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composites during plastic deformation. First, experimental results of interrupted tensile tests are performed to
quantify the evolution of damage, using SEM observations, as well as the decrease of Young's modulus as a
function of the tensile strain. The experimental results are then used to calibrate a two-step homogenization
model for metal-matrix composites in which the nucleation and growth of voids modify incrementally the

overall elastic properties. The model is finally applied to the numerical prediction of stiffness loss in a problem
of metal forming based on Nakazima tests. Overall, the stiffness loss predicted before the onset of coalescence
is moderate and its distribution is homogeneous, emphasizing that Fe-TiB, metal-matrix composites could be
used in applications requiring metal forming.

1. Introduction

Metal matrix composites (MMC) are promising materials and their
use in industrial applications keeps growing (Chawla, 2012; Nicholls
et al., 2017; Zhou et al,, 2020). For weight reduction applications,
MMC are particularly interesting because a significant increase of the
specific modulus (E/p) can be reached when the reinforcing particles
are stiffer and lighter than the matrix. Hence, those materials are of
important interest in automotive and aeronautic industries to improve
energy efficiency and decrease CO, emissions.

In this context, Fe-TiB, metal-matrix composites have been de-
veloped recently (Hadjem-Hamouche et al., 2012, 2018; Gaspérini
et al,, 2017). These materials are very interesting due to the very high
elastic modulus of light TiB, particles (Okamoto et al., 2010). Recent
improvements in continuous casting of this composite, achieved by
modifications of the composition and the solidification rate, have led
to a significantly finer particle distribution (Dorhmi et al., 2021). Then
after casting, Fe-TiB, products are processed either by (i) hot rolling or
(ii) hot rolling followed by cold rolling. A volume fraction of particles
of about 10% leads to an increase of the specific stiffness of about 13%
for the hot rolled products (Dorhmi et al., 2021).

An important drawback of metal matrix composites in structural
applications is the occurrence of damage during plastic deformation
which is generally due to the presence of brittle particles (Mortensen

and Llorca, 2010). Indeed, the presence of particles with high volume
fractions promotes the nucleation of voids (due to particle cracking
and/or decohesion of the particle-matrix interfaces) which can be fol-
lowed by void growth and coalescence after plastic straining. Therefore,
plastic deformation in metal matrix composites is expected to induce
microstructural modifications that would induce a decrease of the
overall stiffness due to the presence of voids. As a result, MMC may lose
their improved properties in processes requiring plastic deformation
such as metal forming and rolling. Hence, an important challenge for
MMC is to predict the evolution of damage and its influence on the
overall elastic properties during complex processing routes; this would
ultimately permit the design of optimal processing paths minimizing
the damage occurrence. In addition, it must be noted that metallic
alloys in general can also exhibit a reduction of their Young's modulus
after plastic deformation (Morestin and Boivin, 1996; Chen et al,
2016b). Even though the reduction of their Young’s modulus is gener-
ally lower than that observed for metal matrix composites, it can reach
in some cases 20% for mild steels (Yoshida et al., 2002), high-strength
steels (Cleveland and Ghosh, 2002) and dual-phase steels (Chen et al.,
2016a).

The modeling of metal-matrix composites has mainly focused on the
derivation of the overall elastic properties (Segurado and LLorca, 2002)
or plastic properties (Ponte Castaneda and Suquet, 1997; Gonzdlez and
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Table 1
Chemical composition of the Fe-TIB, composite.

Element C Al Cr Mn

Ni Sl T B P Fe

Weight % 0.04 0.07 0.06 0.09

0.04 017 5.4 1.69 0.01 Bal.
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Fig. 1. SEM (image mode: BSE) micrographs of hot rolled Fe-TiB, composite (TiB, particles appear with dark contrast). (a) Plane (e, ¢;) and (b) Plane (e, ¢.).

LLorca, 2000; Doghri and Ouaar, 2003; Mueller and Mortensen, 2006),
without damage. The derivation of models for MMC that include the
effect of damage upon the elastic and/or plastic properties is scarce,
and has mainly followed a phenomenological approach (Voyiadjis and
Kattan, 1993). Several micromechanical models have been derived and
permit in general to reproduce accurately macroscopic stress-strain
curves but they do not permit to predict the loss of stiffness observed
after plastic straining (LLorca et al., 1991; Gonzilez and LLorca, 2000;
Tekoglu and Pardoen, 2010). Mention has to be made to the work
of Derrien et al. (1999) in which the decrease of the Young's modulus
of Al-SiC composites is accounted for as a function of the tensile strain.
However, the numerical prediction of the progressive stiffness loss in
MMC during arbitrary loading paths (such as in forming processes) is
a difficult task since it requires the development of a coupled elastic-
plastic model including damage evolution. It should also be noted that,
in the general context of ductile porous solids, the effect of ductile
damage on the elastic stiffness is generally disregarded in microme-
chanical models such as in the GTN model, despite its importance
in the simulation of forming processes (Saanouni, 2008), notably for
reproducing springback (Wagoner et al., 2013); in the work of Yeh and
Cheng (2003) related to metallic materials, Gurson's model is used to
define a damage variable allowing the decrease of the elastic properties,
but the model has only been applied to the simulation of tensile tests
(and does not apply to metal-matrix composites).

Very recently, Dorhmi et al. (2020) derived a homogenization-based
model that describes the progressive loss of stiffness in metal-matrix
composites. In this model, the effect of damage on the elastic properties
is described by a mean-field homogenization scheme, which depends
on the volume fraction of the phases. Then the evolution of damage
is driven by a Gurson-type model, which allows the description of the
nucleation and growth of voids; the plasticity model is thus used to
update the volume fractions of the phases which in turns modify the
elastic properties. This model has permitted to reproduce accurately
the stiffness loss observed experimentally in tensile tests of several
metal composite materials (such as Al-SiC metal matrix composites
and cast irons) and appears to be a good candidate for the simulation
of complex strain paths and the prediction of the Young’s modulus
reduction induced by forming processes.

