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Peristaltic flow in the glymphatic 
system
Francesco Romanò1*, Vinod Suresh2, Peter A. Galie3 & James B. Grotberg4

The flow inside the perivascular space (PVS) is modeled using a first-principles approach in order 
to investigate how the cerebrospinal fluid (CSF) enters the brain through a permeable layer of glial 
cells. Lubrication theory is employed to deal with the flow in the thin annular gap of the perivascular 
space between an impermeable artery and the brain tissue. The artery has an imposed peristaltic 
deformation and the deformable brain tissue is modeled by means of an elastic Hooke’s law. The 
perivascular flow model is solved numerically, discovering that the peristaltic wave induces a steady 
streaming to/from the brain which strongly depends on the rigidity and the permeability of the brain 
tissue. A detailed quantification of the through flow across the glial boundary is obtained for a large 
parameter space of physiologically relevant conditions. The parameters include the elasticity and 
permeability of the brain, the curvature of the artery, its length and the amplitude of the peristaltic 
wave. A steady streaming component of the through flow due to the peristaltic wave is characterized 
by an in-depth physical analysis and the velocity across the glial layer is found to flow from and to 
the PVS, depending on the elasticity and permeability of the brain. The through CSF flow velocity is 
quantified to be of the order of micrometers per seconds.

Cerebrospinal fluid serves as a sink for metabolic waste products generated in the brain. The pathway for CSF 
transport in the brain interstitium has been a puzzle. Recent imaging experiments using in vivo two-photon 
microscopy have lent support to the hypothesis that CSF enters the brain from the subarachnoid space along 
the perivascular sheaths surrounding penetrating arteries and ‘leaks’ out into the interstitium across a perme-
able layer of glial (astrocyte) cells. From there, it is cleared into the perivascular sheaths around veins and the 
pulsation of the cerebral arteries are identified as an important driver for the transport of CSF into the brain 
interstitium1,2. Since convective bulk flow of the CSF between these ingress and egress pathways facilitates the 
clearance of solutes and metabolic waste products from brain tissue, dysfunctions in CSF transport may have 
implication for a range of neurological conditions such as intracranial hypertension and protein clearance in 
Alzheimer’s disease and Parkinson’s disease. Empirical studies2–4 indicate that CSF transport is affected by the 
elastic properties of vessel walls, water permeability of brain tissue and pulsatility of blood flow. However, the 
difficulty of measuring these parameters in vivo necessitates modeling-based approaches to improve our under-
standing of fluid transport in the brain. Therefore, the aim of this study is to develop a mathematical model of 
perivascular transport that provides insight into how these factors alter the direction and magnitude of CSF flow. 
Since we aim at deriving a leading-order characterization of the CSF flow, the impact of ciliated boundaries and 
non-Newtonian effects5–7 will be neglected in our model.

The model described here builds upon previous approaches to calculate perivascular fluid flow in idealized 
geometries. Wang and Olbricht8 studied axial flow and transport in an annulus with impermeable boundaries, 
but did not address fluid exchange with the interstitium9. Kyrtsos and Baras modeled protein clearance from the 
interstitium using a compartmental model in which CSF velocity was an input parameter and was assumed to 
be inversely proportional to vessel stiffness10. Cerebral MRI visualizations of a live rat have been used by Ratner 
et al.11 to find the direction of the glymphatic flow. Moreover, they made use of a purely diffusive model to esti-
mate the liquid flow through the healthy brain of a rat and reproduced the main experimental features by means 
of an Optimal Mass Transfer approach which could also estimate the diffusion tensor based on the dynamic flow 
rate. By means of numerical simulations, Asgari et al.12 claimed that the arterial pulsation due to the peristaltic 
wave cannot be the tribological driving force responsible of the interstitial solute transport. They address the role 
of dispersion transport, which is a combination of local mixing and diffusive effects in the para-arterial space. 
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A very different conclusion has been drawn by Aldea et al.13, who proposed a multiscale model of the arteries 
dealing with the basement membrane as a deformable fluid-filled, poroelastic medium. They rather concluded 
that the vasomotion-driven intramural periarterial drainage is compatible with experimental observations.

Jin et al.14 modeled the glymphatic system from para-arterial to paravenous cerebrospinal fluid through brain 
extracellular space. They investigated the glymphatic mechanism for solute clearance in brain by modeling dif-
fusive and convective transport in the cerebral extracellular space, focusing on the short-range transport between 
para-arterial and paravenous spaces. Based on the numerical simulations of their model, they concluded that 
the convective transport is not affected by the pressure fluctuations and requires a strong pressure gradient to 
be significant. Moreover, they found that the convective transport is also fairly insensitive to astrocyte endfoot 
water permeability and that diffusion transport suffices to explain the experimental data of the transport studies 
in brain parenchyma. Similarly, Faghih and Sharp15 use a one-dimensional steady, pressure-driven branching 
flow model to analyze the hydraulic resistance of arterial membranes. They found that the resistance of the 
periarterial tree is too great to account for physiological estimates of the CSF leakage rate, and that a combined 
route through the paraarterial and paravenous spaces would also be unlikely based on the magnitude of the 
transmantle pressure. A similar approach was employed by Rey and Sarntinoranont16, who made use of two 
resistance network models to study the effect of pulsating flows. They estimated that the peak fluid velocity in 
the PVS and parenchyma increases with the pulse amplitude and the vessel size, making the convective solute 
transport less and less relevant.

Our model derives a leading order approximation of the Navier–Stokes equation which is based on lubrica-
tion theory and includes the effect of a peristaltic wave in the artery and the deformability of the brain tissue. 
A further justification of the negligible importance of convective transport compared to diffusion effects in the 
PVS will be derived from first principles, motivating such a conclusion by dimensional analysis considerations. 
Thereafter, focusing on CSF exchange between the perivascular space and brain interstitium, we compute the 
leak velocity using our first-principles approach.

Model
Geometry.  The CSF-filled perivascular space was modeled as a thin annular gap between an elastic, imper-
meable artery and a brain tissue (Fig. 1). An elastic, permeable glial boundary separates the PVS from the brain 
tissue. The glial boundary is modeled with a linear elastic wall law and we do not solve for the flow in the artery. 
Instead, the peristaltic wave deformation of the artery is prescribed as a travelling wave. The interstitial pressure 
was assumed to be constant and was used as the reference pressure. Linear elastic tube laws were used to relate 
the deformations of the solid boundaries to the pressure difference across them. Governing equations were sim-
plified using lubrication theory.

