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1. Introduction

The flow of non-Newtonian fluids through evolving porous media is involved in important
processes including blood flow and remediation of deformable aquifers. However, the
effects of a moving solid boundary and the coupling between fluid rheology and solid
deformation are still unclear. This study considers the steady and oscillatory flows of a
yield stress fluid through a bundle of deformable channels. Simple semi-empirical ex-
pressions to predict the relationships between Darcy velocity and pressure gradient as a
function of pore sizes, shear-rheology parameters and inlet pressure are developped,
based on the results of innovative numerical simulations. The results show that channel
deformation reduces the minimum pressure gradient required to induce the flow of a
yield stress fluid through a porous medium, which results in lower values of Darcy-scale
viscosity. For the considered conditions, macroscopic flow can be accurately predicted
without a detailed knowledge of the hydraulic conductances of the deformed pores.

vascular network due to an atheroma deposit consisting of
cholesterol and cellular debris on the walls of the arteries
(Abbas Nejad et al, 2018) can lead to atherosclerosis and

The study of the mechanical interactions between a non-
Newtonian fluid and a deformable solid wall is at the inter-
face between fluid physics and solid mechanics, and is of
interest in many applications, especially in the health and
geosciences fields (soil remediation). For example, the flow of
blood throughout the entire vascular network of arteries,
veins and vessels of varying sizes plays a major role in the
functioning human body by supplying our cells with oxygen
and nutrients. A partial or total blockage (thrombus) in this
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heart attack or to a stroke. A detailed understanding of blood
flow both at the local level and at the level of the capillary
network is therefore essential for the development of pre-
ventive and therapeutic strategies. Locally, a vein is made up
of three envelopes of different thicknesses which play an
important role in varying degrees of flexibility and elastic
behavior. The blood is brought quickly to the tissues where
the exchanges take place through capillary vessels. De-
pending on the section, the conditions of this transport
(pressure, velocity) vary, and the vascular network must
show resistance and elasticity (arteries and veins) or thin-
ness and high permeability (vessels and capillaries). In ad-
dition, blood is a shear-thinning complex fluid, which
exhibits non-Newtonian rheology (Chien, 1970; Pourjafar and



Sadeghy, 2017; Lopes et al,, 2020; Ling et al,, 2021). Its un-
steady circulation through the vascular tree is pulsatile. This
situation therefore raises the question of how to accurately
represent the interactions between a complex fluid and a
deformable capillary. The interest of this research is equally
relevant to “in situ” remediation of polluted deformable
aquifers, in which the use of complex displacement fluids
makes it possible to increase the efficiency of the treatment
as compared to waterflooding (Kovscek and Bertin, 2003,
Longpré-Girard et al., 2016).

Fluid-structure interactions in elastic tubes have been
widely studied, primarily motivated by biofluids in arteries
and the lungs (Pedley, 1980; Grotberg, 1994; Grotberg and
Jensen, 2004; Heil and Hatzel, 2011; Kizilova et al,, 2012),
Morgan and Parker (1989) developed a mathematical model
of flow of a Newtonian fluid through a collapsible tube and
Whitaker et al. (2010) theoretically derived analytical ex-
pressions describing oscillatory flow of Newtonian fluids in
elastic-walled tubes. However, accounting for the non-
Newtonian nature of the fluid in these systems remains an
important challenge (Fung, 2013). Recently, interesting de-
velopments have been made motivated by the description
of non-Newtonian fluids in microfluidic devices, where the
polymeric walls are compliant (Raj and Sen, 2016; Raj et al_,
2018, Boyko et al.,, 2017, Anand et al, 2019; Anand and
Christov, 2021). Notably, Anand et al. (2019) considered the
flow of a non-Newtonian fluid with power-law shear
rheology through a rectangular channel whose top wall was
linearly elastic and compliant. Two cases were considered
for the structure problem, either the Kirchhoff-Love theory
of thin plates or the Reissner-Mindlin first-order shear de-
formation theory. Using lubrication theory, they derived an
expression relating the flow rate to the pressure gradient in
the form of first order ordinary differential equations for
the two cases for low values of Reynolds number Re. They
showed that the deformation of the plate is driven solely by
the hydrodynamic pressure, i.e., the fluid rheology does not
directly affect the displacement profile. Then, they com-
pared the predictions of their model to direct numerical
simulations, showing excellent agreement in the linear
deformation regimes. The same approach was subse-
quently extended to the flow of a power-law fluid in a
slender elastic tube (Anand and Christov, 2021), showing
that pressure drop is non-linearly related to the flow rate,
even for Newtonian fluids. Vedeneev (2020) analyzed the
possible steady states of an elastic tube made of an in-
compressible hyperelastic Gent material conveying a
power-law fluid. The author concluded that, for sufficiently
small fluid velocities, localized swelling or necking solu-
tions for a tube that is infinitely long in both directions do
not exist. Nevertheless, such solutions exist if the tube is
semi-infinite, without the possibility of multiple neckings
or swellings. For finite-length tubes, several solitary wave,
periodic wave, and monotonic solutions exist. Based on
lubrication approximation, Venkatesh et al. (2022) mod-
elled the transient flow of simplified Phan-Thien-Tanner
fluids and power-law fluids peeling two Hookean sheets at
low values of Re. Their numerical simulations showed that
the peeling time for the shear-thinning fluid is much
smaller than the equivalent Newtonian fluid. Moreover,
Boyko and Christov (2022) recently studied the flow of an
Oldroyd-B fluid in a deformable channel with a compliant
top wall. They theoretically modeled the effects of viscoe-
lasticity on deformation profile and flow rate-pressure drop

relationships using the Kirchhoff-Love plate-bending
theory. They showed that while the channel's compliance
increases the deformation, the fluid's viscoelasticity de-
creases it. However, both the compliance of the deforming
top wall and the viscoelasticity of the fluid decrease the
pressure drop.

Given the complexity of the flow of a non-Newtonian fluid
in a deformable capillary, it is currently impossible to solve
such a flow in an entire network. This challenge related to
the separation of scales between the local flow and the
macroscopic network is comparable to an upscaling problem
in transport in porous media (Quintard and Whitaker, 1993;
Bergamasco et al., 2015), Therefore, theoretical and numer-
ical tools developed in porous media literature can be applied
(Peyrounette et al, 2018), e.g, pore network modeling
(Rodriguezde Castro and Goyeau, 2021) and volume aver-
aging method (Whitaker, 1999), While the first approach re-
presents the porous medium as a network of pores
connected by capillaries with equivalent hydraulic re-
sistances, the second is a homogenization method allowing
to develop a continuous equivalent representation at the
scale of the network. The complementarity of these ap-
proaches enables the calculation of quantities such as the
permeability of the network as a function of the non-New-
tonian properties of the fluid, the mechanical properties of
the channels, and the structure of the network.