The aim of this work is to investigate the damage mechanisms in
Fe-TiB, metal-matrix composites and simulate the effect of damage
on the progressive stiffness loss during forming, using Dorhmi et al.
(2020)’s homogenized model, based on Gurson's model. Experimental
results based on tensile tests combined with SEM observations are used
to assess the micromechanical model of Dorhmi et al. (2020). The

model calibrated is then used in a model problem of metal forming
in order to investigate numerically the heterogeneous degradation of
the elasticity property during the process. The process is followed
by a three-point bending test which allows the determination of a
macroscopic property after processing. The objective is to assess the
ability of an enriched Gurson-type model to simulate complex processes
involving damage followed by a mechanical test, in a virtual design
approach. Therefore, the approach considered is interesting from a fun-
damental point of view because virtual forming with damage is usually
done using CDM-like models (which include the effect of damage on
the elasticity properties) (Saanouni, 2008). The present work tackles
for the first time the coupling between damage and elasticity properties
in forming processing using a micromechanical Gurson-type model and
constitutes an alternative to CDM models (which are phenomenological
models by essence). The rest of the paper is organized as follows. In
Section 2, experimental results of interrupted tensile tests are presented
to characterize the evolution of damage in Fe-TiB, composites. Sec-
tion 3 recapitulates the model of Dorhmi et al. (2020) and provides
a calibration of its parameters. Finally, the virtual design of Fe-TiB, is
investigated in Section 4 through numerical simulations of a forming
process followed by a mechanical test in order to investigate damage
and stiffness loss in Fe-TiB, composites during forming.

2. Experimental results
2.1. Material

We consider Fe-TiB, composites developed by ArcelorMittal
(ARCELOR-Research-group, 2008) which have been designed for their
high specific stiffness (E/p). After continuous casting, slabs of Fe-TiB,
are hot rolled, and subjected to recrystallization annealing at 800° for
25 min (4 min of temperature rise and 21 min of holding time). The
chemical composition is given in Table 1,

Back scattered electron imaging (BSE) with a SEM shows (Fig. 1) a
ferritic matrix (light contrast) reinforced with particles elongated in the
rolling direction (dark contrast). Two types of TiB, particles are present
in the ferritic matrix: primary hexagonal particles, formed before eu-
tectic transformation, and eutectic ones. In a previous work, Dorhmi
et al. (2021) performed a microstructure analysis using images taken
in two perpendicular planes, namely the plane (e,.e;) and the plane
(e,,e;) where e, is the rolling direction (see Fig. 1). This has led to
the classification of the particles according to their shape. Overall,
the conclusions are that the particles are spheroidal with a major
axis parallel to the rolling direction and the aspect ratio follows a
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Fig. 2. Distribution of the particles’ aspect ratios determined after microstructure
analyses (Dorhmi et al,, 2021),

distribution that is quite homogeneous in terms of volume fraction (see
Fig. 2): (a) 20% of the total volume fraction of particles for those having
an aspect ratio of 1, (b) 27% for particles having an aspect ratio of 2, (¢)
23% of particles having an aspect ratio of 3, and finally (d) an average
of 30% of particles having an aspect ratio of 6, The average aspect ratio
is of about 3 which can be considered as moderate. In addition, the
average volume fraction of particles is about v, = 10% (Dorhmi et al,,
2021).

It has been shown in Dorhmi et al. (2021) that the crystallographic
texture in the matrix is small; the particles, on the other hand, are
transverse isotropic in the rolling direction. The macroscopic elastic
properties are isotropic (Dorhmi et al., 2021), with an initial value for
the Young's modulus of about E = 230 GPa. This overall isotropic be-
havior is related to a competition between the anisotropic behavior of
the particles and the spheroidal shape of the particles (see e.g. Derrien
et al. (2018)).

2.2. Damage mechanisms during tensile tests

First, the fracture surfaces observed after a tensile test are charac-
terized by an homogeneous distribution of dimples and the presence
of fractured particles (Fig. 3). The dimples are related to the growth
and coalescence of micro-voids which is typical in ductile materials.
Most of the particles observed on the fracture surface appear to have
fractured. The analysis of the fracture surfaces shows traces of fractured
particles at the bottom of the dimples along the plane normal to the axis
of solicitation,

Then, interrupted tensile tests were performed in the rolling di-
rection (which coincides with the axis e,) in order to investigate the
evolution of damage. The tests have been interrupted at several values
of the tensile stress in order to (i) quantify the evolution of damage
in surface using SEM observations and (ii) measure the evolution of
Young’s modulus as a function of the strain.

SEM observations have been performed in the same area of the
specimen after unloading, as shown in Fig. 4. The void nucleation
mechanism in Fe-TiB, composite is mainly due to particle cracking with
in general a few cracks within a particle and no decohesion was ob-
served. Cracks are nucleated at the very beginning of the plastic regime
and open during plastic straining. Cracking occurs perpendicularly to
the loading axis. It is worth noting that some nucleation of voids within
the ferritic matrix, due to second-phase particles, are also observed.

The SEM observations have permitted to determine the percentage
of particles that fracture in surface, denoted by ¢, as a function of the

tensile strain, and represented in Fig. 5a. This percentage corresponds
to the number of fractured particles (with one or multiple cracks)
normalized by the total number of particles. It has been determined
using at least 10 SEM images per level of tensile strain in order to be
statistically representative. At the beginning of the plastic deformation,
a total of 3.5% of particles are fractured and this fraction of fractured
particles reaches a maximal value of about 36% after a plastic defor-
mation of 0.143, It is worth noting that half of the fractured particles
appear at a strain of about (.03 - 0.04. In addition, acoustic emission in
combination with quasi-static tensile testing was performed to complete
the surface SEM observations (see Fig. 5b). The advantage of acoustic
emission measurements is that it provides the damage evolution in
the bulk; however the results of acoustic emission measurements are
only qualitative because it accounts for all damage events: if multiple
cracking occurs, the number of events recorded corresponds to the
number of cracks and not the number of damaged particles. Overall,
a good agreement is observed between the SEM image analyses of
fractured particles and acoustic emission measurements.

