕𝐶𝑎f ∈ [0, 100], the latter effect prevails and the liquid
plug experiences a net acceleration. Keeping the leading film thickness
constant, for a given 𝐵𝑖f∕𝐶𝑎f the velocity of the leading meniscus
tip is fixed and an increase of the plug velocity increases the rear
capillary number. This implies that the rear film thickness increases
because of both, the Newtonian (4) and the viscoplastic effects (9).
For 𝐵𝑖f∕𝐶𝑎f ∈ [0, 100], therefore, the viscoplastic liquid plug deposits
more liquid than a Newtonian one (of same effective dynamic viscosity)
due to the increased trailing film thickness and, as a consequence, the
rupture occurs at a shorter rupture time 𝑡r. Despite the fact that 𝑈p
for a viscoplastic liquid plug is higher than that for a Newtonian plug,
both, the rupture time 𝑡r and the traveled distance 𝑍p decrease upon
an increase of 𝐵𝑖f∕𝐶𝑎f keeping the effective dynamic viscosity constant.
This is demonstrated in Fig. 12, where the results obtained for several
Bingham-to-capillary-number ratios are shown, i.e. 𝐵𝑖f∕𝐶𝑎f = 0 (black,
Newtonian), 𝐵𝑖f∕𝐶𝑎f = 5 (red), 𝐵𝑖f∕𝐶𝑎f = 10 (blue), 𝐵𝑖f∕𝐶𝑎f = 50
(green), and 𝐵𝑖f∕𝐶𝑎f = 100 (magenta). The two variants M1 (dashed
lines) and M2 (solid lines) are also compared in Fig. 12 showing that
our reduced-order model is insensitive to the two matching corrections
tested.

3.5.2. Effect of viscoelasticity
The effect of viscoelasticity on the liquid plug rupture is taken into

account by an increase of leading and trailing film thickness defined
by (8). Keeping the leading film thickness constant, for a given 𝐷𝑒f,
the tip velocity of the retracting air bubble is fixed and the viscoplastic
liquid plug deposits more liquid than the Newtonian one because of
the increased trailing film thickness. Hence, the plug rupture occurs

at shorter rupture times 𝑡r, keeping constant the effective dynamic
viscosity. Depositing more liquid on the wall, the plug reduces the
curvature and, consequently, the capillary pressure resistance. This
leads to increase the velocity of the plug upon an increase of 𝐷𝑒f.
Despite such an increase, the shortening of the rupture time plays a
dominant role in the plug dynamics and leads to a reduction of the
distance traveled by the liquid plug before rupture, 𝑍p. This liquid
plug dynamics is demonstrated in Fig. 13 for 𝐷𝑒f ∈ [0, 100]. The
results are obtained for several Deborah numbers including 𝐷𝑒f = 0
(black, Newtonian), 𝐷𝑒f = 5 (red), 𝐷𝑒f = 10 (blue), 𝐷𝑒f = 50
(green), and 𝐷𝑒f = 100 (magenta). The liquid–gas interface is assumed
to be clean, and the models M1 (dashed lines) and M2 (solid lines)
are compared. The quantitative differences between the corresponding
results are less than 20% and the qualitative trends of the two variants
of our reduced-order model provide a consistent prediction. We stress
that these results are not intended for a direct comparison with the
experimental measurements since the experiments are not carried out
at constant 𝛥𝑃 , 𝜇, 𝜀f, 𝐿p(𝑡 = 0), as we do for producing the model results
in Section 3.5.

4. Summary and conclusions

The rupture of a non-Newtonian liquid plug in a capillary tube
has been investigated for reproducing the airway reopening in the
6th-to −7th generation of adult human lungs. Four synthetic mucus
samples are used to study the elastoviscoplastic effect of the liquid
on the plug rupture ranging over several orders of magnitude for
the Deborah, Bingham and capillary numbers. A detailed rheological
characterization of our liquid samples have been provided, including
the determination of the model parameters for the Herschel–Bulkley
model (viscoplasticity) and the White–Metzner model (viscoelasticity).
Shear relaxation time measurements were carried out, as they are
commonly employed in the literature for characterizing the relaxation
time of biological and synthetic mucus [70,71]. However, considering
the extensional rheology would be also of interest as the polymeric
stretching plays a significant role during the liquid plug rupture. Future
studies will therefore focus on measuring the extensional viscosity and
relaxation time of mucus in order to better relate the plug dynamics to
the fluid rheology.

In support to our experiments, we derived an original reduced-order
model built on the existing literature. Our model takes into account
the effect of viscoplasticity and viscoelasticity, assuming they can be
linearly superposed.



Fig. 13. Effect of the viscoelastic rheological properties on the liquid plug rupture. The Newtonian case (𝐷𝑒f = 0) is depicted in black solid line, while the viscoelastic cases are
shown in red (𝐷𝑒f = 5), blue (𝐷𝑒f = 10), green (𝐷𝑒f = 50) and magenta (𝐷𝑒f = 100). In all simulations, we set 𝜀f = 0.05, 𝜇 = 0.005 Pa s, 𝜌 = 1000 kg/m3, 𝜎 = 0.070 N/m, 𝑎 = 0.005
m, 𝐿p(𝑡 = 0) = 0.1 m, 𝑈p(𝑡 = 0) = 0.01 m/s, 𝛥𝑃 = 150 Pa, 𝐵𝑖f∕𝐶𝑎f = 0 and 𝛽 = 0. The two versions of the reduced-order model for clean plugs are tested: M1 (dashed lines), M2
(solid lines). Left panels: Liquid plug dynamics in terms of plug velocity 𝑈p, traveling distance 𝑍p, and length 𝐿p. Right panel: spatio-temporal diagram of the plug rear and front
meniscus tips.

