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ABSTRACT

Users would experience individually different sickness symptoms
during or after navigating through an immersive virtual environment,
generally known as cybersickness. Previous studies have predicted
the severity of cybersickness based on physiological and/or kine-
matic data. However, compared with kinematic data, physiological
data rely heavily on biosensors during the collection, which is in-
convenient and limited to a few affordable VR devices. In this
work, we proposed a deep neural network to predict cybersickness
through kinematic data. We introduced the encoded physiological
representation to characterize the individual susceptibility; therefore,
the predictor could predict cybersickness only based on a user’s
kinematic data without counting on biosensors. Fifty-three partici-
pants were recruited to attend the user study to collect multimodal
data, including kinematic data (navigation speed, head tracking),
physiological signals (e.g., electrodermal activity, heart rate), and
Simulator Sickness Questionnaire (SSQ). The predictor achieved
an accuracy of 97.8% for cybersickness prediction by involving
the pre-computed physiological representation to characterize in-
dividual differences, providing much convenience for the current
cybersickness measurement.

Index Terms: Cybersickness Prediction, VR, Kinematic data,
Physiological Representation, Deep Neural Classifiers

1 INTRODUCTION

Virtual reality (VR) technology has made significant progress in re-
cent years, gaining popularity among many fields such as education,
gaming, and healthcare [54]. It can create realistic virtual scenes,
providing an immersive environment through multimodal feedback
for users. However, when users are exposed to VR applications, they
may experience cybersickness (CS), which is a common side effect
of VR and an unavoidable problem. CS symptoms include headache,
eyestrain, stomach awareness, and disorientation [35], and these
symptoms can last up to five hours after VR immersion [49]. Studies
report that more than 60 % of VR users experience CS, making it
a primary impediment to the expansion of the VR market [36]. To
alleviate the influence of CS on VR users, it is vital to develop some
strategies to predict it. Predicting the early onset of CS can help us
understand the possible causes and potential risk factors so that we
can take corresponding strategies for the prevention of severe CS
symptoms.
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†e-mail: yuyangwang@ust.hk (Corresponding author)
‡e-mail: hyin335@connect.hkust-gz.edu.cn
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¶e-mail: panhui@ust.hk (Corresponding author)

Previous studies have investigated CS prediction utilizing data
from integrated sensors in head-mounted displays (HMDs) [1, 7,
24, 32]. These sensors can acquire stereoscopic videos/images and
kinematic data, which are then used as input for machine learning
algorithms to predict the severity of CS. Kinematic data include
head movement, eye movements, and operations [38], which have
been commonly used as objective cybersickness indicators and have
been utilized for predictions [7, 15]. However, kinematic data from
different users may demonstrate similar patterns and trajectories in
the same VR environment [57], making it challenging to provide
deeper insights into individual differences. Similar to kinematic
data, stereoscopic videos/images also struggle to accurately reflect
individual differences. This is because even with the same visual
content, people can have varying interpretations.

To involve individual differences, CS prediction using physio-
logical data and biometrics has received increasing attention [52].
Physiological data are highly valued because of their reliability and
objectivity in characterizing individual differences from both phys-
iological and psychological perspectives. Prior studies report that
electrodermal activity (EDA) on the forehead has a higher correla-
tion with CS and can be used for the prediction [18, 60]. In addition
to EDA, other physiological data are widely used for CS prediction,
such as heart rate (HR), heart rate variability (HRV), electroen-
cephalography (EEG), and electrogastrogram (EGG) [11, 26, 31].
However, collecting physiological signals requires external biosen-
sors, which presents more challenges in deployment among current
affordable consumer-level HMDs such as Oculus Quest 2 and HTC
Vive. In addition, the data collection process for physiological sig-
nals requires users to limit their interaction experience to prevent
noisy information, further complicating the use of external biosen-
sors. To fully unleash the potential of VR, the data collection method
should be less intrusive and remain cognitively effortless during the
interaction.

To overcome the above-mentioned limitations, we aim to predict
the severity of CS only using kinematic data from integrated sensors
in HMDs without employing additional biosensors. In addition, we
will involve individual differences in the predictive model with EDA-
related encoded physiological representation. Kim et al. have used
stereoscopic videos to estimate EEG-related cognitive state, achiev-
ing an accuracy of 90.48% for CS prediction [31]. However, using
stereoscopic videos for prediction has several drawbacks, such as
the need for large transmission bandwidth and storage space, privacy
concerns, difficulty in analysis, and sophisticated neural network
models. Moreover, relying only on video data leads to a narrow
perspective, which may lose some key information associated with
the CS, leading to worse prediction accuracy. EEG data are recorded
from electrodes on the scalp, requiring specialized and expensive
equipment, and participants need to prepare by washing their hair
and avoiding stimulants before recording. Thus, in this work, we use
kinematic data including motion and head-tracking data, which are
much convenient for deployment and avoid many privacy concerns.
Moreover, instead of using EEG whose collection and processing are
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more complex and time-consuming, we opt for EDA and propose
an EDA-enhanced kinematic model. Specifically, we first encode
EDA data into physiological representation. Subsequently, we train
an embedding layer to learn physiological embedding from kine-
matic data, gradually approaching the representation. Finally, our
model can interpret individual differences with physiological embed-
ding, without the need for the encoded physiological representation
from EDA data. Using the physiological representation to enhance
kinematic data provides an in-depth understanding of CS since it
captures both inter and intra-individual differences of the CS. In
summary, we have made the following three key contributions:

• Achieve improved performance with only EDA data using
temporal features and numerical representation formulated
from statistical and topological features.