The thickness of the PVS is b, the average radius of the artery and the average inner radius of the brain tissue 
are r1 and r2 , respectively. The deformation about the average radii are h(z, t) = h̄ sin [2π/�(z − ct)] and d(z, t), 
where h is the imposed deformation of the travelling peristaltic wave, h̄ , � and c its amplitude, wavelength and 
velocity, respectively, z is the traveling (axial) direction, t the time, and d the glial boundary deformation. The 
pressure in the brain tissue is pe , whereas pa and pb < pa are assumed as pressures at the extrema of the PVS.

Governing equations.  The Navier–Stokes and continuity equations in dimensional form read 
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Figure 1.   Sketch of the perivascular space between the brain tissue and the artery.
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 where �u = (u,w) denotes the velocity field in cylindrical coordinates, p is the pressure, �r = (r, z) and t are the 
spatial and temporal coordinates, respectively, ρ is the density of the fluid flowing in the perivascular space, µ 
its dynamic viscosity.

Equation (1) are then scaled with

where ω = c/� is the frequency of peristaltic wave in the artery, b is the thickness of the perivascular fluid film, 
and ε = b/� . The non-dimensional continuity and Navier–Stokes equations read 

 where Re = ερωb2/µ is the Reynolds number.
The mathematical problem (3) is closed by the boundary conditions 

 where Me = kgµ/bε
2 , Pe is the non-dimensional pressure at the glial boundary and kg  the permeabil-

ity of the brain tissue, Ee = Egε
2/µω(R1 + 1) and Eg the Young’s modulus of the brain tissue. H = h/b = 

H̄ sin [2π(Z − T)] is the imposed deformation of the peristaltic wave of the artery and H̄ = h̄/b its amplitude 
measured from the middle line R1 = r1/b . D = d/b is the deformation of the peristaltic layer at the boundary 
with the brain tissue; it is measured from the middle line R2 = r2/b = R1 + 1 . The normal and tangent unit 
vector to the glial boundary are denoted by �n and �t .

Thin film approximation.  Assuming that ε ≪ 1 , i.e. the wavelenth � of the peristaltic wave is much larger 
than the film thickness b, we expand the pressure, the velocity field and the deformation D with the following 
polynomial series 

 where the subscript 0 denotes the solution at the leading order term, O(ε0) , 1 refers to the linear correction in 
ε , O(ε1) , 2 indicates the quadratic correction in ε , O(ε2) , and so on.

If Re = O(1) or smaller, the leading order continuity and Navier–Stokes equations read 

(2)r = bR, z = �Z, t = T

ω
, u = bωU , w = �ωW , p = µω

ε2
P,

(3a)ε3 Re

(

∂U

∂T
+ U

∂U

∂R
+W

∂U

∂Z

)

= − ∂P

∂R
+ ε2

(

1

R

∂U

∂R
+ ∂2U

∂R2
+ ε2

∂2U

∂Z2

)

,

(3b)ε Re

(

∂W

∂T
+ U

∂W

∂R
+W

∂W

∂Z

)

= − ∂P

∂Z
+

(

1

R

∂W

∂R
+ ∂2W

∂R2
+ ε2

∂2W

∂Z2

)

,

(3c)
1

R

∂(RU)

∂R
+ ∂W

∂Z
= 0,

(4a)Z = 0 : P = Pa,

(4b)Z = L : P = Pb,
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 The system (23) is completed by the boundary conditions at leading order 

 More details of the model derivation are given in the section Methods. We however remark that leading order 
boundary conditions do not include any axial flow at the walls, i.e. W0 = 0 along the boundaries. For more details 
about the effect of the axial flow in the glymphatic system, we refer to Albargothy et al.17.

The leading order term of the r-momentum implies that P0 is only function of Z and T and, integrating in r 
the z-momentum, W0 reads

where C1 = C1(Z,T) and C2 = C2(Z,T).
Plugging (8) in the continuity equation and integrating in R, we derive the form of U0

where C3 = C3(Z,T).
Applying the no-slip boundary conditions at the inner boundary ( R = R1 +H  ), i.e. U0 = ∂TH 

and W0 = 0 , and the permeable boundary condition at the outer boundary ( R = R1 + 1+ D ), i.e. 
U0 = Me(P0 − Pe)+ E−1

e ∂T (P0 − Pe) and W0 = 0 , the functions C1 , C2 and C3 are expressed in terms of P0 and 
a second-order differential equation is derived for P0

We refer to the section Methods for the definition of A0 , A1 , A2 . The initial condition for P0 is set to be the linear 
function consistent with the boundary conditions

Equation (10) is solved numerically by making use of a collocation spectral method in Z-direction and dis-
cretizing in time by implicit Euler method. The time step employed to discretize in time is always set equal 
to �t = 10−2 and 1000 Chebyshev–Gauss–Lobatto nodes are used in Z. Further details about the numerical 
method we chose and its implementation in our solver are reported in the section Methods. In order to avoid 
non-linearities in the discretization algorithm, the explicit outer-wall deformation Dn

0 is employed when com-
puting the solution at time tn+1.

We remark that taking into account the recent study by Mestre et al.4, the annular space around blood vessels 
in the brain is not uniform in thickness. In this sense, our axisymmetric approach represents a simplification of 
the perivascular space geometry assuming that the averaged cross-sectional radius is sufficient to capture the 
leading-order effects of the CSF dynamics. We stress that such an assumption is at the core of the simplified 
one-dimensional time-dependent partial differential Eq. (10). Including a non-uniform deformation of the gap 
cross-section would require a non-trivial extension of the model as the pressure, the glial boundary deformation 
and the flow velocity should depend by all the three spatial coordinates, i.e. R, Z and � . The resulting system 
of PDEs would make the extended model far more complex to solve and we expect it would not provide major 
improvements in the order-of-magnitude estimate of the steady streaming across the glial boundary.
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Results
Physiological parameters. 
Physiologically relevant parameters for the thin liquid film of interest are derived from the literature. Xie 
et al.18 estimates the intracranial pressure to be about 2× 103  Pa, in accordance with Sakka et al.19, who report 
pe ∈ [1300, 2000]  Pa. Assuming Pe = Pb = 0 as reference pressure in our model, Pa will then be considered in 
the range Pa ∈ [5× 10−7, 5× 102] . Wang and Olbricht8 report the values measured in previous studies for: the 
peristaltic wave frequency ω ≈ 5  Hz3, the inner radius of the perivascular layer r1 ≈ 10−5  m20, the outer radius 
of the perivascular layer r2 ≈ 1.1× 10−5  m21 (which result in a perivascular film thickness b ≈ 10−6  m), the 
peristaltic wave amplitude h̄ ∈ [1.25, 5] × 10−7  m22, the peristaltic wave speed c ≈ 1  m s−120,23,24 (which result 
in a peristaltic wavelength � ≈ 0.2  m), and the dynamic viscosity µ = 9× 10−4  Pa s25. Plus, the fluid density is 
comparable to the one of water ρ ≈ ρwater = 103  kg m−3 . Other values of the artery radius ( r1 ∈ [10−4, 10−3]  m) 
are reported in Thorin-Trescases et al.26 Moreover, considering that the artery wall thickness ta is 10 to 100 times 
smaller than r1 , i.e. ta ∈ [10−6, 10−5]  m27, that the elastic modulus of the artery wall is Ea ∈ [105, 106]  N m−2 and 
that the wall density is ρa ≈ 103  kg m−3 , the elastic wave speed is ca =