The present study focuses on developing a model for the
stationary and oscillatory flow of a yield stress fluid through
a model deformable porous medium consisting of a bundle
of elastic channels. The main stumbling block remains the
existing coupling between the state of deformation of the
channels and the distribution of viscosities resulting from
the non-Newtonian behavior of the fluid. In other words,
the viscosity of the complex fluid in a channel depends on
the aperture of the channel, which varies during deforma-
tion. However, the distribution of strains will, in turn, de-
pend on the pressure distribution generated by the local
viscosity values. First, a set of numerical simulations of the
flow of a yield stress fluid through an individual deformable
channel will be presented. These simulations were per-
formed using the finite element method with a moving grid
to take into account the deformation of the walls. The re-
sults of these first simulations will be subsequently used to
analyze the relationships between fluid pressure and flow
rate through an individual element of a pore network, de-
pending on the mechanical properties and dimensions of
the solid wall. Then, another set of direct numerical flow
simulations will be presented, which was performed on a
simple porous medium consisting of a bundle of parallel
unconnected channels. A semi-empirical model will be
proposed to represent the relationships between Darcy
viscosity and velocity based on the results of such simula-
tions. This represents the first step toward the development
of a more general model capable of predicting steady flows
of complex fluids in real 3D porous media. In a second time,
oscillating flows of yield stress fluids will be also tackled in
this work. To do so, a sinusoidally varying inlet pressure will
be imposed in the simulations and the results of the flow
through a deformable and a rigid bundle of channels will be
compared. As in the stationary case, the analysis of the
results of oscillatory flow simulations will allow for the
development of semi-empirical expressions relating Darcy-
scale flow rate and viscosity to the applied pressure gra-
dient.
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Fig. 1 - (a) Individual undeformed channel considered in the present simulations. q is the individual flow rate through a
channel of aperture h given by Eq. (2). (b) Individual channel at the deformed state. The channel is constrained at the inlet
and the outlet. (c) Schematic view of a porous medium consisting of a generic bundle of unconnected parallel rectangular
channels of same length and infinite depth (depth is perpendicular to the represented view). The channel sizes are
distributed among N different classes. Q is the total flow rate through the porous medium given by Eq. (12). The channels are
represented at their undeformed state (d) Bundle of elastically deformable channels considered in the present simulations
represented at their deformed state. AP is the pressure drop between the inlet and the outlet, P,;,,. and P,,,;.: are the inlet and

outlet pressures.

2. Modelling aspects

The following subsections present the numerical procedures
used to simulate the steady and oscillatory flows of Herschel-
Bulkley fluids through individual deformable channels and a
bundle of rectangular channels representing a model porous
medium.

2.1. Geometries

Given its transversal nature, this research was approached in
a general way, using a standard geometry consisting of rec-
tangular pores of infinite depth. First, the incompressible
flow of a Herschel-Bulkley fluid through an individual 2D
channel of length L and aperture h was studied, as illustrated
in Fig. 1{a,b). These channels are constrained at their inlet
and their outlet (no displacement of the wall is allowed at
these locations). The width of the solid walls of the channel
was h/10. The solid was assumed to be an isotropic linear
elastic material. Its Young’s modulus E was varied depending
on the considered simulation, while its Poisson’s ratio v and

its density p, were set to 0.4 and 1100kg/m”, respectively, in
all the numerical experiments. The tested values of E ranged
from 3 x 10° Pa to 1 x 10° Pa, which corresponded to different
types of real-world materials. For example, typical values of E
for polydimethylsiloxane (PDMS), a polymeric gel widely
used in microfabrication (McDonald and Whitesides, 2002;
Anand et al., 2019) are close to 1 x 10° Pa (Boyko et al., 2017).
Regarding geo and biomaterials, common values of E for
layered sand aquifers are close to 1x 107 Pa (Kim and Parizek,
2005), while wood develops values of E of approximately
1x10% Pa (Alves et al. 2013). E falls typically in the range
1x10° to 1x10° Pa for iliac arteries and abdominal aorta
(Canic et al,, 2005). The values of v and p used in the present
simulations are commonly encountered in blood vessels (van
de Vosse, 2013). In a second step, a bundle composed of 1000
straight ducts of 5 different sizes was considered, as dis-
played in Fig. 1(c,d). The aperture classes h; of the ducts fol-
lowed a discrete normal distribution: 91 ducts of 100 pm, 251
ducts of 150 pm, 327 ducts of 200 pm, 231 ducts of 250 pm and
100 ducts of 300 pm aperture. The total width of the rigid
bundle W was 0.5m, its permeability K =1.64 x 10" m?, and




its porosity € =0.40. These values also correspond to the re-
ference values of the deformable bundle when subjected to
zero inlet pressure. It should be noted that the chosen values
of K and ¢ fall within the range of those commonly presented
by porous scaffolds for bone tissue engineering (Innocentini
et al, 2010) in biomedical applications and by fractured
rocks, sand packs and gravel (Bear, 1972) in geophysics.

Since the objective was to examine the effects of the
coupling between fluid rheology and solid deformation on
the flow of a yield stress fluid through a porous media, the
present study was carried out considering 2D bundles of
deformable channels, with different sizes. This model 2D
geometry allowed to qualitatively assess such effects and to
develop expressions to predict the apparent viscosity in the
porous medium and the relationships between pressure
conditions and flow rate. This choice was further motivated
by the fact that accurate numerical simulations are more
tractable, and their results can be more easily and more
clearly interpreted in the 2D case. It should also be noted that
the 2D channels are not connected, which should result in
similar tortuosity of the flow streamlines for both the 2D and
the 3D cases, Moreover, a thorough analysis of 2D and three-
dimensional (3D) flows of yield stress fluids in porous media
(Talon and Bauer, 2013; Bauer et al., 2019) showed that the
same flow regimes are observed in both cases. However,
considering 3D geometries implies the addition of two non-
slip conditions in the depth direction, which is expected to
affect the computed physical quantities. Therefore, 3D geo-
metries must be used to obtain accurate predictions in many
real applications.