Then, the evolution of Young’s modulus, measured from the stress—
strain curve (represented in Fig. 6a) during unloading, is represented
in Fig. 6b. A double-sided extensometer (class 0.2) from Zwick (Clipon)
was used. In order to determine the initial Young’s modulus (before any
plastic deformation), a sequence of two cycles of loading-unloading
(at a load of about 80% of the yield stress) is done. The permits
to eliminate (i) bending artifacts and (ii) anelasticity effects (such
as microplasticity). Young’s modulus is obtained during the (third)
loading. Then, for the determination of Young's modulus during the
tensile test, this previous procedure is not required anymore because
bending artifacts and anelasticity effects are eliminated. Therefore, we
only performed an unloading followed by a loading (at the stress before
unloading). Young’s modulus is thus determined during loading. Least
squares fit is used on the linear elastic domain of loading to determine
the Young’s modulus (Dorhmi et al.,, 2021). The value for Young’s
modulus before deformation is of about 230 GPa and a loss of stiffness
of 42 GPa is observed after 7% of deformation.

2.3. Summary of the experimental results

In order to calibrate the micromechanical model of Dorhmi et al.
(2020), the main experimental results that will be used are summarized
as follows:

« Initial volume fractions. The microstructural analysis performed
by Dorhmi et al. (2021) leads to the value of the average volume
fraction of particles v, = 10%. This value will be related to the
volume fraction of nucleating voids.

Hardening behavior. The stress-strain curve (Fig. 6a) will be used
to calibrate the strain hardening curve. The softening part of the
stress-strain curve (when necking takes place) will be used to
calibrate the coalescence parameters.

+ Damage mechanisms. The evolution of the fraction of fractured
particles (Fig. 5a) will be used to calibrate the model of nucle-
ation.

Young’s modulus evolution. The evolution of Young’s modulus
(Fig. 6b) will be used to adjust the calibration of the nucleation
model and to calibrate the nucleation ratio of Dorhmi et al.
(2021).

.

3. A homogenization-based damage model for metal-matrix com-
posites

3.1. Description of the model
The model of Dorhmi et al. (2020) is based on an approximate

two-step homogenization in which the elastic and plastic behaviors
are treated separately. The elastic behavior does not induce damage
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Fig. 5. Evolution of damage during tensile test, (a) Fraction of fractured particles determined by SEM observations in surface (represented by black circles). The stress-strain curve
is shown in red. (b) Comparison between acoustic emission (AE) measurements (in blue) and the fraction of fractured particles (represented by black circles). (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)

which implies that the overall elastic properties depend only on the
microstructure (volume fraction of the phases) at a given instant. The
plastic behavior, on the other hand, induces damage in the form of
nucleation and growth of microvoids during plastic straining. There-
fore, the consequence of the damage evolution is a modification of the
volume fractions of the phases which in turns modify incrementally
the elastic properties (and allows the prediction of stiffness loss). The
internal parameters of this model are thus the volume fractions of the
phases (i.e. matrix, particles and cavities).

Homogenization of the elastic properties. The overall stiffness tensor C of
the metal-matrix composite is given by the mean-field scheme of Mori
and Tanaka (1973). We consider the case of a 3-phase composite made
of an isotropic matrix (characterized by its shear and bulk moduli y,,
and «,,), reinforced by isotropic spherical particles (characterized by
its shear and bulk moduli 4, and &), and containing spherical voids.
The internal parameters of the model are the volume fractions of the

matrix, particles and voids, respectively denoted by (™, f* and f°,
where f™ + f7 + f¢ = 1. The overall isotropic stiffness tensor is given
by

C=3x] +2uK m

where | is the spherical projection tensor and ¥ the deviatoric projec-
tion tensor. The bulk modulus x and shear modulus y are given by Mori
and Tanaka (1973)

Sy +ay(x, = kg )+ fPx
K=K, X v

M, + a,(x, = x,)) + [P, + N f

— (K, + am(xp = Kg))
fw(”m + ﬂm(ﬂp - ”m)) :f’”p
o= i X 7
/m(}‘m + ﬂn("p = ) + .’p”m + -7

(f * pm(l‘p = )

(2)
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Fig. 6. Experimental results of interrupted tensile tests: (a) Stress-strain curves and (b) Stiffness Joss evolution.

where «, and g, reads

3K
o -
" 3x,, +4u, @)
5 6Kt 24,
m T3 3k, +4u,,

The Young's modulus and Poisson ratio of the metal-matrix composite
are then simply given by
O u
x4+ u
_ 3w -2u )
T 203x 4 )

Homogenization of the plastic properties. First, it is assumed that the
matrix obeys an isotropic von Mises yield criterion (with a yield stress
denoted by o) and that the particles remain elastic during plastic
deformation. Therefore, it can be reasonably assumed that the system
{matrix+particles} also follows a von Mises yield criterion (with a yield
stress denoted by ). This plasticity behavior of the sound metal-
matrix composite is simply called “homogenized matrix”. Then, the
plastic behavior with voids is given by Gurson (1977)'s model. The
macroscopic yield criterion reads

: 3y,
0(2)=—+2q]‘cosh( )-l-(qj Y <o, (5)

° 20y
where X is the macroscopic equivalent von Mises stress, X, is the
macroscopic mean stress (and thus o, is the yield stress of the ho-
mogenized matrix). The parameter q is (classical) Tvergaard's param-
eters (Tvergaard, 1981; Tvergaard and Needleman, 1984). The macro-
scopic yield criterion is completed by a macroscopic flow rule ob-
tained from the property of normality (which is preserved during scale
transition):

0 f @(X)<0

Z0 0f @(X)= ©

s 5
D" = AE(Z) . A {
where D* denotes the plastic Eulerian strain rate and i the plastic
multiplier. Hardening is accounted for using Gurson (1977)'s heuristic
approach; the constant yield stress o, in the criterion (5) is replaced by
some average yield stress @ given by