√
Eata/2r1ρa ∈ [0.2, 7]  m s−1 . Consider-

ing the relationship given by Atabek28, i.e. c ∈ [0.1, 0.5]ca , an estimated range of the wave speed of the peristaltic 
wave can be proposed, which includes the estimate of Wang and Olbrich8: c ∈ [0.02, 3.5]  m s−1 resulting in a 
range for the peristaltic wavelength � ∈ [0.004, 0.7]  m, which includes the previous estimate � ≈ 0.2  m. Another 
estimate of b is given by Iliff et al.1, who reports b = 10−5  m, and by Jin et al.14, who reports b = 1.5× 10−4  
m. Finally, The elastic modulus and the permeability of the brain tissue are Eg ≈ 0.01Ea ∈ [103, 104]  Pa and 
kg ≈ 10−11  m  Pa−1  s −1 , respectively29,30. Based on these parameters, the range of the non-dimensional groups of 
interest for our study is derived and reported in Table 1. From Table 1 it is clear that the leading-order thin-film 
approach is a very good approximation for our problem since ε ≪ 1 and Re ≪ 1 . Higher-order corrections in 
ε and inertial effects due to Re are, therefore, substantially negligible.

Parametric study.  Based on the physiologically relevant parameters, we carried out numerical simulations 
for the following range of non-dimensional groups

We remark that the range of the glial boundary elasticity parameter Ee has been restricted to vary over 3 rather 
than 10 orders of magnitude, as indicated in Table 1. Indeed, when the Young modulus of the brain tissue is very 
small, i.e for the softest brain tissue parameters reported in Table 1, Ee ≪ 1 , a small pressure difference across 
the glial boundary is sufficient to induce significant deformations, hence (7e) reduces to P0 ≈ Pe and U0 ≈ 0 . As 
a result, in the limit Ee → 0 , (10) becomes an instantaneous equation that cannot admit any through flow. For 
these reasons, we limited our parametric studies to Young moduli related to the most interesting CSF dynamics 
that can admit steady streaming, i.e. Ee ∈ [0.01, 1].

All the simulations are carried out for tfin = 100 with �t = 10−4 and the results are interpreted in terms of 
brain tissue deformation D0 and through-flow velocity U0 − ∂TD0 . Since the solution is time-dependent, the 
corresponding time averages 〈D0〉 and �U0 − ∂TD0� are analyzed, averaging over t ∈ [50, 100] in order to get rid 
of the initial transient effects. The boundary conditions in pressure are

It is remarkable that, in our model framework, the pressure distribution P0(Z,T) , the deformation of the 
brain tissue D0(Z,T) and the through-flow velocity Ue(Z,T) = U0|R=R1+1+D0 − ∂TD0 can be derived from each 
other taking into account the permeability parameter Me and the elasticity parameter Ee

hence, analyzing the results in terms of one among P0 , Ue or D0 provides information about all three these 
quantities. A direct implication of it is the pressure boundary conditions play the role of boundary constraints 
for Ue and D0 , too. Hence, given an elasticity parameter Ee , regardless of Me , H̄ , L and R1 , the brain tissue defor-
mation at Z = 0 will always be D0|Z=0 = E−1

e Pa and at Z = L D0|Z=L = 0 . With the same argument, fixing Me 
and regardless of Ee , H̄ , L and R1 , the through-flow velocity on the left will always be Ue|Z=0 = MePa and on 
the right Ue|Z=L = 0.

(12)R1 ∈ [10, 1000], H̄ ∈ [0, 0.2], L ∈ [2, 20], Me ∈ [0.1, 5], Ee ∈ [0.01, 1].

(13)Pa = 10−3, Pe = 0, Pb = 0.

(14)Ue = MeP0, D0 = E−1
e P0,

Table 1.   Range of the non-dimensional groups for the thin-film problem between an artery and a brain tissue.

Parameter Description (definition) Estimated range

Re Reynolds number 
(

ερωb2/µ
)

[5× 10−12, 2× 10−4]
ε Perivascular film thickness (b/�) [10−6, 3.75× 10−2]
R1 Inner radius of the perivascular layer (r1/b) [0.7, 103]
H̄ Amplitude of the peristaltic wave 

(

h̄/b
) [8× 10−4, 0.5]

L Perivascular length (l/�) [2, 20]
Me Permeability of the brain tissue 

(

kgµ/bε
2
)

[10−2, 10]
Ee Stiffness of the brain tissue 

(

Egε
2/µω(R1 + 1)

)

[2× 10−10, 0.2]
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Vanishing peristaltic wave.  We first consider all the cases with H̄ = 0 , since the flow reaches a steady state 
( ∂TD0 = ∂TP0 = 0 ) and it can be well understood taking into account the exact solution reported for the flow in 
an annular pipe with a permeable wall. This represents an asymptotic limit of our problem and can therefore be 
used as a validation case for our solver. Taking the limit of H̄ → 0 , Ee → ∞ and assuming Pe , Pa and Pb constant 
in time, the problem admits a steady solution and since D0 ≡ 0 , the pressure P0 becomes an instantaneous field 
(i.e. ∂TP0 ≡ 0 ), reducing (10) to

with A1 ≡ 0 and the constant B given in the section Methods. Considering that B is always negative, i.e. |B| = −B , 
the solution of (15) is of the form

where γ1 and γ2 are constants determined by applying the boundary conditions at Z = 0 ( P0|Z=0 = Pa ) and 
Z = L ( P0|Z=L = Pb ) 

For validation purpose, the numerical solution of (10) for Ee = 105 , Pe = 2 , Pa = 5 , Pb = 0 , Me = 1 , H̄ = 0 , 
L = 5 and R1 = 5 at t = 1 is compared with the exact solution (16), valid only for Ee → ∞ and H̄ = 0 . The very 
good agreement is depicted in Fig. 2.