• Propose a novel deep learning model to predict CS, which
considers kinematic and physiological features using kinematic
data only.

• Insight into the influence of time span and exposure time on
CS.

2 RELATED WORK

Cybersickness is a common phenomenon often appearing to VR
users during or after an immersive experience. This phenomenon
has become an important area of research due to the increasing pop-
ularity of immersive technologies and the potential adverse effects
on user experience and well-being. In related work, we will review
the current understanding of CS, including its causes, measurements,
and predicting approaches.

2.1 Causes

Cybersickness symptoms are similar to motion sickness, but the
underlying causes are different [53]. Researchers have proposed
various theories to explain the mechanisms of CS. One of the most
popular theories is the sensory conflict theory, which suggests that
CS occurs due to conflicts between visual and vestibular informa-
tion [48]. The subjective vertical theory proposes that CS occurs due
to a conflict between the sensory information from the body and the
brain’s expectations [3]. To better understand CS, researchers have
recommended integrating these two theories into a comprehensive
model [4].

Factors associated with CS can be classified into three categories:
hardware, content, and human factors [6]. Hardware factors such as
field of view (FOV) and latency have been widely studied. Adaptive
FOV has been proposed as a way to reduce CS, with FOV repre-
senting the maximum visual angle of a display device. Kim et al.
employed a dynamic FOV system that adjusts the FOV using elec-
trophysiological signals. Their results indicate that reducing FOV
effectively alleviates discomfort, especially during acceleration and
rotational movements [33]. Another hardware factor that affects
CS is latency. DiZio et al. demonstrated that increasing latency
increases the severity of VR sickness [12]. Content factors, such
as optical flow, graphic realism, and controllability, have also been
studied. Optical flow is the VR scene’s movement that allows indi-
viduals to experience illusory self-motion. Faster locomotion speed
in the VR scene is associated with more severe CS [8, 39]. Human
factors such as age, ethnicity, and gaming experience significantly
correlate with CS levels [58].

2.2 Measurements

Several methods have been developed to measure CS, including
subjective and objective measures.

2.2.1 Subjective measurements of CS
First introduced by Kellogg et al., the Motion Sickness Question-
naire (MSQ) remains a subjective tool for evaluating CS across
various dimensions [28]. Later, Golding et al. proposed a short-
ened version of the Motion Sickness Susceptibility Questionnaire
(MSSQ) [20]. However, the Simulator Sickness Questionnaire
(SSQ), developed by Kennedy et al., is widely recognized and uni-
versally used as a subjective measurement tool for CS [29]. The SSQ
comprises 16 questions divided into three categories (i.e., nausea,
oculomotor, disorientation) to assess the severity of each potential
manifestation of CS. The scores from these subcategories are com-
bined to determine the total SSQ score, which indicates the overall
severity of the sickness. Although the SSQ is a comprehensive
and widely used tool, it may lead to an extra workload in answer-
ing 16 questions. Therefore, researchers have developed relatively
short and quick-to-report questionnaires. For example, the Fast Mo-
tion Sickness Scale (FMS) [30] and the Misery Scale (MISC) [50]
are well-known unidimensional questionnaires. For example, FMS
comes with one question asking participants to rate their CS level
on a scale ranging from 0 (no sickness) to 20 (severe sickness). The
severity of CS experienced by the participant is reported as a score
between 0 and 10 by the MISC.

2.2.2 Objective measurements of CS
In addition to subjective measurements, researchers have explored
objective measurements on top of self-reported evaluation. Two
commonly measured indicators are postural sway and electrophysio-
logical changes. Participants are asked to stand on a motion platform
to measure postural sway while their VR position is recorded [9,55].
Multiple studies have demonstrated that these measurements can
effectively predict the onset of VR sickness [13, 46]. Real-time
monitoring of participants’ psychophysical state changes during the
VR experience is also conducted. A significant study by Kim et al.
examined the physiological indicators of VR sickness, recording
various electrophysiological measures before, during, and after the
VR experience [34]. Among these indicators, electrogastrogram
(EGG), eye blink, heart period, and the delta and beta power bands
of electroencephalogram (EEG) exhibit CS-specific responses. Ad-
ditionally, phasic skin conductance at the forehead, as reported by
Golding and John [19], has also shown a strong correlation with
motion sickness onset. In a subsequent study, Gavgani et al. [18]
confirmed that skin conductance on the forehead is a reliable mea-
sure of nausea during immersion. Other studies have reported that
CS can cause a 4◦C increase in body temperature and a 20-50ms
increase in reaction time [43]. Furthermore, researchers have ex-
amined blood pressure, fMRI, theta/total parameter at the frontal
and parietal lobes, and hormonal levels as potential measures of VR
sickness.

2.3 Predicting Approaches
Previous studies have explored using Machine Learning (ML) and
Deep Learning (DL) models to predict CS based on individual fac-
tors, stereoscopic 3D videos, kinematic data, and physiological
signals. According to the data source, these approaches can be
divided into two categories.

2.3.1 CS Predicting with integrated sensors in HMDs
Integrating various sensors within VR HMDs allows for collecting
multimodal data, including videos, images, and user kinematic data.
These sensors track the user’s head movement, operation, and body
position, which are then processed by the system to create a seamless
VR experience.