2.2.  Fluid

Herschel-Bulkley's law was used to describe the steady-state
shear rheology of the yield stress fluids considered in the
present work (Eq. 1):

{f:‘l’o+ ky" fort = 1.'0}

y=0fortst (1)

In this model, 7, is the yield stress, k is the consistency
and n is the flow index of the fluid. * and y are the shear
stress and shear rate, respectively. Hershel-Bulkley model is
commonly used to describe the shear rheology of blood (Scott
Blair and Spanner, 1974; Sankar and Hemalatha, 2007; Sankar
and Lee, 2009) and the one of a great number of chemicals
injected during soil remediation operations, e.g., foams
(Omirbekov et al, 2020) or concentrated polymer solutions
(Rodriguezde Castro, 2019). In the reference case of the
steady flow of a Herschel-Bulkley fluid through a straight
rigid channel of constant aperture h; and infinite depth, the
relationship between the flow rate per unit depth q and the
applied pressure gradient VP is expressed as (Skelland, 1967,
Chhabra and Richardson, 2008, Ferras et al., 2012):
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2.3.  Conservation equations

The pressure p, solid displacement dy and fluid velocity ug
fields were computed in each simulation by solving the fol-
lowing equations:

duy

P35y *+P(urV)ur = V[-pl + u(Vuy + (Vuy))] 3)

Vous =0 (4)
¥d,

Poe ~ v )

with Eq. (5) being Cauchy momentum equation, p being
the density of the fluid and ¢ being Cauchy stress tensor:

o = J'FSFT (6)

F=(I+ Vdg) 7

S is the second Piola-Kirchhoff stress tensor, F is the de-
formation gradient tensor and ] =det (F).

S=C:¢ (8)

6= %[(vd,)T +Vd, + (Vdy)'Vdy] o
with C being the fourth order elasticity tensor, : being the
double-dot tensor product and ¢ being the displacement gra-
dient tensor. C is given as Gy = ﬁtiuﬁu + om%(iikbjl + 5i15jk)-
To implement numerically the yield-stress fluid beha-
viour of £q. (1), the viscosity was set in the model as:

= min[umx, (k’]"" + ?)]

where p,., corresponds to the maximum viscosity ex-
hibited by the fluid at the lowest shear rates. It should be
noted that, while viscosity tends to infinity in Herschel-
Bulkley model {Eq. 1) when shear rate tends to zero, most
real shear-thinning fluids develop a maximum viscosity
plateau (u = p.. ). The viscosity plateau value is very high in
the case of yield stress fluids. In the current work, the
shear-rheology parameters of the investigated yield stress
fluid were 1o =10Pa, k =1Pas", n=0.5and p ., = 10,000 Pas.
The chosen value of u ., corresponded to shear rates lower
than y =107% 57" and the values of 1, k and n were close to
those of concentrated xanthan gum aqueous solutions ex-
hibiting a yield stress (Rodriguezde Castro et al., 2021). 1 is
the generalized shear rate computed using Einstein's
summation convention: y = V248, with A being the
strain rate tensor.

The outlet pressure and the pressure on the external
faces of the solid walls were set to 0. The horizontal dis-
placement (x-direction) of the external faces of the solid
walls was prescribed to 0 (van de Vosse, 2013; Canic et al.,
2015, Gomez et al., 2017) and the inlet and outlet boundaries
of the fluid domain were fixed. The solid walls situated at
x =0 (inlet) and x = L (outlet) were also fixed (dy = 0) (Van de
Vosse, 2013; Chakraborty and Prakash, 2015; Gomez et al,,
2017). The kinematical conditions in the solid-fluid
boundary were continuation of velocity in the vertical and
horizonal directions:

_ %,
oot

(10)

ug
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Fig. 2 - Velocity map in a single rectangular duct of infinite depth, 1 millimeter length, 100 pm aperture and E = 10° Pa under
an inlet pressure P, of (a,c,d) 160 Pa and (b,d,f) 320 Pa. The different cases corresponding to the yield stress fluid, the
equivalent Newtonian fluid and water are represented. The shear viscosities of the equivalent Newtonian fluids were

490 Pa s for the P;,,, =160 Pa and 0.21Pas for P;,,., =320 Pa. Color map represents velocity magnitude and black arrows

represent the directions and senses of velocity vectors.

The dynamical boundary condition at the fluid-solid in-
terface is given by:

cn=0In

withT = [—pl + p(Vus + (Vug)T)]

where p denotes pressure, I is the identity matrix, u is the
local dynamic viscosity of the fluid and n is the normal di-
rection vector.

2.4. Numerical simulations

The fluid-structure interaction module of COMSOL
Multiphysics version 5.3. (2017) was used to solve the flow
problems under consideration. An Arbitrary Lagrangian-Eu-
lerian (ALE) technique was used to manage the dynamics of
the changing geometry and the displacement of the bound-
aries by means of a moving grid. New mesh coordinates were
computed within the channel region based on the movement
of the solid boundaries and mesh smoothing. In the flow
portion of the local model, mass and momentum conserva-
tion equations were solved using such moving coordinates,
In contrast, the structural mechanics part of the local model
was solved by using a classical fixed coordinate system. The
computational domain was meshed using triangular ele-
ments. Mesh-independent converged numerical solutions
were determined through a sensitivity analysis of the solu-
tion to the number of elements. The inlet (left boundary) flow
rate per unit depth q was used as the basis for comparison in
the sensitivity analysis. The computed values of q were
normalized by the flow rate obtained with the finest mesh. A
mesh sensitivity analysis on the rectangular duct displayed

in Fig. 2 is presented for P, = 120 Pa and Pj .. =210Pain Fig.
S1 of the supplementary material. This figure shows that
mesh-independence is achieved after about 10k elements
with a tolerance of 5% deviation from the reference solution.
Increasing the number of grid blocks 7 times, from a mesh of
~17k to ~120k elements, leads to a relative error on the flow
rate of 3%. Thus, the mesh adopted in the test case had ~17k
elements as a trade-off between acceptable accuracy and
computation time. The average skewness-based quality of
the generated mesh was 0.9384, where 1 represents a per-
fectly regular element, in the chosen quality measure, and 0
represents a degenerated element.