A further confirmation of the derivation of our model is provided in the limit of large inner radius R1 . For 
R1 → ∞ , the curvature effect becomes negligible and (15) tends to the equation for the incompressible flow in 
a plane shallow channel with a permeable wall

where the non-dimensional plane coordinates are �X = (X,Y) . Equation (18) is derived in the section Methods 
and it implies that limR1→∞ 1/B0 = −12 . The correct asymptotic limit of our model is retrieved, as shown in 
Fig. 3.

Fixing Pe = Pb = 0 and Pa = 10−3 the pressure in the annular pipe reads:

hence, the solution is nothing but an exponential relaxation from Pa to Pe = Pb = 0 . This same trend is observed 
for all the cases with H̄ = 0 , and they are compared in Fig. 4 for Me = 1 and Ee = 0.01 , 0.1 and 1 at t = 50 . Since 
the annular channel flow is a limit for Ee → ∞ (i.e. D0 → 0 ), upon an increase of stiffness of the brain tissue, 
the pressure distribution tends to (19). It is remarkable that, for the least rigid brain tissue, i.e. Ee = 0.01 , the 
exponential relaxation of P0 , D0 and Ue blends soon (i.e. approximately for Z > 0.5 ) with a linear trend which 
holds in most of the thin film.
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∂Z2
+ BP0 = BPe ,
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Z
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√|B|,

(17a)γ1 =
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e−L
√|B| − eL
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− 12MeP0 = −12MePe ,

(19)P0 = Pa
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√|B| − e(L−Z)
√|B|

e−L
√|B| − eL

√|B| ,

Figure 2.   Comparison between the exact steady solution of (16) (solid line) valid for Ee → ∞ and H̄ = 0 and 
the corresponding numerical solution of (10) (circles) evaluated at t = 1 and computed for H̄ = 0 and Ee = 105 . 
The other parameters of the comparison are Pe = 2 , Pa = 5 , Pb = 0 , Me = 1 , L = 5 and R1 = 5.
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Effect of gap length.  The effect of the gap length L is investigated, setting H̄ = 0.1 , R1 = 10 , Me = 0.5 , Ee = 0.1 
and varying L ∈ [2, 20] . Four PVS lengths are considered and the corresponding average deformation 〈D0〉 is 
depicted in the top panel of Fig. 5: L = 2 (dotted), L = 5 (dashed–dotted), L = 10 (dashed), L = 20 (solid). For 
all the curves it is noticed that the boundary effect which dominates the average deformation distribution is 
limited to a couple of wavelengths from the boundaries.

Figure 3.   Asymptotic limit of 1/B0 to match the plane flow coefficient for R1 → ∞ : limR1→∞ 1/B0 = −12.

Figure 4.   Pressure distribution in a rigid pipe with a permeable wall (solid line) compared to the pressure in the 
PVS for H̄ = 0 , Ee = 0.01 (circles and dashed-line), 0.1 (squares and dashed-line) and 1 (crosses and dashed-
line). In all the cases Me = 1 , L = 2 , R1 = 10 (i.e. B0 = −0.079557 ), Pe = Pb = 0 and Pa = 10−3 at t = 50.

Figure 5.   Top: Effect of PVS length for H̄ = 0.2 , R1 = 10 , Me = 1 , Ee = 0.1 is investigated considering four 
axial lengths: L = 2 (dotted), L = 5 (dashed–dotted), L = 10 (dashed), L = 20 (solid). Bottom: Effect of 
curvature for H̄ = 0.2 , L = 20 , Me = 0.5 , Ee = 0.1 investigated considering three inner radii: R1 = 10 (solid 
line), R1 = 100 (dashed line) and R1 = 1000 (dashed–dotted line).
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The peak at Z = 0 is well understood considering the equivalence P0 = E−1
e D0 , which therefore fixes a steady 

Dirichlet boundary condition on D0(Z = 0) = EePa , hence �D0�(Z = 0) = EePa . This value is much larger than 
the average deformation in the bulk, since the flow in the bulk is strongly influenced by the permeability of the 
glial boundary (see Fig. 4). The second peak near Z = L is typical of non-transparent boundary conditions for 
wave propagation problems; the steep negative gradient of �D0�(Z → L) is a direct results of the Dirichlet bound-
ary condition D0(Z = L) = EePb = �D0�(Z = L) = 0.

In order to get rid of these boundary effects induced by the simplified pressure boundary conditions, we 
focus on the bulk area where each curve can be well approximated by a straight line, characterized by the only 
two coefficients A0 and A1

where the coefficient A0 represents the time- and space-averaged brain tissue deformation and the coefficient 
A1 is the time-averaged axial rate of change of the brain tissue deformation. It is further noticed that the average 
through flow 〈Ue〉 (derived by 〈D0〉 multiplying by MeEe ) admits a steady streaming since 

∫ L−5
5 �Ue�dZ �= 0 . The 

characterization of the steady streaming via A0 and A1 is one of the main aim of our study, as reported in the 
followings.

Effect of curvature.  The effect of the curvature is discussed, setting H̄ = 0.1 , L = 20 , Me = 0.5 , Ee = 0.1 and 
varying R1 ∈ [10, 1000] . The bottom panel of Fig. 5 compares the average deformation for the three radii of 
curvature R1 = 10 (solid line), R1 = 100 (dashed line) and R1 = 1000 (dashed–dotted line). The curvature of 
the annular PVS has relatively small importance in terms of 〈D0〉 . Increasing the curvature ( ↓ R1 ) does not have 
a monotonic trend on the average deformation in the middle of the liquid film, and it tends to preserve the peak 
near the inflow and outflow boundaries. As also confirmed by Fig. 3, which plots the asymptotic limit of B−1

0  , the 
curvature effect becomes negligible when comparing R1 = 100 and R1 = 1000.

Highest curvature ( R1 = 10 ) and longest perivascular gap ( L = 20).  The following results consider R1 = 10 
and L = 20 . The effect of the peristaltic wave amplitude H̄ ∈ [0, 0.2] and of the brain tissue permeability 
Me ∈ [0.1, 5] is investigated for three cases: soft ( Ee = 0.01 ), medium-stiff ( Ee = 0.1 ) and rigid ( Ee = 1 ) brain 
tissue.