Regarding videos, Padmanaban et al. [44] created a dataset of
19 stereoscopic videos and corresponding sickness levels to predict
simulator sickness. They considered FOV, velocity, and stimulus
depth as features and evaluated them with a decision tree model.
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The prediction performance was later improved with a 3D CNN
model that used saliency, disparity, and optical flow features [37].
Du et al. built a CNN model that automatically learnt and integrated
multi-level stereoscopic visual sickness descriptors for simulator
sickness prediction [14].

In addition to utilizing video data for prediction, researchers
have also leveraged user kinematic data, including eye-tracking [21],
motion [15, 22], head-tracking [27] and postural data [1, 51, 59].
Gazing activity has been found to help reduce CS severity by Chang
et al. [7]. Lopes et al. [40] found that the CS level can be affected
by both the position of the pupil and the type of blink. Wang et
al. utilized normal-state postural data collected from participants to
train a long short-term memory (LSTM) model, which was then used
to predict CS levels [56]. Islam et al. proposed a novel approach
for assessing CS severity using a multimodal deep fusion network
that integrates data from various modalities, including eye-tracking,
head-tracking, and stereo-image data [24].

2.3.2 CS Predicting with external biosensors

Previous research has suggested various approaches to predict CS
by utilizing physiological signals, which have been found to be sig-
nificantly correlated with CS. Garcia et al. conducted an experiment
with 66 participants, collecting electrocardiographic, electrooculo-
graphic, respiratory, and skin conductivity data to classify cybersick-
ness using KNN and SVM classifiers [17]. The accuracy achieved
by the Binary and Ternary classifiers were 82% and 56%, respec-
tively. Kim et al. achieved an accuracy of 89.16% in predicting
CS by using EEG data [31]. Their study involved collecting EEG
data from 200 participants who were immersed in 44 virtual reality
(VR) simulations using an 8-channel EEG. The authors estimated
the cognitive state and its association with CS levels using CNN
and LSTM models based on brain signals. Jeong et al. proposed a
data processing technique for DNN models and achieved an impres-
sive accuracy rate of 98.02% using EEG data. Additionally, they
observed a distinct pattern of CS occurrence during VR simulations.

Besides EEG, electrodermal activity (EDA) is a widely used mea-
sure of emotional arousal. It includes Skin Conductance Level (SCL)
and Skin Conductance Response (SCR) [23]. The SCL changes
slightly on a time scale of tens of seconds to minutes and can vary
between individuals. The SCR, on the other hand, is the phasic
component that shows rapid changes and is sensitive to emotionally
arousing events, such as event-related SCRs (ER-SCRs). These vari-
ations in the phasic component are visible as EDA bursts or peaks,
which can occur within 1-5 seconds after the onset of emotional
stimuli. Islam et al. achieved an 87.38% accuracy in predicting CS
by analyzing heart rate (HR) and EDA data from 22 participants
using deep neural networks [26]. They also proposed a multimodal
fusion network involving eye tracking, HR, and EDA to forecast
CS onset 60 seconds in advance with a root-mean-square error of
0.49 [25].

3 USER STUDY

Figure 1: Physiological data of one sample.

Figure 2: Motion data of one sample.

To train a high-quality model to make CS predictions based on
physiological and kinematic data, we conducted a user study to
collect the data as ground truth. The task was performed in the HTC
Vive Pro Eye. Participant information and task design are presented
in Sect. 3.1, and we further introduce the data collection process
shown in Sect. 3.2.

3.1 Participants and Task Design
In this study, 53 participants (Mage = 26.3, SDage = 3.3, females:
26) completed a navigation task in an immersive environment. Most
participants were young individuals as VR applications are more
popular among this group. Each participant completed the task
three times over three days, resulting in 159 samples. However, two
samples were discarded due to device defects, leaving 157 samples
for data analysis.

Upon arrival, participants signed a consent form indicating poten-
tial risks and their agreement for the experiment. They completed
a questionnaire assessing their health conditions and experience
with gaming and VR devices. All participants confirmed their eli-
gibility, reporting no pre-existing medical issues that would affect
their performance. They were compensated with various gifts upon
completion of the study.

Participants received clear instructions on the navigation task and
how to use HTC Vive Pro hand controllers. They had to navigate
a virtual forest along a winding gravel path. The VR immersion
lasted four minutes to induce moderate cybersickness without posing
health risks. Fig. 3 shows a visual representation of the path.

Figure 3: Virtual scenario in which the participants navigate along
the highlighted path.

3.2 Data Collection Procedure
The general experimental procedure is presented in Fig. 4.

Figure 4: Experiment Procedure for the data collection
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1. Participants received instructions on using HTC Vive Pro hand
controllers and were informed they could terminate the experi-
ment if experiencing CS symptoms.

2. Participants wore an HTC Vive Pro headset and an Empat-
ica E4 wristband on one arm. Real-time physiological data
(EDA, BVP, TEM) were collected using the Empatica E4
wristband 1 with sensors transmitting data via Bluetooth to
a processing computer with sampling frequencies: EDA (4Hz),
BVP (64Hz), TEM (4Hz). One physiological sample is shown
in Fig. 1.

3. Participants engaged in the virtual environment (Fig. 3), di-
recting movements using the HTC Vive Pro hand controller
touchpad. Physiological and kinematic data, including head-
tracking and motion data, were collected synchronously dur-
ing four-minute navigation. After completion, participants
removed the head-mounted display. One sample of motion
data is illustrated in Fig. 2.