2.4.1. Steady flow simulations

A first set of simulations was conducted in which the steady
flow of a yield stress fluid through a single deformable
channel was simulated. In each simulation, N different va-
lues of the inlet pressure P;,. were imposed, and the cor-
responding values of the flow rate per unit depth q were
computed by integrating the x-component of the fluid velo-
city vectors along the inlet boundary of the fluid domain. By

doing so, a set of (VP, q) numerical datapoints were ob-

P
tained, with j=1..N and VB = °.

As reported by Lavrov :j'/t‘)l?!'}.' it is sometimes convenient
to replace the real channel with an “equivalent” channel
with fixed parallel walls when incorporating microscopic
fluid flow into higher-level models. In this regard, the
equivalent aperture h., of the deformed channel (di Federico,
1997, 1998; Gomez et al., 2017) is defined in this study as the
aperture of a rigid channel with parallel walls that would
produce the same flow rate under a given applied pressure



gradient as the real deformable channel. From Eq. (2), the
following expression can be written to express q in the 2D
deformable channels:

n+1 1+2n

q) (VP), heqj) =

0 for

with hy = 3,'3}. Eq. (11) was numerically solved by using the
differential evolution method for each numerically com-
puted (VP;, q;) datum to obtain the values of heg .

Different values of E were used depending on the simula-
tion so as to investigate the effects of this mechanical property
on the magnitude of the maximum wall displacement and h.,.
Furthermore, the sensitivity of the maximum wall displace-
ment to h and L was also evaluated. All the considered values
of Pj.. Were increased proportionally to the increase in L in
order to keep the same range of VP in all cases.

Macroscopic flow rate-pressure drop relationships are
required to predict single-phase flow of non-Newtonian
fluids in porous media. To develop such relationships, an
appropriate representation of the porous medium is needed
that captures its main macroscopic and microscopic hy-
draulic properties. Savins (1969) reviewed the methods for
correlating the apparent viscosity of the fluid in the porous
medium with viscosimetric measurements. Four main types
of methods exist: the methods based on the capillary model-
hydraulic radius concept, the generalized upscaling methods
allowing for the extension of Darcy’s law to non-Newtonian
fluids without invoking the use of a particular rheological
model, the methods involving the application of dimensional
analysis and other correlation methods. A widely used
method consists in representing the medium by a bundle of
parallel regular-shaped pores with the same overall re-
sistance to flow as the porous medium replaced. This idea-
lized geometry is known as the bundle-of-capillaries model,
and has been used to describe the flow of non-Newtonian
fluids in the past (Lopez et al, 2003; Sochi, 2010; Shende
et al,, 2021).

In a second set of numerical experiments, the steady flow
of a yield stress fluid through the model porous medium
represented in Fig 1(d) was simulated, contrarily to the first
set of simulations in which the flow through a single channel
was considered. As can be observed in Fig. 1(d), the model
porous medium was a bundle of deformable ducts with dif-
ferent apertures. The total flow rate through the bundle per
unit depth Q; under a given pressure gradient VP, was com-
puted as the frequency-weighted sum of the flow rates
through the ducts of each aperture class:

5

Qi(VR) = 3 mia(ve, b) -

with n; being the number of channels of aperture class h,.
For each simulation, Q;(VP)) were also computed assuming a
rigid bundle with the same distribution of the channel
apertures as the deformable bundle by using Eq. (7) and (12).
For the sake of comparison with a Newtonian fluid, the flow
of water (constant dynamic viscosity taken as 107° Pas) was
also simulated for the whole range of boundary conditions

2+
Beqj g
n (VP /n heg,j [heq,j hy 1+1/n n[ 2 2
n+i\ k 2 \z T2 T 1w

investigated in the current simulations. In some particular
cases that will be described below, the flow of an equivalent
Newtonian fluid producing the same flow rate as the yield

for hegjzhe

(11)

stress fluid for a given inlet pressure was also simulated.
Therefore, the viscosity of the Newtonian equivalent was
chosen so that Re of its flow was identical to the one of the
flow of the yield stress fluid. Re was defined by using h.q as
characteristic length and the effective viscosity ¢ provided
by plane Poiseuille flow equation in a straight channel of
aperture h., as characteristic viscosity of the yield stress
fluid, i.e., Re = ©71,

Darcy's law was used in the past to describe the flow
through a porous medium with deformable pores. In this
respect, Rosti et al. (2020) developed a Darcy-like relation
between flow rate and pressure difference for the flow of a
Newtonian fluid through a model deformable porous
medium in which the pores were considered to be elastic
channels. For the single-phase creeping flow of in-
compressible fluids through a 2D porous medium at Darcy
scale, Darcy viscosity p,,,, also known as apparent viscosity,
can be calculated from Darcy's law as:

KW K
==-——VP=~-—VP
Fom =g u (13)

with K being the intrinsic permeability of the porous
medium, W being its total width, Q the injection flow rate per
unit depth, u (= Q/W) Darcy velocity and VP the pressure
gradient. u . was used to characterize the apparent viscosity
exhibited by the non-Newtonian fluid during its flow through
the porous media. It is worth highlighting that Hpm is a
function of u for a non-Newtonian fluid. It should also be
noted that the contributions of both inertial and viscous
pressure drops are encompassed in VP for the calculation of
Hpm (Tosco et al, 2013). In the presence of inertial pressure
drops, i, is defined as the expression that must replace the
viscosity in the Darcy law to result in the same pressure drop
predicted by the Darcy-Forchheimer equation (Forchheimer,
1901). By using ,,,, the Darcy-Forchheimer equation can be
written in a form similar to standard Darcy law with only one
term expressing the (fictitious) linear dependence of VP on
the flow rate. Darcy-Forchheimer equation was used in pre-
ceding works to model the flow of shear-thinning fluids in
porous media and rough-walled rock fractures (Tosco et al,,
2013; Rodriguezde Castro and Radilla, 2016; Rodriguezde
Castro and Radilla, 2017a). However, given the high values of
shear viscosity exhibited by the considered yield stress fluid
during its flow through the bundle of channels, inertial
pressure drops were neglected in the calculation of Hpm- FOT
example, if the 100 pm channel with E=3x10° Pa is con-
sidered, the values of Re developed by water ranged from ~
7.3x% 10" to ~ 1.4x10% in the present simulations, while the
values of Re developed by the yield stress fluid and its
Newtonian equivalent ranged from ~ 2.4 x107® to ~ 1.1x 107
for the same range of VP. Also, it is reminded that the



permeability of the deformable bundle is expected to in-
crease when the P, is increased because of the elastic de-
formation of the channel walls. In the present study, K used
in Eq. (13) is taken as a reference value corresponding to the
intrinsic permeability of the undeformed bundle (i.e., when
Piner is equal to zero), which is the same as the permeability
of the rigid bundle. The value of y,, corresponding to each
(VP;, u)) datapoint, named Hpm,j» Was calculated.