Soft brain tissue.  The results of A0 (left-top panel) and A1 (right-top panel) for Ee = 0.01 are depicted in Fig. 6. 
Five values of H̄ are considered, i.e. H̄ = 0 , 0.05, 0.1, 0.15, and 0.2, for each six values of Me : Me = 0.1 ( • ), 0.2 
( � ), 0.5 (♦), 1 ( � ), 2 ( ◭ ), 5 ( ◮ ). The case H̄ = 0 is the only one admitting a steady state for the flow. This reflects 
on the time-average deformation 〈D0〉 (and on 〈P0〉 and 〈Ue〉 , see (14)), which has an exponential trend matching 
to a linear profile (see Fig. 4). Moreover, all the cases considered, regardless of Me , Ee and H̄ , show a decrease 
of 〈D0〉 , 〈P0〉 and 〈Ue〉 as Z increases, i.e. A1 is always negative. Upon an increase of H̄ , also the amplitude of the 

(20)�D0�|Z∈[5,L−5] ≈ A0 + A1Z.

Figure 6.   A0 (left panels) and A1 (right panels) coefficients for the average deformation 〈D0〉 for R1 = 10 , 
L = 20 , Me ∈ [0.1, 5] , and Ee = 0.01 (top), Ee = 0.1 (middle) and Ee = 1 (bottom). Six values of Me are 
considered: Me = 0.1 ( • ), 0.2 ( � ), 0.5 (♦), 1 ( � ), 2 ( ◭ ), 5 ( ◮).
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average brain tissue deformation 〈D0〉 increases ( A1 ↑ ). The coefficient A0 is monotonically decreasing with H̄ , 
even if almost negligibly. For soft brain tissues, A0 and A1 strongly depend on the permeability of the brain tis-
sue Me . For the parameter ranges investigated, A1 and A0 show a monotonic trend decreasing as Me increases, 
if Ee = 0.01.

Employing the equivalence Ue = EeMeD0 , the coefficients A0 and A1 are used to plot the fitting approximation 
of 〈Ue〉 . For soft brain tissues, Fig. 7 reports the time average of the through-flow profile across the glial bound-
ary for Me ∈ [0.1, 5] and H̄ ∈ [0, 0.2] . Each panel of Fig. 7 compares the effect of the peristaltic wave amplitude 
(black: H̄ = 0 ; blue: H̄ = 0.05 ; red: H̄ = 0.1 ; green: H̄ = 0.15 ; cyan: H̄ = 0.2 ) keeping constant the permeability 
parameter Me for Ee = 0.01 . Figure 7 demonstrates that a steady through flow is due to the peristaltic wave 
amplitude, which increases the overall through flow, 

∫ L
0 〈Ue〉dZ , for Me ≤ 1 and decreases it for Me > 1.

The understanding of a steady streaming component in the through flow is an interesting outcome of our 
model. In fact, considering that H is a zero-mean deformation, the increase of �P0� = Ee�D0� with H̄ highlights 
the steady pressure component induced by the traveling wave. This is possible only because the brain tissue is 
deformable Ee  → ∞ , hence ∂TD0 = E−1

e ∂TP0 �= 0 . The presence of a time-derivative in (10) allows a phase shift 
between D0 and H. To better understand it, let us consider the case of Ee → ∞ with H̄ �= 0 . Since the lubrication 
approximation considers only linear terms of the momentum equation, if Ee → ∞ , ∂TD0 = E−1

e ∂TP0 = 0 and 
(10) becomes an instantaneous equation. As a consequence, for Ee → ∞ , the fluid flow becomes fully reversible 
in time and a symmetric zero-mean deformation H, as the one we consider, would produce a zero-mean stream-
ing �Ue� ≡ 0 within a traveling wave period. For Ee  → ∞ , the time derivative ∂TP0 carries the memory of the 
previous states and makes the flow non-reversible in time, which allows for steady streaming.

Medium‑stiff brain tissue.  The results for Ee = 0.1 are depicted in Fig. 6: A0 (left-middle panel) and A1 (right-
middle panel). The same line-style coding is used to denote different H̄ , as for the soft tissue case. The first dif-
ference with the soft-tissue case is observed in A0 , which is one to two orders of magnitude lower than for soft 
brain tissues. Once again, this is understood considering the steady case ( H̄ = 0 ), which reduced to an almost-
exponential relaxation profile (see squares in Fig.  4). Hence, the linear profile inherited by soft tissues from 
H̄ = 0 vanished for medium-stiff brain tissues reducing A0 of two orders of magnitudes. The increased rigidity 
Ee further contributes to this reduction of A0 as D0 = P0E

−1
e  . Differently from the soft-tissue case, for Ee = 0.1 , 

A0 shows a certain dependence on H̄ , which grows monotonically for small permeability parameters Me = 0.1 
and decreases monotonically when the permeability of the glial boundary is higher. On the other hand, A1 is 
always negative and independent (up to the accuracy of our numerical simulation) on H̄ , and it is remarkably 
influenced by Me up to becoming almost zero if the permeability parameter is high enough ( Me � 1 ). This is 
well understood considering that a higher Me implies a faster relaxation of the average pressure to a constant 
value, as indicated by the coefficient B of (19). Since P0 = UeM

−1
e = D0Ee , this same consideration applies to 

〈D0〉 and 〈Ue〉.
The hallmark of the steady exponential relaxation due to the pressure gradient is hardly visible when com-

paring the time-dependent profiles of D0 for H̄ = 0 and H̄ = 0.4 . This is the direct consequence of the stiffness 
parameter, since increasing Ee reduces the deformation at Z = 0 for a given Pa , i.e. D0|Z=0 = E−1

e Pa . The flow is 
then dominated by the peristaltic wave deformation H which gives rise to an interesting phenomenon: increasing 
the permeability parameter Me , for very permeable brain tissues Me � 1 , the average brain tissue deformation 
〈D0〉 becomes negative.