4. The Simulator Sickness Questionnaire (SSQ) assessed CS
severity, measuring nausea, oculomotor, and disorientation
symptoms through 16 questions. Participants completed pre-
and post-experiment SSQ to report CS degree. SSQ score cal-
culated by subtracting post-exposure from pre-exposure score,
given as,

SSQ = SSQpost −SSQpre (1)

We gathered three distinct sets of data, each of which shared
the same starting and ending times: head-tracking, motion, and
physiological data. The data collected from the integrated sensors
of the HMD and Empatica E4 wristband are summarized in Table 1.

Table 1: List of temporal data collected during the navigation task

Data Type Data
Head-Tracking Data

(90Hz)
Head Position (i.e., x, y and z)

Head Rotation (i.e., x, y and z)

Motion Data
(90Hz)

Speed

Rotation

Physiological Data
Electrodermal Activity (4Hz)

Temperature (4Hz)

Blood Volume Pulse (64Hz)

4 DATA PROCESSING

It is necessary to pre-process the raw data from the experiment to
construct the input and output for building deep learning models.
First, we explain how to establish the ground truth in Sect. 4.1, then
define the CS prediction task in Sect. 4.2. Next, we show the data
processing details in Sect. 4.3. By carefully handling the data, we can
ensure that the deep learning model is trained on high-quality inputs
and outputs, which will improve its performance and accuracy.

4.1 Ground Truth Construction
SSQ covers a wide range of symptoms that are commonly associated
with CS and it is a standardized tool that has been used as ground
truth in many studies [22, 27]. So our work used SSQ scores to
construct the ground truth. Stanney et al. stated that cybersickness
could be classified using the following criteria: SSQ scores below 5
indicate negligible symptoms, while scores above 20 suggest a bad
intervention [53]. However, a recent meta-analysis challenges using
scores above 20 as an indicator of a bad intervention, as it found
that approximately one third of users discontinued with a weighted

1https://www.empatica.com/research/e4/

SSQ score of 40 or higher [5]. Therefore, we employ a revised
classification rule for cybersickness level, which includes four cat-
egories: negligible (0 ≤ SSQ ≤ 5), low (5<SSQ ≤ 20), moderate
(20<SSQ ≤ 40), and high (SSQ>40). This updated classification
standard provides a more accurate reflection of cybersickness level.
Also, the samples were uniformly distributed among such classifica-
tion, with 30, 41, 53, and 33 samples for each class. The data was
labeled as follows:

CS =

⎧⎪⎨
⎪⎩

Negligible , i f 0≤ SSQ≤ 5
Low , i f 5<SSQ≤ 20
Moderate , i f 20<SSQ≤ 40
High , i f SSQ>40

(2)

4.2 Problem Definition

Figure 5: The original four minutes are divided into eight 30s seg-
ments.

Previous studies indicated that the exposure time does not affect
the severity of the VR experience. For example, Melo et al. [42]
found no significant difference between shorter and longer (5 or 7
min) experiences concerning participants’ sense of presence and CS.
Katharina et al. [45] also reported no CS differences between 10-
minute and 20-minute virtual immersion for karatekas aged 18-60.
Thus, if a participant experiences sickness after the four-minute VR
experience, we assume the CS level (CS) remains constant for all
observed data within that time. We will investigate the exposure
time-CS relationship further in Sect. 6.3. The entire four-minute VR
experience is labeled as CS240.

[D1,D2,D3,D4, ...,D239,D240]→CS240

Dt represents observed data at time t, comprising 4 data points
from EDA and Temperature (4Hz), 64 data points from BVP (64Hz),
and 90 data points from head-tracking and motion (90Hz). The
original data was segmented based on time span Ts. For instance,
using Ts = 30s, the four-minute data was divided into eight segments
(see Fig. 5). Each time segment was labeled with CS level CS240.

The CS level prediction task can be defined as giving the observed
data (e.g., physiological, head-tracking, and motion data) in the time
segment with a time span of Ts from a person, determining the user’s
CS level.

4.3 Data Processing

Table 2: An independent t-test of the physiological data between
higher CS and lower CS group (df = 157), p-value < 0.05 represents
significant properties

Mean SD t-value p-value
Low-CS BVP
High-CS BVP

-0.013569

-0.075292

0.281273

0.270550
-1.4065 0.1616

Low-CS EDA
High-CS EDA

2.753912

4.373491

3.253526

4.158797
2.6919 0.0079

Low-CS TEM
High-CS TEM

34.429848

34.587766

1.298672

1.467705
0.7111 0.4781
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Table 3: Feature set of one sample

Feature Type
Data Type

(Dimension)
Features

Temporal
Head-tracking

(12)

Head Position

First difference of Head Position

Head Rotation

First difference of Head Rotation

(i.e., x, y and z)

Motion

(4)

Speed

First difference of Speed

Rotation

First difference of Rotation

EDA

(15)

EDA, SCR, SCL

EDAmin, EDAmax, EDAmean, EDAstd
SCRmin, SCRmax, SCRmean, SCRstd
SCLmin, SCLmax, SCLmean, SCLstd

Numerical
EDA

(38)

mean scl, std scl,

std scr, corr,

num responses, ...

The rendering frequency of Unity3D fluctuates around 90Hz due
to computer performance, posing a challenge for data collection at
a constant rate. Hence, all head-tracking and motion data were re-
sampled to 90Hz during preprocessing. Subsequently, the following
steps were carried out:

• Correlation Analysis. We combined the first and last two CS
level categories, resulting in the higher CS group (SSQ > 20)
and lower CS group (0 ≤ SSQ ≤ 20). We conducted inde-
pendent sample t-tests on the physiological data of these two
groups. The results showed a significant difference in EDA
signals, as presented in Table 2. However, there was no sig-
nificant difference in BVP and TEM data between the higher
and lower CS groups. Therefore, we excluded BVP and TEM
signals from further data processing.