7 = o(€). (7)

where o(¢) is the hardening function providing the yield limit as a
function of the accumulated plastic strain ¢, and ¢ represents some

average equivalent strain in the homogenized matrix. The evolution of

€ is given by the following equation

(l-fae=X:D", (8)

which corresponds to the (heuristic) assumption proposed by Gurson
(1977) that the plastic dissipation in the porous material, £ : D7,
is equal to that of a fictitious homogeneous material. Finally, the
evolution equation of the porosity corresponding to the void growth
mechanism is deduced from the matrix incompressibility:

fgrwlh=(l_fr)tr D (9)

Void nucleation. Void nucleation is described by the strain-controlled
term of Chu and Needleman (1980)'s heuristic model. In the case
of metal-matrix composites, void nucleation can be due to several
mechanisms which are (i) the decohesion of matrix/particles interfaces,
(ii) particle cracking and (iii) the void nucleation on second-phase
particles. Here, it is assumed that each mechanism contributes to a total
nucleation rate that is given by

IN_exp|-L (E_"'” )2 o (10)
_— <,

S V2a 2 SN

where fy, €5 and sy respectively represent the volume fraction, av-

erage nucleation strain and standard deviation of the overall nucleating
voids.

fmxkaum

Void coalescence. Void coalescence is classically accounted for by us-
ing Tvergaard and Needleman (1984)’s classical modification of Gurson
(1977)'s model, which consists in replacing the porosity / by some
larger fictitious one [*, once some ‘critical value’ f, has been reached:

T if f<f,
! _{fur&(/-m if f>f,. an

where f, and é > 1 are material parameters.

Evolution equations of the internal parameters. The void growth and
nucleation rates £,y and f,.iu00 are then connected to the volume
fraction rates of the phases, f*, f* and f* by the equations

f.r = f;m'_nh + fnw;lmmml
1P ==0 fuucleation (12)
/M = -/nmﬂh == 0)/nuvl\'nlmn*

where the parameter # combines several nucleation mechanisms and
corresponds to the overall nucleation ratio that permits to distinguish
nucleation within the matrix and the particles. For instance, in the



Table 2
Parameters considered for the elastic properties and the initial volume fractions of the
phases,

Elastic propertics Volume fractions
E, [GPa) vy E, [GPa) Voo i n I

583 0.11 210 0.3 0 0.1 0.9

particular case of decohesion of matrix/particles interfaces, the overall
nucleation ratio takes the value ¢ = 1 while in the particular case of
void nucleation on second-phase particles, the overall nucleation ratio
takes the value @ = 0 (Dorhmi et al., 2020).

The model has been implemented numerically in the commercial fi-
nite element code Abaqus through a user material procedure (Umat and
Vumat). The details of the algorithm used are provided in Appendix A.

Remark. It should be noted that in this model it is assumed that voids
and particles are spherical. In practice, TiB, particles are spheroidal
with an overall aspect ratio of about 3. However, it has been shown
by Dorhmi et al. (2021) that the overall elastic behavior of the com-
posite (in its initial state) is close to isotropy and it can be modeled
using spherical particles. Indeed, the competition between the particles’
elongation and their intrinsic anisotropy (which is isotropic transverse)
makes their overall behavior isotropic (see e.g. Derrien et al. (2018))
and as a consequence they can be modeled by equivalent spherical
particles with an isotropic elasticity behavior. In addition, the stress
triaxiality of loadings considered in this work (tensile test and forming
processes) is generally moderate (T = 1/3): void shape effects are thus
expected to be moderate so that Gurson’s model for spherical voids is
suitable (Tajdary et al., 2022). Consequently, the present approach does
not permit to account for induced-anisotropy of the elastic properties.

3.2, Calibration of the model parameters

The microstructure analysis performed by Dorhmi et al. (2021)
shows that the composite considered contains about 10% of particles
and no initial voids; therefore initially we consider the values fi=0

= 0. and f" = 09 for the volume fractions of the phases. The
elastic constants considered are as follows: £, = 210 GPa and v = 0.3
are considered for the ferritic matrix and E, = 583 GPa and v, = 0.11
are considered for the TiB, particles (Hadjem-Hamouche et al., 2018).

Then, we assume that the plastic behavior follows a Voce isotropic
hardening law:

a(e) = o, + Q(1 — exp(-fie)) (13)

where Q and § are the Voce hardening parameters and o, is the
initial yield stress of sound composite. The calibrated values for the
parameters o,, Q and § are given in Table 3.

The most difficult part concerns the calibration of the damage
parameters. First, we calibrate the average nucleation strain ¢, and
standard deviation sy of the nucleation model by using the exper-
imental fraction of fractured particles (as a function of the tensile
strain). Indeed, there is a correlation between the evolution of the
nucleating voids and the evolution of the fractured particles during
deformation. Therefore, we calibrated ¢, and s, so that the quanti-
ties fnmluum/ max( fmulwmn) (of the model) and Clrm/"‘ax(tlrm) (of the
experiments) are in good agreement (see Fig. 7a).

Then several simulations of the tensile test were performed in order
to find the remaining parameters that reproduce best both the exper-
imental tensile test and the experimental stiffness loss. The calibrated
set of parameters is given in Table 3, It should be noted that the value
considered for the volume fraction of nucleating voids, fy, = 0.14,
seems important. However, the volume fraction of nucleating voids
that are really nucleated is in fact lower because of the values of the
average nucleation strain ¢, and standard deviation s,. Indeed, as
shown in Fig. 7b, the normal distribution of the nucleated porosity is

spread so that it is not null for a zero plastic strain. Therefore, the total
nucleated porosity is max(f,, jeuica) ~ 0.0962, which is in the range of
the initial volume fraction of particles. It is also interesting to note that
the calibrated value for the parameter overall nucleation ratio is @ =
0.4, which is in agreement with the experimental results since particle
cracking was mostly observed (Dorhmi et al., 2020). Finally, it should
be noted that a (classical) value g = 1.25 was considered for the model.
Since the parameters related to nucleation (ey, sy and f, ) are closely
related to the modeling of stiffness degradation, a sensitivity analysis of
their influence is provided in Appendix B: the values calibrated are not
unique,’ but they are consistent with the experimental observations,

The summary of all parameters is provided in Tables 2 and 3.