As a result, using (14), a negative average deformation 〈D0〉 < 0 implies a suction from the brain to the 
perivascular space 〈Ue〉 < 0 . Hence, increasing Me gives rise to an opposite direction of the steady streaming, 

Figure 7.   〈Ue〉 for R1 = 10 , L = 20 , Me ∈ [0.1, 5] , and Ee = 0.01 . Five values of H̄ are considered: H̄ = 0 
(black), 0.05 (blue), 0.1 (red), 0.15 (green), 0.2 (cyan).
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which now flows from the brain to the PVS. Based on Fig. 6, the sign change occurs at Me ≈ 0.5 for H̄ ≥ 0.15 
and at Me ≈ 1 ∀H̄ . Figure 8 reports the time average of the through-flow profile for Ee = 0.1 , Me ∈ [0.1, 5] and 
H̄ ∈ [0, 0.2] . The same color coding of Fig. 7 is used. For medium-stiff brain tissues, an increase of the peristaltic 
wave frequency increases 〈Ue〉 if Me = 0.1 and decreases 〈Ue〉 if Me ≥ 0.2 , consistently with the trend of A0 for 
Ee = 0.1.

Rigid brain tissue.  The results for Ee = 1 are depicted in Fig. 6: A0 (left-bottom panel) and A1 (right-bottom 
panel) using the same line-style coding of the previous cases. Very similar qualitative considerations done for 
the medium-stiff brain tissue about 〈D0〉 and 〈Ue〉 apply to the rigid brain tissue. Upon an increase of Ee , the 
amplitude of the average deformation 〈D0〉 decreases (as expected, see absolute values of A0 and A1 ). Indeed, 
we remark that 〈D0〉 must become steady and converge to zero if the rigidity of the brain tissue goes to infinite, 
i.e. limEe→∞�D0� = limEe→∞ D0 = 0 . It is furthermore remarkable that, for Ee = 1 , the rigidity of the brain 
tissue further contributes to creating negative deformation regions resulting in 〈D0〉 always negative. This has 
corresponding implications on 〈Ue〉 , which admits more and more extended suction regions, making permeable 
stiff brain tissues streaming fluid, in average, exclusively from the glial boundary to the perivascular space. This 
is clearly demonstrated by Fig. 9, where the average through flow across the glial boundary is depicted using the 
same template of Figs. 7 and 8.

Figure 8.   〈Ue〉 for R1 = 10 , L = 20 , Me ∈ [0.1, 5] , and Ee = 0.1 . Five values of H̄ are considered: H̄ = 0 
(black), 0.05 (blue), 0.1 (red), 0.15 (green), 0.2 (cyan).

Figure 9.   〈Ue〉 for R1 = 10 , L = 20 , Me ∈ [0.1, 5] , and Ee = 1 . Five values of H̄ are considered: H̄ = 0 (black), 
0.05 (blue), 0.1 (red), 0.15 (green), 0.2 (cyan).



11

Vol.:(0123456789)

Scientific Reports |        (2020) 10:21065  | https://doi.org/10.1038/s41598-020-77787-4

www.nature.com/scientificreports/

The trend reported in Fig. 6 for A0 has an interesting minimum at about Me ≈ 0.5 . Indeed, the integral balance 
A0 ≈

∫ L
0 D0dZ becomes smaller and smaller, in absolute value, upon an increase of Me , if Me ≥ 0.5 . This behavior 

is understood considering the competition between two opposite effects: (a) increasing the permeability of the 
glial boundary, more fluid can go through the brain tissue |�Ue�| ↑ (see Fig. 9), hence increasing |�D0�| , and (b) 
increasing the permeability parameter Me the brain tissue will oppose less and less resistance to be penetrated, 
hence |�D0�| ↓ . The first effect is dominant for Me ≤ 0.5 , and the absolute value of A0 increases with Me ; the 
second effect is more important for Me ≥ 1 . As a result, the deformation of the brain tissue reduces in amplitude 
more and more, if the permeability parameter Me ≥ 1 , up to asymptotically leading to an undeformed brain 
tissues, i.e. limMe→∞�D0� = limMe→∞ D0 = 0 . Since A1 is always four orders of magnitude smaller than A0 , the 
linear component of 〈P0〉 , 〈D0〉 and 〈Ue〉 can safely be neglected for rigid brain tissues.

Discussion
The cerebrospinal fluid flow across the glial boundary of the brain tissue has been investigated by means of 
a tribological model derived from first principles. We demonstrate that the phase shift between the arterial 
peristaltic wave and the glial boundary deformation is a necessary conditions to break the flow symmetry and 
have a steady streaming. Depending on the elasticity and permeability parameters of the glial boundary, Ee and 
Me , the steady streaming either enters or exits the brain. For physiologically relevant parameters, we proved 
that such flow is almost insensitive to curvature effects of the annular perivascular gap for R1 > 10 , and of the 
perivascular length if L > 5 . A very comprehensive characterization of the through flow across the glial bound-
ary is provided within our model framework, quantifying the leading order pressure 〈P0〉 , deformation 〈D0〉 and 
through flow 〈Ue〉 across the glial boundary, averaged in time. A reduced order model can be readily derived for 
such quantities from our model, implementing the fitting functions �P0� ≈ Ee(A0 + A1Z) , �D0� ≈ A0 + A1Z and 
�Ue� ≈ EeMe(A0 + A1Z) for whatever perivascular space with R1 > 10 and L > 5.

Among the major outcomes of our study, we estimate the average leak flow velocity for a large physiologi-
cally relevant parameter space, finding that 〈Ue〉 ranges between −0.0027 ≤ �Ue� ≤ 0.0005 . Considering that 
typical peristaltic wave frequencies are ω ≈ 5  Hz, the dimensional average through flow is between −0.0135b  
s −1 ≤ �ωbUe� ≤ 0.0025b  s −1 , where 10−6 ≤ b ≤ 1.5× 10−4  m is the thickness of the perivascular space. Hence, 
our model estimates that −2.25  µm/s ≤ �ωbUe� ≤ 0.4  µm/s. We remark that this result is consistent with 
experimental measurements and other model results, since 〈ωbUe〉 is typically some orders of magnitude smaller 
than maxt ωbUe , which is supposed to be in the range of 1 µm/s ≤ maxt ωbUe ≤ 100 µm/s. In particular, con-
sidering CSF transport in the perivascular space, Faghih and Sharp15 also mention that arterial pulsations can 
account for the physiological flow rates through these high flow-resistant spaces. Overall, our model elucidates 
the dependence of CSF transport on the factors listed in Table 1, and therefore provides a framework to better 
understand the effect of physiological parameters on perivascular transport. For example, the model can be used 
to predict how pathologies known to modify parameters like extracellular matrix stiffness (e.g. glial scarring 
following central nervous system injury) alter the magnitude and direction of CSF flow. Therefore, in addition to 
calculating specific flow rates, the model described here improves our conceptual understanding of perivascular 
transport in the brain.