Knowing the value of u ., the apparent shear rate in the
porous medium ., ; was computed using the constitutive
equation of the fluid (£q. 1), by numerically solving the next
equation:

Tom,| (14)

Yom,; COrresponds to the wall shear rate in the average pore
throat diameter (Chauveteau and Zaitoun, 1981; Chauveteau,
1982, Sheng, 2011). In the case of a bundle of 2D channels,
Yom,j €an be defined as six times the average pore velocity 6 u/
¢ divided by a characteristic length of the microscopic flow
(Pipe et al., 2008; Rodriguezde Castro and Radilla 2017b). The
characteristic length of the microscopic flow is often taken as
h"'T"’ where hyyq is the hydraulic aperture of the bundle of
non-uniform channels. hyygcorresponds to the aperture of
the channels in a bundle of uniform channels generating the
same pressure drop as the considered bundle of non-uniform
channels when a Newtonian fluid is injected at the same flow
rate. From Darcy's equation and Poiseuille’s law, the fol-
lowing expression can be deduced:

v'ﬁ
Pya = (15)

€

a is an empirical shift factor known to be a function of
both the bulk rheology of the fluid and the porous medium
[Chauveteau, 1982; Sorbie et al., 1989; Lopez et al.,, 2003,
Comba et al., 2011; Rodriguezde Castro and Agnaou, 2019). a
is introduced in the definition of y,,; in order to fit Darcy-
scale viscosity w,,, to the shear viscosity vs. shear rate
measurements obtained with a rheometer. From the pre-
ceding remarks, the following expressions of j,,,; and «; can
be written:

u

Y ‘=a6_7=a\-'§u,
pm,j thyd ) JKz (16)
JKe

a; = "'pm.)v.'g_uJ (17)

While « was independent of u for Newtonian and power-
law fluids, previous works showed thata is a function of u for
the flow of a yield stress fluid in a porous medium
(Rodriguezde Castro and Agnaou, 2019; Rodriguezde Castro,
2019). This explains the subscript j of a; used in Eq. (16) and
Eq. (17). Although « is known to decrease when u is increased
during the injection of yield stress fluids through rigid porous
media, this is not necessarily the case when the pores are
deformable. It is an additional objective of the present study
to identify the effects of deformation on the relationships
between «; and u. This was achieved by applying £q. (17) to
the results of the present simulations through the rigid and
the deformable bundles of channels.

2.4.2. Transient flow simulations
The oscillatory flow of a Herschel-Bulkley fluid through the
bundles of rigid or deformable channels described in

subsection 2.1 was also considered. In this case, the time
dependence of P, was described by a sinusoidal function of
the form:

Pimg(t) = P(l + 0.255in27nt)

with P being the time averaged inlet pressure and T the
period of the oscillation. Different sets of simulations were
performed by setting P to 250 Pa, 300 Pa, 400 Pa, 700 Pa and
1000 Pa, respectively, while keeping T equal to 1s. E was
taken as 107 Pa in all oscillatory flow simulations. The un-
steady flow was simulated over two oscillation periods. In
each time dependent simulation, the results of a steady state
simulation using Pi,. = P were used as initial guess of the
dependent variables. Prior to the calculation of the flow rate
through the whole porous medium, the individual contribu-
tions of single channels of different aperture were computed.
Moreover, the time evolution of h., was monitored for each
aperture class for the different values of P.

An important remark is that the oscillatory flow rate of a
Herschel-Bulkley fluid through a rigid tube cannot be directly
calculated by using Eq. (2), because of the unsteady nature of
the flow. However, £q.(2) can be used to predict the time
evolution of the flow rate through a rigid channel with rea-
sonable accuracy for long oscillation periods (succession of
steady states). For example, the maximum difference ob-
tained when comparing the flow rate computed through DNS
and the one provided by Eq.(2) for P =300Pa and T=1s was
6%. In our aim to provide simple analytical expressions to
predict this type of flows, the appropriateness of approx-
imating the total flow rate through the rigid bundle as the
one provided by Eqs.(2) and (12) was evaluated. Therefore,
the flow rate per unit depth in the rigid bundle was calcu-
lated as:

5
Qrigia(t) = EI n;iq(VP(t), hi) (18)

It should also be noted that the flow rate at the inlet can
be different from the flow rate at the outlet during unsteady
flow because of solid wall displacement. u was defined at the
inlet for the calculations of u, in the present work. In the
same manner as for the steady flow, the evolution of u,,
over time was determined for each case and the cases of rigid
and deformable bundles were compared.

3. Numerical results
3.1. Numerical validation

The experimental procedure presented in 2.4 was validated
by comparing the results provided by these numerical si-
mulations to the predictions of fluid-structures interaction
theory and the results of previous numerical simulations.
Given that no results are currently available for the flow of a
yield stress fluid in constrained rectangular ducts, the flow of
a power-law fluid through a 3D rectangular channel with an
elastically deformable wall was simulated. The same fluid,
geometry and mechanical properties of the solid as those
used in the benchmark simulations of Anand et al. (2019)
were considered. To do so, different inlet pressures were
tested, and the corresponding flow rates were computed
using the procedure described in subsection 2. The computed
flow rates were then compared to the results of the preceding
authors, obtaining relative differences of 8% or less. Fig. 52 of



the supplementary material provides a comparison between
the numerical results of Anand et al. (2019) and the ones
provided by the current simulations. It can be deduced that
the results provided by the present simulations are in good
agreement with those of the preceding authors and with the
analytical expressions presented in their work for power-law
fluids. It should be mentioned that ANSYS software was used
by Anand et al. (2019), while COMSOL was used in the present
study. Also, the channels considered by these authors were
3D. Their 3D channels had a single deformable wall (the top
wall) with no displacements allowed at its perimeter. In the
present simulations, the channels were 2D apart from the 3D
simulations conducted for comparison with the work of the
preceding authors (Fig. 52). Moreover, Anand et al. (2019)
performed a mathematical analysis in which lubrication
approximation was assumed. Lubrication approximation
states that pressure becomes independent of the position in
the depth and width directions, and a “long and thin" flow
geometry. The theoretical predictions of these authors were
in good agreement with their numerical results.