• Data Downsampling. To account for varying sampling rates,
all data was downsampled to 1Hz. The mean value of the
samples was used to retain information during downsampling.
For example, head-tracking and motion data were aggregated
using the mean value over 90 data points per second, while
EDA signals were aggregated using the mean value over 4 data
points.

• Data Segmentation. In order to build our prediction task, we
divided the original four-minute data into several windows
according to the time span Ts. Since Ts is temporarily set to
30s, we got a total of 8∗157 = 1256 samples, as presented in
Fig. 5.

• Feature Selection. We extracted features from head-tracking,
motion, and EDA data. The features extracted from one sample
are listed in Table 3.

– For speed and rotation data, we computed the first dif-
ference between consecutive frames to calculate the dif-
ference between adjacent seconds. For head-tracking
vectors (x, y, and z), we computed the first difference of
consecutive vectors.

– For temporal features of EDA data, courtney et al. sug-
gested using a 3-second window to capture changes in
EDA data [10]. So we employed a trailing moving av-
erage with a 3-second window to smooth the EDA data
and account for noise. Properties of physiological sig-
nals within the previous 3-second window, including
mean, std, maximum, and minimum, were considered
indicators of physiological changes. Dmax, Dmin, Dmean,
and Dstd captured abrupt fluctuations in physiological

signals over a 3-second period. As the EDA signals’
phasic component (SCR) is associated with arousing
stimulus events and the SCL differs significantly across
different individuals, we should link the CS level to them.
Using Neurokit2 [41], a Python toolbox designed to pro-
cess physiological signals, we could extract the SCR
and SCL from the original EDA. Then we did the same
processing as the original EDA data on the extracted two
components.

– For EDA data, in addition to temporal features, we also
analyzed each time segment and extracted numerical
representation formulated from statistical and topologi-
cal features. The meanings of 38-dimension numerical
representation are shown in our supplemental material 2.

• Data Normalization. To mitigate the impact of individual dif-
ferences that could potentially hinder the model’s training due
to varying signal magnitudes, we opted to normalize all tem-
poral features using min-max normalization, thereby scaling
the values to fall within the range of (0,1).

5 MODEL ARCHITECTURE
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Figure 6: EDA Model. The model aims to encode EDA data as a
low-dimensional physiological representation.
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Figure 7: Kinematic-EDA Fusion model. The model learns features
from physiological and kinematic data.

After preparing input and output data, we constructed and eval-
uated multiple deep learning models for different input modali-
ties, identifying relevant inputs for accurate predictions. Analyzing
model performance provided valuable insights into the influence of
input features on outcomes, leading to the development of precise
and efficient deep learning models for diverse applications. This
section describes the environment setup (see Sect. 5.1) before ex-
ploring specific model architectures for different input combinations
in subsequent sections.

2Available on OSF at osf.io, released under a CC BY 4.0 license. They in-

clude (1) Excel containing the meanings of 38-dimension numerical features,

(2) an example of fine-tuning results, (3) datasets, and (4) source code.
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Figure 8: (i) Kinematic Model. The model learns features from
kinematic data, including head-tracking and motion data. (ii) EDA-
enhanced Kinematic Model.The model learns the physiological and
kinematic embedding from Kinematic data.

5.1 Setup
Our deep learning models were trained and evaluated using Ten-
sorFlow. Execution took place on a system running Ubuntu 18.04,
equipped with two NVIDIA GeForce RTX 3090 Ti GPUs (each with
24GB memory). The dataset underwent 5-fold cross-validation, with
4 groups for training and the remaining group for testing. Mean accu-
racy served as the primary evaluation metric. To optimize parameters
and improve performance, we employed the Optuna 3 Python library,
which efficiently explores and exploits the parameter space. This
significantly enhanced our hyperparameter tuning process and re-
sulted in improved model performance. Additionally, we utilized
the Adam optimizer with an epoch of 100 and a batch size of 64.

5.2 EDA Model
The EDA model encodes EDA data as a low-dimensional physiolog-
ical representation. Fig. 6 shows the model’s schematic architecture.
The time span Ts is 30s, resulting in a temporal EDA feature size
of (15 ∗ 30) and a numerical representation size of (1 ∗ 38). An
LSTM layer with (LST M size) units learns the temporal representa-
tion, while a fully-connected layer with (Dense size1) neurons and
activation function (Acti) learns the numerical representation. These
representations are combined using a concatenate layer, forming the
physiological representation used as the ground truth in the EDA-
enhanced kinematic model discussed later. To prevent overfitting,
a dropout layer with a dropout rate of Rate is applied, followed
by a fully-connected Dense layer with (Dense size2) neurons and
activation function (Acti).

5.3 Kinematic Model
The kinematic model learns features from kinematic data, including
head-tracking and motion data. The detailed architecture is depicted
in Fig. 8(i). The time span Ts is set to 30s, so the temporal kinematic
feature is (16∗30). We use an LSTM layer with (LST M size) units
to learn the temporal representation. The output is then passed to a
dropout layer with a specified dropout rate Rate to reduce overfitting.
This is followed by a fully-connected Dense layer with a defined
number of neurons (Dense size) and an activation function (Acti).