A few concluding remarks about the model robustness and its possible extensions. Owing to the very small 
values of the non-dimensional film thickness, i.e. 0.000001 < ε < 0.0375 (see Table 1), the thin-film approxima-
tion represents the most insightful and numerically robust leading-order model for Newtonian creeping flows 
with a permeable boundary. If we consider the complete axisymmetric creeping flow model, the pressure would 
depend on both coordinates, R and Z. Still, as ε ≪ 1 , the pressure would be a very weak function of R, and pass-
ing from the thin-film to the complete creeping flow model would mean a significant increment of the model 
complexity with negligible advantages at leading-order. On the other hand, assuming that the P does not depend 
on R, as the simplification (6a) does, does not lead to remarkable model inaccuracies. On top of it, owing to the 
small ε , solving numerically the creeping flow equations is a much more challenging task than solving the thin-
film equations because the creeping flow system becomes stiffer and stiffer the smaller ε is. In a recent paper, 
Ladron-de-Guevara et al.31 point out that a correct modeling of the outflow boundary condition is important 
when one wants to model perivascular pumping. We further stress that our model does not include any restric-
tive assumption on the kind of boundary conditions that can be considered. In fact, the extension of the model 
to pulsatile boundary conditions is straightforwardly achieved by replacing (7a) and (7b) by Z = 0 : P0 = Pa(t) 
and Z = L : P0 = Pb(t) . We further remark that including the pulsatile nature of the boundary conditions can 
induce an improvement of the model accuracy, and we propose it as a very relevant objective for future studies.

Methods
Analytic details.  Plugging the asymptotic expansion (5) into (3), it yields 

(21a)
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Expanding the boundary conditions (4) leads 

If Re = O(1) or smaller, the leading order continuity and Navier–Stokes equation read 

 The system (23) is completed by the boundary conditions at leading order 

Equation (23)b can be recast in the form

(21b)
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(22a)Z = 0 : P0 + εP1 +O(ε2) = Pa,

(22b)Z = L : P0 + εP1 +O(ε2) = Pb,

(22c)R = R1 +H : U0 + εU1 +O(ε2) = ∂TH ,

(22d)W0 + εW1 +O(ε2) = 0,

(22e)

R = R1 + 1+ D : �n = (nz , nr) =
[

−ε∂ZD0 +O(ε2), 1
]

√

1+ ε2(∂ZD0)
2 +O(ε3)

,

�t = (tz , tr) =
[

1, ε∂ZD0 +O(ε2)
]

√

1+ ε2(∂ZD0)
2 +O(ε3)

,

U0 + εU1 − ε∂ZD0W0 +O(ε2)
√

1+ ε2(∂ZD0)
2 +O(ε3)

= Me

(

P0 + εP1 − Pe +O(ε2)
)

+ ∂T
(

P0 + εP1 − Pe +O(ε2)
)

/Ee ,

W0 + εW1 + εU0∂ZD0 +O(ε2) = 0,

D0 + εD1 +O(ε2) =
(

P0 + εP1 +O(ε2)− Pe
)

/Ee ,

(23a)
∂P0

∂R
= 0,

(23b)∂P0

∂Z
= 1

R

∂W0

∂R
+ ∂2W0

∂R2
,

(23c)
1

R

∂(RU0)

∂R
+ ∂W0

∂Z
= 0.
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keeping in mind that P0 is just function of Z and T, and integrating in R, it yields

where C1 is just function of Z and T. Dividing by R and integrating once again in radial direction, it yields

which corresponds to (8), where C2 is just function of Z and T. The leading-order boundary conditions in W0 
are W0|R=R1+H = 0 and W0|R=R1+1+D0 = 0 . Substituting them in (27) yields 

 Subtracting the two equations, we eliminate C2 , and determine C1

By substitution of C1 in (28a), C2 is determined

where α and β are functions of Z and T.
Equation (23)c can be recast in the form

Substituting (27) into (31), it reads

and integrating yields

where C3 is a function of Z and T. Dividing by R, (9) is retrieved

Applying the leading-order boundary conditions on U0 , yields 

 Eliminating C3 by combining (35a) and (35b) leads to
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R1 +H
− (R1 +H)3

16

∂2P0

∂Z2
− (R1 +H)[2 ln(R1 +H)− 1]

4

∂C1

∂Z
− (R1 +H)

2

∂C2

∂Z
= ∂H

∂T
,

(35b)

U0|R=R1+1+D0
= C3

R1 + 1+ D0

− (R1 + 1+ D0)
3

16

∂2P0

∂Z2
− (R1 + 1+ D0)[2 ln(R1 + 1+ D0)− 1]

4

∂C1

∂Z
− (R1 + 1+ D0)

2

∂C2

∂Z

= Me(P0 − Pe)+
∂D0

∂T
= Me(P0 − Pe)+

1

Ee

∂(P0 − Pe)

∂T
.

(36)

(R1 +H)

{

∂H

∂T
+ (R1 +H)3

16

∂2P0

∂Z2
+ (R1 +H)[2 ln(R1 +H)− 1]

4

∂C1

∂Z
+ (R1 +H)

2

∂C2

∂Z

}

= (R1 + 1+ D0){Me(P0 − Pe)

+ 1

Ee

∂(P0 − Pe)

∂T
+ (R1 + 1+ D0)

3

16

∂2P0

∂Z2
+ (R1 + 1+ D0)

2

∂C2

∂Z
+ (R1 + 1+ D0)[2 ln(R1 + 1+ D0)− 1]

4

∂C1

∂Z

}

,
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which is equivalent to (10). The coefficient C3 is then computed by substituting the solution P0 and its derivatives 
in (35a). The coefficients in (10) are 

The coefficient B of (15) is defined by 

Shallow channel with a permeable wall.  If Ee → ∞ , H̄ = 0 and R1 → ∞ , the flow in a shallow chan-
nel with a permeable wall represents an asymptotic limit of our thin film problem. Denoting the channel height 
with b and the channel length with L, if L ≫ b , and using the scaling (2), the non-dimensional channel flow 
problem at leading order reads 

(37a)
A0 =

Eeα

4

{

(R1 + 1+ D0)[2 ln (R1 + 1+ D0)− 1]− (R1 +H)2

R1 + 1+ D0
[2 ln(R1 +H)− 1]

}

+ Eeβ

2

[

(R1 + 1+ D0)−
(R1 +H)2

(R1 + 1+ D0)

]