3.2.  Steady flows of a yield stress fluids in deformable
channels

3.2.1. Effects of Young's modulus on pressure distribution,
velocity maps, equivalent aperture and wall displacement
The results of the steady flow simulations provided the dis-
tribution of velocities within the deformed channel. Some
examples are displayed in Fig. 2. The results for the flow of
the considered yield stress fluid under two values of Py;.. are
represented. For comparison, two Newtonian fluids were
considered: equivalent Newtonian fluids developing the
same effective viscosity as the yield stress fluid for the two
considered pressures, and water. As expected, the highest
velocities values were obtained for water, which is less vis-
cous than the other fluids, for both values of P,.,. It was
observed that whereas the flow velocities are well distributed
throughout the channel for the yield stress fluid (Figs. 1a and
1d), this is neither the case for the equivalent Newtonian
fluid nor for water. Indeed, most flow is concentrated in the
central part of the channel for the Newtonian fluids, with
some recirculation zones appearing in the vicinity of the
walls for P, =320 Pa in the case of water. The fluid develops
very low velocities in these recirculation zones. Additional
simulations were performed on a rigid channel having a
converging-diverging geometry, mimicking the shape of the
deformed elastic channels, in order to identify the role of
deformation on the generation of recirculation zones. The
results of such simulations showed that recirculation zones
arise also in a rigid channel for similar values of Re (~ 100),
revealing their inertial nature.

To facilitate the analysis, the wall displacement distribu-
tion, the pressure distribution along the x-direction and the
horizontal velocity component distribution along the x-di-
rection are shown in Fig. 2. The pressure and horizontal ve-
locity distributions corresponded to the central plane of the
channel. The first remark is that wall displacements are
higher for water than for the investigated yield stress fluid
and its Newtonian equivalent, for both inlet pressures.
However, the maximum wall displacement obtained for the
yield stress fluid is identical to the one observed with its
Newtonian equivalent. This suggests that wall displacement
of a given elastic channel is only a function of the effective
viscosity of the fluid and the inlet pressure with no

significant influence of viscosity distribution within the flow
region. In this regard, the mathematical analysis performed
by Anand et al. (2019) using lubrication approximation
showed that the deformation of a linearly elastic solid wall is
coupled to the fluid mechanics only through the hydro-
dynamic pressure. Indeed, the rheological parameters of the
fluid do not explicitly affect the displacement maps. As
stated by these authors, although the hydrodynamic pres-
sure depends on the flow profile, which depends in turn on
the rheological model, none of this information is required to
write down the deflection profiles explicitly.

Fig. 3(b) shows that pressure monotonically decreases
with increasing x-coordinate for the yield stress fluid and its
Newtonian equivalent, despite channel expansion, which is
explained by strong viscous pressure losses. However, the
pressure of water decreases in the expanded zone and
drastically decreases in the final constriction. It can be de-
duced that the recirculation zones observed in Fig. 7 arise
from the non-monotonic pressure distribution. The initial
increase in the pressure of water also explains the higher
wall displacements as compared to the case of the yield
stress fluid. An interesting feature is that pressure distribu-
tion is not identical for the yield stress fluid and its New-
tonian Equivalent, showing the influence of local viscosity
distribution on pressure drop between the inlet and an in-
termediate section of the channel. Regarding the velocity
distributions displayed in Fig. 2(c,d), one may notice that a
low-velocity plateau is developed by the yield stress fluid for
the intermediate values of x-coordinate. This corresponded
to the zones in which the shear stress of the fluid falls below
the yield stress, generating extremely high viscosity values
{4 = Kmay) @nd piston-like flow. In contrast, the velocity of the
Newtonian fluid decreases throughout the channel until the
final constriction is reached (Fig. Ze).

The effects of E on the q vs. VP relationship during the
flow through a single channel of 100 pm aperture is displayed
in Fig. 4(a). The non-linearity is strong, given that the non-
linear evolution of i with ¥ (Eq. 10) for the yield stress fluid
adds to the geometrical changes induced by the increase in
VP. Another important feature is the low-q plateau obtained
at the lowest VP, which reflects that the fluid remains prac-
tically stagnant (x = p,..) below a critical value of VP. This
critical value is equal to VP = %"’ for a rigid duct of aperture h
(2x 10° Pa/m for a 100 um aperture channel and the in-
vestigated yield stress fluid), but decreases significantly as
the value of E is decreased. This means that the onset of flow
in the deformable channel is lower than the one observed in
a rigid channel, despite the identical size of the narrowest
section situated at the constrained inlet and outlet positions.
This observation is not trivial as it shows that the same pores
can be either open or blocked to the flow of a yield stress fluid
depending on their elasticity. This is expected to have an
impact for example in soil remediation applications invol-
ving the use of yield stress fluids as blocking agents to divert
the flow of subsequent waterflooding operations. Indeed, the
success of such operations could be jeopardized in the pre-
sence of important soil deformation.

Fig. 4(b) shows the dependence of h; on VP relationship
for the flow of a Herschel-Bulkley through a single channel of
100 pm aperture. These results are consistent with Fig. 4(a),
and h,, increases with VP above a critical value of VP for the
yield stress fluid. These h, vs. VP relationships are expected
to be useful when implementing a pore network modelling
approach in deformable porous media allowing for the
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Fig. 3 - Displacement (a), pressure distribution along the x-direction (b) and horizontal velocity component distribution
along the x-direction (c,d,e) in a rectangular duct of infinite depth, 1 millimeter length, 100 pm aperture and E = 10° Pa.
Velocity and pressure distributions are given within the central plane. The cases corresponding to the yield stress fluid, the
equivalent Newtonian fluid and water are represented by solid lines, dotted lines and dashed lines, respectively. Different
colors represent different inlet pressures (in Pa): red for 160 Pa and black for 320 Pa.

simulation of Herschel-Bulkley fluids flow. In this regard, the
individual flow rate in each element of the network might be
determined from a relationship of the same type as Fq. (11).
However, obtaining an analytical relationship between hgq
and VP remains a challenging task, as can be deduced from
Fig. 4(b).