5.4 Kinematic-EDA Fusion Model
The kinematic-EDA fusion model combines physiological and kine-
matic data. See Fig. 7 for the detailed architecture. With a time span
of 30s, the temporal input EDA feature size is (30 * 15), the temporal
input kinematic feature size is (30 * 16), and the numerical input
EDA feature size is (1 * 38). Two LSTM layers, with (LST M size1)
units for temporal EDA representation and (LST M size2) units for

3https://optuna.org

kinematic representation, are employed. A fully-connected Dense
layer with (Dense size1) neurons and activation function (Acti1) en-
codes numerical EDA features. The outputs of these three layers are
concatenated and passed through a dropout layer with a specified
dropout rate. They are then fed into a fully-connected Dense layer
with (Dense size2) neurons and activation function (Acti2).

5.5 Proposed EDA-enhanced Kinematic Model

The proposed EDA-enhanced kinematic model aimed to learn the
physiological embedding from Kinematic data with encoded physi-
ological representation learned from the EDA model mentioned in
Sect. 5.2. The overall architecture is illustrated in Fig. 8(ii). Here we
use an LSTM network with (LST M size) units as a sequential net-
work to process the kinematic features. Then the dropout layer with
the Rate1 and fully-connected Dense layer with (Dense size1) and
activation function (Acti1) output physiological embedding. Next,
the dropout layer with the Rate2 and fully-connected Dense layer
with (Dense size2) and activation function (Acti2) are used to ex-
tract kinematic representation. Then the physiological embedding
is concatenated with the kinematic representation to produce the
final representation vector. The output is forwarded into the dropout
layer with the Rate3 and then passed to a fully connected Dense
layer with (Dense size3) neurons and activation function (Acti3).
The model uses the Adam optimizer with the Lr. Note that in order
to make the learned embedding closer to the encoded physiological
representation, we design a custom loss function, which is formed
by two terms: the prediction loss and the regression loss,

L = Lpre +β ∗Lreg

Where Lpre represents the standard cross-entropy loss between
ground truth and the output unit of the last FCL, Lreg denotes
the mean squared error (MSE) or mean absolute error (MAE) be-
tween the physiological features and the physiological representation
learned by EDA model, and a constant β is used to adjust the balance
between the two terms. These two parameters are fine-tuned with
Optuna.

6 EXPERIMENTS AND RESULTS

Table 4: Results of models with different time spans before down-
sampling

Time span Ts
10

mean± std
15

mean± std
20

mean± std
30

mean± std
40

mean± std
Kinematic Model 0.968±0.006 0.968±0.008 0.959±0.010 0.921±0.021 0.871±0.031

EDA Model 0.697±0.015 0.625±0.027 0.593±0.034 0.502±0.013 0.480±0.024

Kinematic-EDA

Fusion Model 0.976±0.005 0.974±0.009 0.963±0.010 0.924±0.026 0.880±0.015

EDA-enhanced

Kinematic Model 0.978±0.003 0.976±0.005 0.968 ±0.005 0.927±0.005 0.906±0.005

Table 5: Results of models with different time spans after downsam-
pling

Time span Ts
10

mean± std
15

mean± std
20

mean± std
30

mean± std
40

mean± std
Kinematic Model 0.836±0.032 0.838±0.012 0.847±0.042 0.870±0.012 0.871±0.031

EDA Model 0.494±0.019 0.489±0.039 0.489±0.035 0.497±0.031 0.480±0.024

Kinematic-EDA

Fusion Model 0.845±0.034 0.843±0.020 0.869±0.028 0.884±0.016 0.880±0.015

EDA-enhanced

Kinematic Model 0.867±0.026 0.855±0.029 0.874±0.028 0.888±0.020 0.906±0.015

Results are presented in the following subsections. After model
setup, Optuna was used for parameter optimization, and an example
of fine-tuning results with a time span of 30s before downsampling
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Table 6: Results of models with different exposure times. n repre-
sents the number of segments removed

n=1

mean± std
n=2

mean± std
n=3

mean± std
n=4

mean± std
n=5

mean± std
Kinematic Model 0.908±0.029 0.909±0.025 0.917±0.011 0.922±0.030 0.925±0.031

EDA Model 0.525±0.034 0.505±0.019 0.532±0.016 0.510±0.033 0.518±0.040

is shown in our supplemental material 4. Firstly, the impact of dif-
ferent time spans on the model was investigated in Sect. 6.1. Next,
the performance of different models was analyzed and compared in
Sect. 6.2. The proposed EDA-enhanced Kinematic Model achieved
the highest accuracy using only kinematic data. Lastly, the rela-
tionship between different exposure times and CS was studied in
Sect. 6.3.

6.1 Performance on different time span
Time span Ts refers to the length of recently recorded data, including
physiological and kinematic data. We aim to study how the models
can make predictions based on historical data from a certain period
of time,. The time spans included 10s, 15s, 20s, 30s, and 40s,
dividing the original 4-minute data into 24, 16, 12, 8, and 6 segments
respectively. Retraining the model revealed that as the time span
increased, the model’s performance gradually decreased, as shown
in Table 4. For instance, in the EDA-enhanced Kinematic Model,
the accuracy decreased from 0.978 when the time span was 10s to
0.906 when the time span was 40s.