By means of space–time diagrams, we quantitatively characterize
the dynamics of the liquid plug along the centerline of the pipe. Upon
a decrease of 𝑈 𝑝 we observe a correlated increase of the rupture time,
while 𝜇, 𝜆, and 𝜏0 are rather impactful on the dimensionless traveling
length 𝐿𝑟∕(𝐿𝑖 − 𝐿𝑓 ), that increases as 𝜇 ↑, 𝜆 ↑, and 𝜏0 ↑. These
same trends are predicted by our reduced-order model, when validating
against the experiments. Our reduced-order model has also been used to
isolate the viscoplastic effect from the viscoelasticity of mucus, taking
into account the increase of the film thickness and of the pressure drop
due to viscoplasticity (9).

Comparing the synthetic mucus samples at different Actigum con-
centrations, our experiments uncovered a remarkable axi-symmetry
breaking for the liquid plugs at high 𝐵𝑖 and 𝐷𝑒. As a result, the liquid
plug does not rupture along the centerline, on the contrary of what
has always been observed for almost-Newtonian liquids (MUC-0.25%
and MUC-0.5%) in our experiment. This non-Newtonian effect is in
agreement with the experimental results of Caliman et al. [60], who
unravel the various regimes of symmetry breaking for viscoplastic fluids
in capillary pipes.

Our model prediction, corroborated by the experimental evidence,
shows that a standalone increase of 𝐵𝑖∕𝐶𝑎 and of 𝐷𝑒 on the liquid
film thickness and plug resistance can facilitate liquid plug rupture,
compared to Newtonian plugs of equal effective viscosity. This con-
clusions help interpreting the experimental findings by identifying the
contribution of single non-dimensional groups. Upon an increase of
Actigum concentration, for a given 𝑈p, 𝐶𝑎 ↑, 𝐵𝑖 ↑, and 𝐷𝑒 ↓ (where the
overline denotes the non-dimensional groups computed using 𝑈p, see
Table 2). For comparable 𝑈p, (the same case labeling in Table 2), the di-
mensional rupture time is not significantly affected (the same colors in
Fig. 10). This, in combination with the one-order-of-magnitude increase
of 𝜇 upon an increase of concentration from MUC-0.5% and MUC-
1.5% (see Table 2), explains why the non-dimensional rupture time in
capillary time units (𝑡𝜎∕𝜇𝑎) decreases upon an increase of 𝐷𝑒 and a de-
crease of 𝐶𝑎 and 𝐵𝑖, as observed experimentally. On the other hand, the
dimensional rupture time increases upon an increase of non-Newtonian
effects due to a higher effective viscosity. This same trend has been
reproduced by our reduced-order model (see Table 2) and is consistent
with the medical literature, that reports a significant enhancement of
the dimensional rupture time and plug resistance in patients affected by
asthma [72]. In fact, increasing the polymeric concentration leads to a
net increased difficulty of reopening the airways and a higher pressure
driving must be applied to rupture the mucus liquid plugs in patients
affected by asthma in order to allow air exchange at distal airways.

These conclusive considerations suggest the future studies should
focus on including the non-linear interaction between complex rheolog-
ical effects, as well as on validating the predictions of our reduced-order
model, either by numerical simulations or by experiments.
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Appendix. Conservation laws

The second and third equations of (3) are here derived starting from
first principles. The cross-section-averaged conservation of momentum
in the liquid plug reads

𝜌
𝑑(𝑉p𝑈p)

𝑑𝑡
= 𝜋𝑎2

(

𝛥𝑃 − 𝛥𝑃p
)

, (A.1)

where 𝑉p is the plug volume approximated as 𝑉p = 𝜋𝑎2𝐿p. Simplifying
the constant factor common to all terms of the equation, i.e. 𝜋𝑎2, and
dividing by the liquid density, it yields
𝑑(𝐿p𝑈p)

𝑑𝑡
=

𝛥𝑃 − 𝛥𝑃p

𝜌
. (A.2)

Finally, re-arranging the l.h.s. and substituting the liquid plug pressure
drop with the corresponding plug resistance times the flow rate (𝛥𝑃p =
𝜋𝑎2𝑅p𝑈p), the one-dimensional Navier–Stokes equation reads

𝑈p
𝑑𝐿p

𝑑𝑡
+ 𝐿p

𝑑𝑈p

𝑑𝑡
=

𝛥𝑃 − 𝜋𝑎2𝑅p𝑈p

𝜌
, (A.3)



which is equivalent to the second equation of (3), where the first term
of the l.h.s. has been moved to the r.h.s. and we divided all the term
of the equation by 𝐿p.

The last equation of (3) is derived by the cross-section-averaged
conservation of mass for the liquid phase. Considering a control vol-
ume between the trailing and the leading film, the one-dimensional
conservation of mass reads

𝜌
𝑑𝑉p

𝑑𝑡
= 𝜌𝜋

[

𝑎2 −
(

𝑎 − ℎf
)2
]

𝑈f − 𝜌𝜋
[

𝑎2 −
(

𝑎 − ℎr
)2
]

𝑈r. (A.4)

Substituting the plug volume with 𝑉p = 𝜋𝑎2𝐿p and dividing by 𝜌𝜋𝑎2,
the conservation of mass reads
𝑑𝐿p

𝑑𝑡
=
[

1 −
(

1 − 𝜀f
)2
]

𝑈f −
[

1 −
(

1 − 𝜀r
)2
]

𝑈r, (A.5)

which is equivalent to the last equation of (3).
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