Fig. 5 presents the maximum wall displacement Y as a
function of VP for the tested values of E. Both yield stress
fluid and water cases are represented. It is worth noting that
the maximum wall displacement for the equivalent New-
tonian fluid is expected to be similar to the one of the yield
stress fluid, as deduced from Fig 3(a). This can be explained

by the roughly identical pressure values obtained for the
yield stress fluid and its Newtonian equivalent in the central
zone in which the maximum displacement is attained
(Fig. 2b). Therefore, it is the effective viscosity of the fluid in
the channel rather than the distribution of local viscosities
which determine the value of Y. Predictably, the maximum
displacement increases when VP is increased for both the
Newtonian and the Herschel-Bulkley fluids. It was observed
that the dependence of Y on VP was well fitted by a power
law of the type Y = a VPPwith b increasing and a decreasing
as E increases (coefficient of determination R?*>0.99 in all
cases). This is consistent with the fact that a should be equal
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to zero in the case of a rigid bundle (as E tends to infinity).
The lower values of b obtained for the non-Newtonian fluid
reveal that the channel deformation is more sensitive to VP
in the case of a low-viscosity fluid as water. This may be a
consequence of the transition from monotonic to non-
monotonic pressure profile over the length direction ob-
served for water as VP increased (Fig. 2b). Indeed, Y increases
with increased VP not only as a consequence of the increase
of the average pressure of the channel, but also as a con-
sequence of the pressure in the central part of the channel
becoming greater than Py,

3.2.2. Influence of inlet pressure and channel length on
maximum wall displacement

The relationship between Y and Py, is represented in Fig. 53
of the supplementary material. It should be mentioned that
the series of data displayed in Fig. 53 were well fitted by an
exponential function passing through (0,0). In a similar
manner as in the previous figure, Y is an increasing function
of Py for both types of fluid. ¥ dependence on Pj. was
also well fitted by a power law of the type Y = ¢ VP?with ¢
being lower for the higher values of h, (coefficient of de-
termination R*>0.99 in all cases). While d decreased as h;
increased for the Herschel-Bulkley fluid, no significant
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dependence of d on h; was evidenced for the two smaller
values of h; in the case of the Newtonian fluid.

Y was represented as a function Py, for different values
of L in Fig. 6(a), showing increasing wall displacement as L
increased. This is a consequence of the proximity of the
constrained extremities when the channels are short, which
limits the displacement of the solid wall to a greater extent
as compared to longer channels. This results in higher local
apertures and higher values of h.q in the longest channels
(Fig. 6b), i.e. for the lowest pressure gradients. Furthermore,
VP dependence on q was fitted by the function VP = VP, + eq’
(f<1) for each value of L, resulting in good agreement. This
fitting function had the same form as the fluid's constitutive
equation and describes the stagnant state (q = 0) of the fluid
below VPy. It also accounts for the shear-thinning behavior of
the fluid, as the increase in VP with increasing q is lower at
the highest values of q due to the lower viscosity developed
by the fluid. An apparent critical aperture can be defined as
hg = 27,/VP,, which represents the size of a straight channel
in which the onset of flow is produced at the same pressure
gradient as the considered deformable channel. Fig. &(c)
shows that a yield stress can flow through a deformable
channel of initial width hy under a pressure gradient inferior
to VP, = 2rp/hg, which is not possible in the case of a rigid
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Fig. 5 - Maximum wall displacement Y vs. VP relationships for the flow of the investigated yield stress fluid (a) and water (b)
through a single rectangular duct of infinite depth, 1 millimeter length and 100 pm aperture. The results provided by the
simulations are represented by symbols joined by dashed lines. The effect of Young's modulus E is represented with
different colors and symbols: rigid duct (black circles), E =3 x 10° Pa (orange triangles), E =1 x 10° Pa (purple squares),
E=1x10’ Pa (red diamonds), E=1x 10° Pa (blue inverted triangles).
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Fig. 6 - (a) Maximum wall displacement under different
inlet pressures and (b) h., under different pressure
gradients in a single rectangular duct of infinite depth and
100 pm aperture, The results for a set of channel lengths are
represented: 2 mm (black circles), 1.5 mm (blue inverted
triangles), 1mm (red diamonds), 0.75 mm (purple squares)
and 0.5 mm (orange triangles). E is equal to 10° Pa in all
cases and the injection of the investigated yield stress fluid
is considered. (c) h; as a function of L.

channel, as mentioned above. For example, h; is close to
200 pm for L = 1500 pm, which means that the onset of flow
in the deformable channel is VPy= 2r/hy = 100,000 Pa while
the onset of flow in a rigid one would be VP= 2w/h
=200,000 Pa. As can be obseved in Fig. (b), the local pressure
gradient is much higher in the vicinity of the constrained
extremities of a deformable duct than in the central part of
the channel where the local apertures are higher due to de-
formation. In contrast, a constant high value of pressure
gradient is obtained in a rigid channel over its whole length

L. This explains that a lower length-averaged pressure gra-
dient VP, is required to mobilize the yield stress fluid in a
deformable channel.

An important point is that ., is not a fluid property, as it
also depends on the mechanical characteristics of the de-
formable porous medium. Indeed, the choice of using the
permeability of the undeformed porous medium in Eq. (12)
induces an extra decrease in p,,, when u is increased with
respect to the expected decrease in a rigid porous medium.
This is illustrated by Fig. 7. Rigorously speaking, it is the
permeability of the medium which is increased under higher
values of u due to the higher levels of pressure deforming the
solid. However, this increase in permeability depends in turn
on the rheology of the fluid, given the coupling between the
deformation of the solid and the rheology of the fluid. In
other words, different rheological properties will result in
different pressure distributions and wall shear stresses that
will deform the solid to a different extent. Moreover, Fig. 7(b)
shows that the value of « increases as u is increased above a
threshold value (10 m/s in this case), contrarily to the case
of the rigid bundle of channels.