Once the damage and nucleation parameters are determined, the
volume fractions of the phases can evolve during a plastic loading
path (using Eqs. (12)) and the overall elastic properties can be updated
using Eq. (3). In the case of tensile test, the model predictions (using
the calibrated parameters) are compared to the experimental results
in Fig. 8. Overall, a very good agreement is observed in both the
stress-strain curve and the stiffness loss. The experimental results for
the stiffness loss are almost contained in the envelope defined by the
extreme values # = 0 and # = 1 (which are shown for illustrative
purposes) and the optimal value is @ = 0.4. It should be noted that the
stress-strain curves are shown only for # = 0.4 because the parameter
# only modifies the elastic behavior after some plastic deformation and
does not affect the plastic behavior.

4. Application to the virtual design of Fe-TiB, in a Nakazima
forming test

In this section, the model calibrated and implemented in Section 3
is applied to the virtual design of Fe-TiB, sheets in a model problem of
forming. The objectives of this numerical study are two-fold:

* The local degradation of Young's modulus of the metal matrix
composites will be studied as a consequence of the heterogeneous
distribution of the stress triaxiality;

* The consequence of this local stiffness loss will be discussed in
terms of a macroscopic measure of the stiffness. Three-point bend-
ing tests will be performed after forming to study the influence of
a local stiffness loss on the structural bending property.

It must be noted that, in this section, no comparison with experimental
will be made because our objective is to study the local degradation
of Young’s modulus whose experimental “mapping” is not a trivial
task (Bonnet and Constantinescu, 2005). Therefore, the results obtained
only constitute predictions of the model, which are useful to assess (at
least qualitatively) the effect of damage on elasticity properties during
complex loading paths.

4.1. Description of the Nakazima test simulations

The model developed and calibrated in Section 3 will now be
applied to the numerical prediction of the stiffness loss and failure of
a Fe-TiB, sheet in an example of metal forming based on the Nakazima
test. Indeed, the Nakazima test is widely used to study the forming
limits of sheets for stress states ranging from uniaxial to equi-biaxial
tension (see e.g. Amaral et al. (2017), Zhang et al. (2017), Gorji and
Mohr (2018)). Therefore it constitutes an interesting tool to investigate
the evolution of damage in Fe-TiB, metal-matrix composites during
complex loading paths in which the triaxiality is heterogeneous.

The schematic of the Nakazima set-up is represented in Fig. 9. The
testing procedure is composed of a hemispheric punch of 101.6 mm
diameter and a blank holder which permits to hold the metal sheet

' As shown by Springmann and Kuna (2005), there is generally no unique

set of material parameters for the GTN model.



Table 3

Parameters considered for the plastic properties and the damage parameters.
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Fig. 8. Comparisons between experimental and model’s predictions in a

on the die. Several geometries for the sheets have been considered
(cases W75, W125 and W170) and are represented in Fig. 10: this will
permit to study different strain paths and stress states (with various
triaxialities). The sheet metal blank has a thickness of 0.8 mm. The
values considered for the geometry are typical of a Nakazima set-up
for steels (Amaral et al., 2017).

A 3D finite element model of the Nakazima test has then been made
using the commercial code ABAQUS/Explicit. Due to the symmetry of
the process, only 1/4th of the specimen is considered. An example
of mesh is provided in Fig. 11 for the case W75. The sheet metal
is modeled as a 3D deformable part with selectively subintegrated 8-
node trilinear brick (C3D8 elements in ABAQUS) which are suitable
for quasi-incompressible plasticity. The punch, blank-holder and die
are modeled as rigid 3D shells. Contact conditions are considered
between the sheet and the rigid parts: the friction is accounted for by
a Coulomb friction model in which the frictional force is related to the

Rl 5

-==-Model (& =0)
——Model (8 =04)
—— Model (8 =1)
Experiment

(LA

case of a tensile test: (a) stress-strain curves and (b) stiffness loss,

normal pressure applied on the surface. A value of 0.1 for the friction
coefficient was used in the simulations, which is typical for lubricated
steel-steel contact, It must be noted that friction has an notable role on
failure during the Nakazima test (Zhang et al., 2017), so higher values
could promote early damage.

The Nakazima test is performed numerically using a blank-holder
force F = 40 kN in the case W75, F = 82 kN in the case W125
and F = 164 kN in the case W170. These blank-holder forces ensure
a pressing of 0.1 pm for all cases. Several quantities will be studied
in order to investigate the evolution of damage: (i) the distribution
of the (heterogeneous) Young’s modulus E in the whole specimen at
several snapshots and (ii) the evolution of the porosity [, the volume
fraction of particles /" and Young’s modulus E in the most damaged
area (i.e. the Gauss point for which the porosity /¢ is maximum at the
end of the simulation).
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Fig. 9. Description of the Nakazima test simulations,
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Fig. 10. Geometry of the specimens considered in the Nakazima test.

Fig. 11. Typical mesh considered for the Nakazima test in the case W75, The sheet metal, punch, blank-holder and die are composed of 16572 C3D8, 4178 R3D4, 2460 R3D4 and

2747 R3D4 clements, respectively.



(b) (c)

Fig. 12, Distribution of Young's modulus in the case W75. (a) Punch displacement up = 5 mm, (b) Punch displacement w, = 10 mm and (¢) Punch displacement uy, = 1491 mm

(just before failure).

(b) (c)

Fig. 13. Distribution of Young’s modulus in the case W125. (a) Punch displacement uy, = 5 mm, (b) Punch displacement w, = 10 mm and (¢) Punch displacement uy = 12.53 mm

(just before failure).
4.2. Results of the Nakazima test

The simulations end for a punch displacement of about up =
1491 mm, up = 12.53 mm and up = 14.71 mm, respectively for the cases
W75, W125 and W170. The final stage of the fracture process becomes
unstable with a brutal softening and very high values of the porosity.
It is interesting to note that the punch displacements predicted nu-
merically are roughly 1.5 times lower than the displacements typically
observed in advanced dual phase steels (see e.g. Amaral et al. (2017)
for a DP780 steel). Therefore, the ductility during forming predicted
numerically for Fe-TiB, metal-matrix composites is quite reasonable,
considering the presence of hard and brittle particles.