+ Ee

16

[

(R1 + 1+ D0)
3 − (R1 +H)4

R1 + 1+ D0

]

,

(37b)
A1 =

Ee

4

∂α

∂Z

{

(R1 + 1+ D0)[2 ln (R1 + 1+ D0)− 1]− (R1 +H)2

R1 + 1+ D0
[2 ln(R1 +H)− 1]

}

+ Ee

2

∂β

∂Z

[

(R1 + 1+ D0)−
(R1 +H)2

(R1 + 1+ D0)

]

,

(37c)A2 = EeMe ,

(37d)α = (R1 +H)2 − (R1 + 1+ D0)
2

4[ln(R1 + 1+ D0)− ln(R1 +H)]
,

(37e)β = − (R1 +H)2

4
− α ln(R1 +H),

(37f)C1 = α
∂P0

∂Z
,

(37g)C2 = β
∂P0

∂Z
,

(37h)

C3 = (R1 +H)

{

∂H

∂T
+

[

(R1 +H)3

16

]

∂2P0

∂Z2
+ R1 +H

4
[2 ln(R1 +H)− 1]

∂C1

∂Z
+

(

R1 +H

2

)

∂C2

∂Z

}

.

(38a)
B0 =

A0|H=0, D0=0

Ee
= α|H=0, D0=0

4

{

(R1 + 1)[2 ln (R1 + 1)− 1]− R2
1

R1 + 1
[2 ln(R1)− 1]

}

+ β|H=0, D0=0

2

[

(R1 + 1)− R2
1

R1 + 1

]

+ 1

16

[

(R1 + 1)3 − R4
1

R1 + 1

]

,

(38b)B2 =
A2|H=0, D0=0

Ee
= Me ,

(38c)α|H=0, D0=0 =
R2
1 − (R1 + 1)2

4[ln(R1 + 1)− ln(R1)]
,

(38d)β|H=0, D0=0 = −R2
1

4
− α ln(R1),

(38e)B = B2

B0
.

(39a)
∂P0

∂Y
= 0,
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 where �X = (X,Y) denotes the non-dimensional plane coordinates, P0 and �U0 = (U0,V0) are the pressure and 
the velocity field at leading order. The system of Eqs. (39) is completed by the boundary conditions 

 Considering that P0 is only function of X, and integrating the X-momentum twice in Y, it yields

Applying the boundary conditions in Y direction, we find C̃1 = −1/2 ∂XP0 and C̃2 = 0 . Plugging ∂XU0 in the 
continuity equation and integrating once in Y-direction, it yields

Applying the boundary conditions in Y direction, we find C̃3 = 0 and the following relation for P0 holds

Convergence test.  The Navier–Stokes and continuity equation of an incompressible flow in a perivascular 
thin film have been reduced to the solution of an equation in the form

where α = α(s, t) , β = β(s, t) , γ = γ (s, t) and σ = σ(s, t) are known functions, s ∈ [0,�] is the space variable 
(Z in our thin-film flow) and t ∈ [0, tfin] denotes the time variable.

We discretize (44) in space making use of a spectral collocation method which employs Gauss–Lobatto nodes 
based on Chebyshev polynomials. Denoting [DN ] ∈ R

N×N and [D2
N ] ∈ R

N×N the first- and second-order discrete 
derivation matrices in space constructed using N Chebyshev–Gauss–Lobatto nodes, (44) discretized in s reads

where �fN , �αN , �βN , �γN and �σN are N × 1 arrays which gather the values of f, α , β , γ and σ at the location of the N 
nodes at each instant of time t. The time discretization is carried out using the implicit Euler scheme. Denoting 
with tn the current time and with tn+1 the next instant such that �t = tn+1 − tn , the time-discrete version of 
(45) reads

where the superscripts n and n+ 1 denote the times tn and tn+1 , respectively, [IN ] is the N × N identity matrix 
and diag(∗) is the diagonal matrix resulting from distributing the N × 1 array ∗ along the diagonal of an N × N 
matrix.

To test the numerical implementation of our code, we assume 

(39b)∂P0

∂X
= ∂2U0

∂Y2
,

(39c)
∂U0

∂X
+ ∂V0

∂Y
= 0.

(40a)V0|Y=0 = 0,

(40b)V0|Y=1 = Me(P0 − Pe),

(40c)U0|Y=0 = 0,

(40d)U0|Y=1 = 0,

(40e)P0|X=0 = Pa,

(40f)P0|X=L = Pb.

(41)U0 =
∂P0

∂X

Y2

2
+ C̃1Y + C̃2.

(42)V0 = −1

2

∂2P0

∂X2

(

Y3

3
− Y2

2

)

+ C̃3.

(43)∂2P0

∂X2
− 12MeP0 = −12MePe .

(44)
∂f

∂t
+ α

∂f

∂s2
+ β

∂f

∂s
+ γ f = σ ,

(45)∂�fN
∂t

+ �αN
(

[D2
N ]�fN

)

+ �βN
(

[DN ]�fN
)

+ �γN�fN = �σN ,

(46)
{

[IN ]/�t + diag
(

�αn+1
N

)

[D2
N ] + diag

(

�βn+1
N

)

[DN ] + diag
(

�γ n+1
N

)}

�f n+1
N = �σ n+1

N + �f nN/�t,

(47a)α = − sin [2π(s − t)]− 1.05,

(47b)β = sin [π(s − 2t)/6],
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 such that the exact solution of (44) is

Dirichlet boundary conditions are derived from (48) and set at s = 0 and s = � = 4 in (46), together with the 
initial condition �f 0N = f (�sN , t = 0) = sin (π�sN ) . We stress that the arbitrary choices made in (47) are representa-
tive of the problem of interest in our study.

The numerical solution �fN is then compared to the exact solution at each time step by means of the infinite 
norm of the error function Err(tn) = f (�sN , t = tn)− �f nN computed at each time point. The simulations are car-
ried out for t = tfin = 100 setting N = 100 and varying �t . Figure 10 depicts the convergence curve of the error 
function, which demonstrate the correctness of our numerical code. The bullets denote the maximum in time of 
||Err||∞ , depicting it in a log-log plot against the �t to demonstrate that the solver is first-order accurate in time 
(see dashed line with slope 1), as expected. The infinite norm of the numerical error ||Err||∞ is plotted as function 
of time for the largest and the smallest time step (i.e. �t = 0.1 and 0.0005, respectively) in the two insets of fig. 10.

Code availability
The code used in this paper is an in-house developed software that will be made available upon request to the 
corresponding author.
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