Results Analysis. Surprisingly, the accuracy change contra-
dicted our intuition that a longer time span should improve pre-
diction performance by providing more information. We sus-
pected the limited training sample size to be the bottleneck af-
fecting model performance. At a 40s time span, the sample size
is 6 ∗ 157 = 942, while at a 20s time span, it is 12 ∗ 157 = 1884.
To ensure consistent training sample sizes, we randomly down-
sampled them to 6 ∗ 157 = 942 across all time spans. After re-
training, results are shown in Table 5. The Pearson correlation p-
values between accuracy and time span were as follows: Kinematic
Model (r = .955, p = .011), EDA Model (r = −.520, p = .368),
Kinematic-EDA Fusion Model (r = .875, p = .051), EDA-enhanced
Kinematic Model (r = .933, p = .020). Three p-values, close to or
less than 0.05, suggested a correlation between accuracy and time
span, aligning with our intuition. Comparing experiments before
and after downsampling, we observed significantly reduced model
performance under the same time span due to downsampling. For
example, with a 20-second time span, the sample size decreased
from 12∗157 = 1884 to 942, resulting in EDA-enhanced Kinematic
model performance dropping from 0.968 to 0.874. Hence, training
sample size became the model bottleneck.

In addition, we plotted the model performance curves before
downsampling shown in Fig. 9 and found that the three blue curves
had a turning point at a time span of the 20s. Therefore, 20 is a
value that balances both the training sample size and the amount of
information carried.

6.2 Model Comparison
The accuracy of different models is presented in Table 4. The
results demonstrate that the proposed EDA-enhanced Kinematic
Model can achieve the highest accuracy in predicting CS. Take the
example when the time span is the 30s; specifically, the EDA model
achieves an accuracy of 0.502 using only the EDA signals. When
only using the kinematic data, the kinematic model achieves 0.921.
The fusion model, which integrates physiological and kinematic data,
has a slightly higher accuracy of 0.924 than the kinematic model.
The proposed EDA-enhanced Kinematic Model achieves the best

4Available on OSF at osf.io, released under a CC BY 4.0 license.

Figure 9: Performance on different time spans before downsampling.

accuracy of 0.927, where kinematic and physiological embeddings
were encoded using kinematic data. Hence, prediction is only based
on kinematic data without utilizing physiological data.

Results Analysis. As shown in Table 4, the EDA-enhanced Kine-
matic Model has the highest accuracy across the five time spans.
After a χ2 test, we found a significant correlation (p < .01), indi-
cating the effectiveness of the EDA-enhanced Kinematic Model in
CS prediction. Fusion data outperforms single-modality models,
highlighting the importance of leveraging multiple data modali-
ties. Physiological and kinematic data contain valuable information
for CS, enhancing integrated performance. Notably, the kinematic
model outperforms the EDA model by 27% when the time span
is 10s before downsampling. The inferior EDA performance may
be due to noise interference from motion artifacts, muscle activity,
and environmental factors, impacting the accuracy and reliability of
physiological signals. In contrast, kinematic data provides reliable
information on body movement, less affected by noise, improving
CS prediction.

6.3 Performance on different exposure time

Exposure time refers to the duration of VR immersion. In Sect. 4.2,
we assumed a constant CS level throughout the four-minute VR
immersion. However, users may gradually experience CS during the
immersion. To analyze the relationship between exposure time and
CS, we truncated the four-minute experimental time, removed initial
data, and retrained the Kinematic model and EDA model. As men-
tioned in Sect. 6.1, using a 20s time span balances information and
training data. We used it to study the exposure time-CS relationship.
Truncating the first n time segments (20s each) yields data from n20
seconds to 240 seconds. For instance, for n = 3, we obtained data
from 60s to 240s per sample, with a total size of 9 ∗ 157 = 1413.
To ensure consistent training sample sizes, we randomly sampled
to make them all 7 ∗ 157 = 1099. Table 6 presents prediction re-
sults. Increasing n improved the Kinematic model’s performance.
Accuracy increased from 0.908 (when n = 1) to 0.925 (when n = 5).

Results Analysis. From Table 6, interestingly, after conducting
Pearson correlation tests between n and accuracy, we found that the
Kinematic model showed a significant correlation (r = .978, p< .01)
and its performance gradually improved as n increased. In contrast,
the EDA model showed no significant correlation (r =−.130, p =
.834) and its performance fluctuated as n increased. High accuracy
and correlation coefficient suggest that kinematic data maintains
a high level of correlation with the CS throughout the entire four
minutes of VR exposure. This correlation gradually increases as the
exposure time lengthens. In contrast, EDA signals showed a weak
correlation with the CS, possibly due to signal noise. Overall, there is
a certain correlation between exposure time and CS. Users are likely
to experience a low CS level at the beginning of exposure, with the
CS level gradually increasing as the exposure time lengthens. The
experiment is designed as a simple case for navigation and further
research is needed to reveal the relationship between exposure time
and CS.
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7 DISCUSSION

In this section, we discuss the feasibility of our proposed prediction
approaches. We will start by examining the prediction performance
with EDA data, which is discussed in Sect. 7.1. Then, in Sect. 7.2,
we demonstrate the benefits of our EDA-enhanced kinematic model,
such as its reliance only on integrated sensors within HMDs and
its ability to take into account physiological features. Finally, we
discuss the limitations of our work in Sect. 7.3.

7.1 Prediction performance with EDA data
Our EDA feature extraction significantly improved prediction perfor-
mance using EDA data. While some studies have used multimodal
data, including EDA, few have focused solely on EDA for predic-
tion. Compared to these studies, our EDA model achieved higher
accuracy. For instance, Hadadi et al. employed topological data
analysis (TDA) techniques on physiological data, including EDA,
TEM, and BVP, achieving an SVM classifier F1 score of 0.71 on
binary classification [22]. Similarly, we used TDA to extract EDA
features, which are included in our EDA numerical features. Our
EDA-only model achieved a maximum accuracy of 0.697 and an F1
score of 0.690, which is impressive given the four-class classification
task. Islam et al. collected physiological data, including HR, EDA,
and breathing rate, and calculated time series properties (e.g., max,
min, avg, percentage change), achieving a high accuracy of 97.44%
for CS detection using a convolutional long short-term memory
three-class classifier [26]. Their high accuracy can be attributed, in
part, to their different data processing methods. They divided the
data into 120-second time spans with a rolling window of 1 second,
resulting in multiple overlapping time series data, which differs from
our dataset.