The distribution of the macroscopic (heterogeneous) Young's mod-
ulus E is represented for several punch displacements in Figs. 12-14,
for the cases W75, W125 and W170, respectively. For moderate punch
displacements, the decrease of Young’s modulus is quite homogeneous
in the area that is deformed plastically and is about 30 GPa (for up =
10 mm in all cases). Once there is void coalescence (i.e. when the poros-
ity / becomes higher than the critical porosity (), the porosity reaches
very high values in localized areas (corresponding to the macroscopic
crack); as expected in those areas, the decrease of Young's modulus
becomes very important due to the crack occurrence (see Figs. 12¢, 13¢
and 14c).

In addition, the distribution of the stress triaxiality 7" = X /X .,
is represented in Fig. 15 for each case (W75, W125 and W170) at a
punch displacement up = 10 mm. As expected, the stress triaxiality is
heterogeneous and overall it increases for large Nakazima specimens.
The maximum values of the stress triaxiality are about T = 0.66,
T = 066 and T = 0.7, respectively for W75, W125 and W170. In
each case, the location of the maximum values of the stress triaxiality

coincides with the area of maximum damage because void growth is
mainly driven by the stress triaxiality.

Then, for illustrative purposes, the evolution of internal parameters
of the model (the porosity f', the volume fraction of particles f*
and the Young’s modulus E) are represented in Fig. 16, in the most
damaged area of each specimen (which corresponds to the Gauss
point having the maximum value of the porosity /" at the end of the
calculation, represented in Figs. 12¢, 13c¢ and 14c¢). This permits to
quantitatively track the evolution of damage as a function of the punch
displacement. Although the local stress state is different, the decrease
of the particle volume fraction and the increase of the porosity are
similar in all cases. It must be noted that the internal parameters do
not vary at the beginning of the simulation because the Gauss point
considered (which is different in each case since it is not located in the
same area) remains elastic. Then the parameters evolve with a slope
that is different from one case to another because the stress triaxiality
is different in each case. Furthermore, for a given case, the slope is
not constant because the triaxiality is not constant during the process.
At the final failure (for a punch displacement between 12.5 mm and
14.9 mm according to the case considered), the volume fraction of
particles is of about 0.06, which means that a significant proportion
of particles are damaged during plastic deformation. Nonetheless, for
moderate punch displacements (below 4 and 8 mm), the volume frac-
tion of particles is generally higher than 0.08 and the overall Young’s
modulus higher than 210 GPa.

These numerical results show that during forming, Fe-TiB, metal-
matrix composites exhibit a decrease of the Young’s modulus which
is localized in the area deformed by the punch. This decrease is het-
erogeneous and depends on the local loading state (through the stress
triaxiality). For moderate forming levels (i.e. for punch displacements
lower than 10 mm), the loss of stiffness is in general lower than
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Fig. 14. Distribution of Youngs modulus in the case W170. (a) Punch displacement uy = 5 mm, (b) Punch displacement w, = 10 mm and (c) Punch displacement uy « 1471 mm

(just before failure).
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Fig. 16. Evolution of internal parameters in the Integration point that fails first in the simulation of the Nakazima test. (a) Porosity f* and volume fraction of particles ¥ and

(b) Young's modulus E.

30 GPa; therefore after forming, the Young's modulus can become
lower than 210 GPa in some areas of the specimen. Hence, one can
naturally question the relevance of Fe-TiB, metal-matrix composites
over a steel (with £ = 210 GPa) because the Young's modulus of Fe-
TiB, can become locally lower to that of a steel, due to the occurrence
of damage. Nonetheless, since in this application the stiffness loss in
Fe-TiB, is localized in the area deformed by the punch, it may have
little influence on a macroscopic measure of the stiffness, such as the
structural bending stiffness.

4.3. Consequences on the overall bending structural stiffness

In practical structural applications, the stiffness property that is
looked for is not the local distribution of Young’s modulus in a spec-
imen but a macroscopic measure of the stiffness such as for instance
the overall bending structural stiffness. Therefore, it is of interest to
study this overall bending stiffness of the specimens processed by the
Nakazima test; this will allow the investigation of the consequence of a
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local degradation of Young's modulus on a macroscopic (engineering)
property.

The overall bending stiffness will be determined by a numerical
three-point bending test,” as sketched in Fig. 17a. It must be noted
that other mechanical tests (such as tensile test in the direction e,
for instance) could also have been performed, but since in practical
applications Fe-TiB, composites are expected to be subjected to bending
loads (Bonnet et al., 2014), it is of interest to consider a bending test.
We consider rigid cylindrical pins in the direction x,. The distance
between the supporting pins is 143 mm. The bending stiffness K is then
defined as

F

K=—,
u.

(14)

where F is the force of the loading pin and u. is the displacement of
the specimen in the x;-direction. In practice, the bending stiffness K is
calculated numerically using the slope of the force-displacement curve
(F = u.) in the linear elastic regime only determined by a numerical
three-point bending test (see Fig. 17b for an example of mesh).

2 Since analytical formula for the bending stiffness can only be derived
for simple geometries, it will be determined numerically since the specimens
considered have a complex shape after the Nakazima test.

(b)

Fig. 17. Three-point bending test. (a) Description of the set-up and (b) Mesh considered in the case W75. The pins are composed of 660 R3D8 elements.

The bending stiffness K will be determined for each type of Nakaz-
ima specimen (W75, W125 and W170) in three cases: (i) after no punch
displacement (1, =0 mm), (ii) after a small punch displacement (u, =
5 mm) and (iii) after a moderate punch displacement (up = 10 mm).
Since the raw values of K cannot really be compared between each
others (because in each case the geometry is different due to the type
of specimen as well as the level of forming), we will compare the overall
stiffness obtained for the Fe-TiB, to the stiffness of a fictitious steel
material (without damage). This will permit to assess the effect of a
heterogeneous decrease of Young’s modulus after mechanical process-
ing of Fe-TiB,, in comparison to a steel with no damage. Therefore, we
will study the ratio
KreTiB,

Kool
where Ky, g, is the bending stiffness corresponding to a specimen
made of a Fe-TiB, material (sensitive to damage) after a Nakazima test
and K, is the bending stiffness corresponding to a steel not sensitive
to damage (i.e. with £ = 210 GPa) subjected to the same Nakazima
test. For simplicity we consider that the fictitious steel material has the
same hardening properties than the Fe-TiB,.

The ratio Kgeyip, /Kseel 15 represented in Fig. 18 for each type of
Nakazima specimen at the punch displacements up = 0 mm, up = 5 mm

(15)
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and wp = 10 mm, As expected the ratio (15) is greater than 1 before
forming (at up = 0 mm) in all cases because without initial damage
the Young's modulus of the Fe-TiB, is homogeneous and higher than
that of the steel material. Interestingly, for the two levels of forming
considered (up = 5 mm and up = 10 mm), the ratio Kp.qip, / Koeel 15
also always higher than 1 for the three geometries considered. Thus
in this application, Fe-TiB, materials provide higher overall elastic
properties in comparison to a (non-damaged) steel, despite their locally
degraded Young's modulus (which can be lower than 210 GPa). This
macroscopic behavior observed can be explained by the fact that the
overall bending elastic property does not depend only on the local
properties but also on the elastic properties in the entire domain
(as well as the geometry). Therefore, it can be concluded that for
this application the local stiffness loss simulated numerically during
forming of Fe-TiB, materials has only a little influence on the overall
bending stiffness, provided that the stiffness loss is moderate. This
result suggests that Fe-TiB, materials could constitute an interesting
alternative to steels, even after forming. For higher forming levels, the
ratio Kgerip, /Kol Will necessarily become lower than 1, due to the
presence of damage. Nonetheless, it should be noted that, for typical
structural parts, the deformation is more localized than in the Nakazima
test. Therefore, in practical applications of Fe-TiB,, the size of the
area sensitive to damage is expected to be much smaller, and thus
the associated macroscopic stiffness is expected to be little affected by
damage.

5. Discussion

The Fe-TiB, metal-matrix composites considered in this work was
found to have very interesting initial elasticity property (E = 230 GPa)
and a good ductility. Indeed, the strain at the ultimate tensile stress is
about 0.1 and the strain to fracture is about 0.18. The experimental re-
sults from tensile tests have been used to calibrate the micromechanical
model of Dorhmi et al. (2020). The ductility determined numerically
during Nakazima tests, using this model, is about 1.5 times lower than
that observed in dual phase steels (Amaral et al., 2017), which can
still be considered as important considering the presence of hard TiB,
particles.

The numerical results of the Nakazima test using the model of
Dorhmi et al. (2020) have shown that the local Young's modulus of
Fe-TiB, metal-matrix composites is likely to decrease when the level
of forming increases. It has been shown that the decrease of the

Young’s modulus is mostly localized in the area subjected to the punch
displacement, so a large part of the specimen remains intact. Since in
practical structural applications, only the overall stiffness is generally
looked for, the consequence of this local decrease of Young's modulus
on the bending stiffness has been studied and it has been shown that
Fe-TiB, metal-matrix composites should keep improved properties in
comparison with a ‘non-damaged fictitious steel’, for moderate forming
levels. This observation is only valid in the case of the bending stiffness
as other conclusions could be drawn depending on the characterization
test (such as e.g. a tensile test) after forming.

However, it is important to note that for the comparison of the
overall bending stiffness, the assumption of a non-damaged fictitious
steel (i.e. with a Young's modulus equal to 210 GPa during forming)
is not realistic. Indeed, this hypothesis is in general not verified for a
large range of steels since a reduction of Young's modulus in steels’
is generally observed after plastic deformation (Morestin and Boivin,
1996; Chen et al., 2016b). For instance, after 5% of deformation the
reduction of Young’s modulus can reach 209 for mild steels (Yoshida
et al.,, 2002), high-strength steels (Cleveland and Ghosh, 2002) and
dual-phase steels (Chen et al., 2016a). Therefore, since we assumed
that the ‘fictitious steel' is non-damaged, the comparison made in
Section 4.3 has been performed in the worst possible conditions for the
Fe-TiB, material: in practice, it is thus likely that Fe-TiB, materials will
keep interesting properties even after high forming levels as steels will
also exhibit a reduction of their modulus. It should be noted that such
study cannot be performed in a systematic way since it would require to
select a specific steel (having its specific reduction of Young's modulus)
to make the comparison.

6. Conclusion

The aim of this work was to investigate the damage mechanisms
in Fe-TiB, metal-matrix composites after plastic deformation. First,
experimental results of interrupted tensile tests have been performed to
quantify the fraction of fractured particles using SEM observations and
the associated decrease of Young's modulus as a function of the tensile
strain. The stiffness loss observed during the tensile test is about 16%
for a tensile strain of 5%. Then the experimental results obtained have
been used to calibrate the two-step homogenization model of Dorhmi
et al. (2020). In this model, the volume fractions of the phases (matrix,
particles and cavities) are internal parameters, used to determine the
overall elastic properties through a Mori-Tanaka’s scheme, and evolved
by plastic deformation following the mechanisms of nucleation, growth
and coalescence. The calibrated model has been applied to the numeri-
cal prediction of stiffness loss in the Nakazima test. Overall, the stiffness
loss predicted before the onset of coalescence is moderate and it is
localized in the area most deformed by the punch. Finally, the effect
of this heterogeneous stiffness loss on the overall bending stiffness
has been assessed: for moderate levels of forming, Fe-TiB, composites
are expected to keep interesting elastic properties in comparison with
non-damaged steels. The present results should be complemented by
experimental observations on Fe-TiB, sheets subjected to Nakazima
tests.