7.2 Benefits of EDA-enhanced Kinematic Model
Usage of integrated sensors within HMDs. Our motivation is to
use fewer data dimensions collected from limited sensors in the
headset to achieve higher accuracy. While many studies for CS
prediction involving physiological signals often required external
biosensors, our EDA-enhanced kinematic model only counted on
integrated sensors within HMDs in a non-intrusive manner. Islam et
al. proposed a multimodal deep fusion approach for forecasting CS
onset using the user’s physiological, head-tracking, and eye-tracking
data, which had to use eye-tracker and biosensors [25]. Similarly,
Qu et al. utilized real-time physiological signals such as EDA and
electrocardiogram and position and bone rotation data of users’ vir-
tual avatars to train an LSTM Attention neural network model [47].
Although these models demonstrated remarkable prediction perfor-
mance, the reliance on external sensors limited user freedom and
practical usage. In contrast, our model only needed kinematic data
from integrated sensors in HMDs, making it easier to be deployed
in existing HMDs.

Reflect individual difference. Despite utilizing only the inte-
grated sensors within HMDs like other studies, our EDA-enhanced
kinematic model learned the physiological embedding from kine-
matic data to reflect individual differences. This gave our model
a more comprehensive range of perspectives, improving its perfor-
mance to predict CS. Islam et al. proposed a deep fusion method
that uses eye-tracking and head-tracking data to predict CS with an
accuracy of 87.77% and an RMSE of 0.51 [24]. In addition, Du
et al. extracted saliency, optical flow, and disparity features from
videos to determine the factors that contribute to simulator sickness.
Their 3D CNN model showed improved performance in terms of
Root Mean Square Error (RMSE) and Pearson Linear Correlation
Coefficient. [14]. In contrast, our model specifically learns individ-
ual differences only from kinematic data, setting it apart from the
above studies.

Real-time Performance and applicable scenario. Our EDA-
enhanced Kinematic model stands out by demonstrating remarkable

real-time performance, achieving an impressive accuracy of 97.8%
using only 10 seconds of historical kinematic data, as shown in Table
4. In comparison, Islam et al. proposed a model that can forecast
cybersickness onset 60 seconds in advance [25]. Jin et al. presented
a machine learning approach to predict cybersickness level with the
last 30-second data [27].

Once the user wears the VR headset, our EDA-enhanced Kine-
matic model utilizes kinematic data collected from the headset to
predict the occurrence of cybersickness. This prediction is essential
as it enables the implementation of appropriate prevention strategies.
By identifying whether a person is experiencing cybersickness, in-
terventions such as reducing the field of view [16, 61] or adjusting
navigation speed [2] can be promptly employed.

7.3 Limitations

There are three main limitations in our study.

Data Collection and Processing. For data collection, we note
that data from integrated sensors in HMDs are not limited to mo-
tion and head-trackng but also include video and eye-tracking data,
providing opportunities for further research in a multimodal man-
ner [14, 27]. We also find that our EDA model did not perform well
during the cross-validation compared with the kinematic model, as
the physiological signal is subject to noise and artifacts. Compared
to motion and head-tracking data, EDA data contains more noisy in-
formation; thus, high-quality EDA data for training are encouraged.

In terms of data processing, although our EDA-enhanced kine-
matic model achieved the best performance by using head-tracking
and motion data, the accuracy of our model was limited by the
ground-truth construction, which assumes that the SSQ score col-
lected after immersion denotes the CS level during the entire process.
Therefore, we suggest that future studies use Fast Motion Scale
(FMS) to collect more granular subjective measures of CS during
immersion.

Model Architecture. In comparison to previous studies [24, 25,
31], our proposed approach achieves significant performance im-
provement using only LSTM and Dense layers. However, we notice
that more complex networks, such as AttnLSTM and DeepTCN,
have been employed by other researchers to classify the severity of
CS. Therefore, we suggest further exploring such models to improve
the performance of CS prediction.

Generality. According to the sensory conflict theory, cyber-
sickness is aroused by conflicting senses, which are aroused from
anything that can stimulate visual-vestibular mismatch. So to en-
hance generality in our experiments, we enabled users to set their
speed freely, thus providing different level of conflict and a way to
generalize the findings beyond constant speed settings. However, we
acknowledge that the navigation task employed in our study was a
rudimentary simulation environment and that more complex simula-
tions would be a necessary. Future research will contribute to a more
comprehensive understanding of the effectiveness of our proposed
method in predicting CS across different simulation environments.

8 CONCLUSION

In this work, we propose several prediction models for different data
modalities. Among these models, the novel EDA-enhanced kine-
matic model achieves the highest accuracy of 97.8% in CS prediction
using only kinematic data, which learns physiological embedding
with encoded physiological representation from the EDA model. To
the best of our knowledge, this is the state-of-the-art performance
for predicting CS using motion and head-tracking data. Note that
our model can be practically applied to affordable consumer-level
HMDs because it only relies on integrated sensors in HMDs. Our
prediction model will allow future research to develop adaptive CS
preventive measures to mitigate CS before the onset.
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