It should be noted that, for important levels of forming, the Young’s
modulus of Fe-TiB, composites can become lower than that of (non-
damaged) steels. Nonetheless, since steels also exhibit a reduction of
their Young's modulus after plastic deformation (Chen et al,, 2016b),
their elastic properties are also expected to decrease during forming,
emphasizing that the use of steel-based metal matrix composites in
forming applications is very promising.

¥ Similar reductions of Young's modulus after plastic deformation are also

observed in aluminum alloys (Cleveland and Ghosh, 2002).
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Appendix A. Numerical implementation of Dorhmi’s model

Following Dorhmi et al. (2020) (see also Enakoutsa et al. (2007)),
the existence and uniqueness of the solution of the projection problem
are ensured, provided that (i) the evolution equations of ¢ (the total
strain) and ¥ (the hardening parameter) are discretized in time with
an implicit-scheme; (ii) the additional terms due to the objective time-
derivative of X (in the hypoelasticity law) are discretized in time
with an explicit-scheme; (iii) the values of f“, f* and f™ used in
the criterion, the flow rule and the elastic behavior are those at the
preceding time-step.

The discretized equations of the local projection problem are thus
given by

-

0 = I - Ox,J +2p,K) : Ael,
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where x, = x(fY, 7Y, f™ and p, = p(fY, f7, f) are the elastic moduli
calculated for the previous microstructure and }::':’; =X, +(3xJ+
2u,K) : Ae, is the elastic predictor, that is the stress tensor at time 7,
resulting from the strain increment Ae,, fictitiously considered as purely
elastic.

The algorithm of solution thus consists in finding 7, , and 44, (see
e.g. Morin et al. (2015)). First, the treatment of hardening is done using
a fixed point method: (i) assume @,,, = 7,; (ii) compute t“:_ﬂ. Zon
and €,,, with this value 7, ,; (iii) deduce from Eq. (A.1); a refined
estimate of @, : (iv) follow the procedure until the method converges
and 7., reaches a stationary value. The problem thus reduces to the
determination of €/, X, and &,,,, for a fixed value 7, .

If the condition @(2%%, f*.7,,,) < 0 is met, then the evolution
is purely elastic. However, if @{E‘p‘:’l. [l 8e1) > 0, then the elastic
predictor is not plastically admissible and a plastic correction is needed
to ensure that the plasticity criterion is verified. In that case, it can be
shown that 44, is the solution of the non-linear equation (Dorhmi et al.,

2020)
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In Egs. (A.2) and (A.3), 2:1:;..-4 and X" are respectively the equiva-
lent and mean parts of the elastic predictor }.‘;':l Once 44, is known,
all the mechanical fields can be calculated using Eq. (A.1). Then the
volume fractions of the three phases are updated using an explicit
scheme (at the very end of global elastoplastic iterations, once €”

a+l?
X, and €., have reached their stationary values):
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In practice, the resolution of the non-linear Eq. (A.2) is done using
a Newton method. The algorithm has been implemented numerically
into the finite element code Abaqus through a User Material (Umat
and Vumat). It must be noted that the tangent operator has not been
evaluated since a BFGS method is used for the global iterations.

Appendix B. Sensitivity analysis of nucleation parameters

In this appendix, a sensitivity analysis of the nucleation parame-
ters (ey, sy and fy) is performed. We will study the influence of
each parameter taken separately (the others will take the value cali-
brated). Moreover, in order to appreciate equivalently the sensitivity
of the parameters ¢, and sy, we will consider the values ¢y =
[0,02/2: 0.02; 2 x 0.02] (where ¢,, = 002 is the calibrated value)
and sy = [0.04/2; 0.04; 2 x0.04] (where 55, = 0.04 is the calibrated
value). For the volume fraction of nucleating voids [, we chose the
values [, = [0.10; 0.14; 0.18] that are close to the volume fraction
of particles since these values respectively lead to max(f,, euim) ~
[0.0687; 0.0962; 0.1237].

First, we study the influence of the average nucleation strain ¢, by
considering the values ¢, = [0.01; 0.02; 0.04] while keeping s, = 0.04
and fyy = 0.14. The evolution of the normalized nucleated volume
fraction [, 1caion/ MAXCS uceanon) and the stiffness loss are represented
in Fig. B.1. For the values considered, the influence of the parameter
€, appears to be quite small.

Then, we study the influence of the standard deviation s, by
considering the values s, = [0.02: 0.04; 0.08] while keeping ¢, = 0.02
and fy = 0.14, The evolution of the normalized nucleated volume
fraction [, 1esion/ MAXC S ucteation) @nd the stiffness loss are represented
in Fig. B.2. The influence of s, appears to be more pronounced than
that of ¢y and in that case only the calibrated value appears to be
suitable.

We finally study the influence of fy by considering the values
Sa = [0.10: 0.14; 0.18), while keeping €y = 0.02 and 55 = 0.04. In
that case, the evolution of the normalized nucleated volume fraction
Sovcreationd MaXCSucenion) i NOE represented because it only depends on
ey and sy. The stiffness loss is represented in Fig. B.3. As expected, a
decrease of the value fy leads to a decrease of the stiffness loss (for a
given value of #). It should be noted that a good agreement can also
be obtained using either f,, = 0.10 (with 8 = 1) or f = 0.18 (with
# = 0). Therefore, the choice of parameters is not unique but this is
a standard result using Gurson-type models (see e.g. Springmann and
Kuna (2005)). Nonetheless, since the parameter # corresponds to the
overall nucleation ratio, its value can be estimated from the nucleation
mechanisms. From the SEM observations of Fig. 4, it can be shown that
the damage mechanism is dominated by particle cracking, so that the
value of @ should not be either equal to 0 or 1.
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The conclusion of this sensitivity analysis is that the values cali-
brated, although they are not unique, permit to reproduce quite accu-
rately the experimental results. In addition, small variations (of a few
percents) around the values calibrated do not affect much the overall

behavior.
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