3.3.  Transient flows of a yield stress fluids in deformable
channels

As mentioned in subsection 2.3.2, the time evolution of heg
was computed for the 5 different aperture classes and for the
S different values of P, using T=1s. The obtained results
were fitted to the following sinusoidal function using a
standard least squares method:

heq(t) = 5(1 + asinz?n(t - to)) )

The average errors between the results provided by the
fitting function and the numerical data were lower than 6%
of h and 16% of a in all cases. The values of h and a obtained
for the different aperture classes h; are represented in Fig. 54
of the supplementary materizl for the highest and the lowest
value P. A linear relationship was obtained between h; and h;
for every P. The less accurate results were observed for the
smaller ducts and the lower values of P (P = 250 Pa), as re-
flected by Fig. 8. The divergences observed for P =250Pa in
Fig. & can be explained through comparison with the results
obtained for steady flow. Indeed, it can be deduced from the
red series displayed in Fig. 4(b) that hy, depends significantly
on VP for VP < 3.50 x 10° Pa, while h. attains a plateau value
of ~ 125 pm for VP = 3.50 x 10° Pa. The oscillatory flow with P
=250Pa covers the range of VP =(1.85x 10°, 3.09 x 10°) Pa,
which corresponds to the range of VP in which hg, is not
constant. This is not the case of the oscillatory flows with P
=1000Pa, which cover the range of VP =(7.45x 10°, 1.24x
10°) Pa.

Q and p,,,, were represented are as a function of time for
the oscillatory flow of a yield stress fluid through a bundle of
straight rectangular ducts of infinite depth and 1mm length
in Fig. 9. The results for both the deformable and the rigid
bundles are displayed. For all the investigated values of P,
Hpm(t) was fitted through a standard least squares method to
the following function:

Fpm(t) = u;m(l + A sinzT"(t - tl)cosz?n(t - tz)) (20)
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The values of t; and t, provided by the fitting procedure
were close to —0.66 s and - 0.086 s in all cases. However, ;o
and A showed significant variation, as plotted in Fig 55 of the
supplementary material. Fig. 10 shows that the predictions
made by the fitting function were in good agreement with the
numerical p,.,vs. t data in all cases, including Newtonian
fluid flow.

Fig. 9 suggests proportionality between the macroscopic
flow rates obtained in the elastic bundle Q uaic(t) and in the

rigid bundle Qya(t), assuming a succession of steady states
in the rigid bundle. This means that:

Quetastic (t) = f(P) Quigia(t) (21)

with f(P) being the proportionality factor, and Qqga(t)
being calculated with Eq.(12). f(P) was assumed to be con-
stant for each value of P, given that its standard deviation
over time was lower than 4% in all cases for T=1s. Fur-
thermore, f(P) showed to be a linear function of P within the
investigated range of P. Indeed, the errors obtained with the
fitting function f(P)=1.11+3.71 x 10~* P were lower than 0.7%.
It should be noted that f(0) must be close to 1, given that the
rigid and deformable channels behave almost identically
when subjected to zero pressure (some variations may arise
because of flow history). The previous equation allows for the
prediction Qi (t) without any knowledge of the equivalent
apertures hgq(t) of the deformed channels within the con-
sidered range of P. To go further, an additional set of oscil-
latory flow simulations were performed with a fluid with 1
=0Pa,k=1Pas", n=0.5and u,,,=10,000 Pa s (shear-thinning
fluid without yield stress). The results of these additional
simulations showed that £q. (21), and the preceding analysis
also applied to the case of power-law fluids without yield
stress.

From the previous observations, it can be deduced that
the relationship between the Darcy viscosity values obtained
for the flow of the Herschel-Bulkley fluid through the elastic
bundle, henceforth referred to as py, wy.x-(t), and the ones
obtained for the flow through the rigid bundle (assuming a
succession of steady states), henceforth referred to as
Hpm,rigd (t), 1S given by:

Fpm,rigid (t) = f(P)“pm,olashc(t) (22)

By using £q.(13), ko spa(t) can be written as:

o VROK __ VPOK
Kpmrigd (V) = Q@ = TrawrE.m)
W W (23)

where q(VP;, hy) is given by Eq.(2).
Eqs.(22) and (22) provide a useful expression to predict
Hpm,cassic () In @ simple manner:
. (t) = Homsga() 1 VP(OK
pm.elasticlV = gy T f(P) Lmalv R,
f(P) f(P) LnaCRe.b) (24)

One may argue that Eqs (22) and (24) should only apply to
slowly oscillating flows, given the quasi-stationary
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“pm.d:sbc.simu]:tzd(t) being the value Of“pm,elastic(t) pl’OVide by
the DNS.

in each case,

assumption used for the calculation of Q4(t). In order to
assess the range of validity of these equations, supplemen-
tary numerical simulations were performed in the in-
vestigated porous media using T=0.5s and T=2s while
keeping P =250 Pa. The values of the standard deviation of
f(P) over time reported by such simulations were 28.8% for
T =0.5s and 1.34% for T =2s. To illustrate the accuracy of the
predictions made by Eq. (24), Fig. 11 shows the predictions of
Hpm,elssc(t) obtained assuming proportionality between

Qelastic(t) and Qyigal(t), depending on T. Good accuracy is

obtained for T > 0.5, which is consistent with the preceding
remarks.

4. Conclusion

Pioneer numerical simulations of the flow of yield stress
fluids through a deformable porous medium have been
conducted by using an Arbitrary Lagrangian-Eulerian tech-
nique. The main assumptions are the linear elasticity of the
solid and the use of a bundle-of-channels model to represent
the geometry of the pores. Both stationary and oscillatory
flow have been considered. Furthermore, a simple model to
predict these flows at the Darcy scale has been developed
based on the current numerical results,
The main conclusions may be summarized as follows:

® Yield stress fluids show a more homogeneous velocity
distribution in deformable channels than their Newtonian
equivalents, while maximum wall displacement remains
unaffected. A power-law dependence has been observed
between the maximum solid displacement and VP, with
an exponent which decreases as Young's modulus is in-
creased.

® The threshold pressure gradient for the flow of a yield
stress fluid through a deformable channel is significantly
lower than the one for a rigid channel.

® The relationship between the total flow rate and the
pressure gradient through the porous medium during
stationary flow was analogous to the fluid’s constitutive
equation.

® Darcy viscosity decreases with increasing injection pres-
sure in the deformable porous medium with respect to the
rigid one, resulting from the associated increase in per-
meability.

® The value of the shift factor between bulk and Darcy
viscosity increases as Darcy velocity is increased above a
critical value, contrarily to the case of the rigid bundle of
channels.

Regarding transient flows:

® The time evolution of equivalent channel apertures and
Darcy velocity were shown to fit well to a sinusoidal
function.

® An equation has been proposed allowing for the prediction
of the flow rate obtained during oscillatory flow without
any knowledge of the equivalent apertures of the in-
dividual deformed channels, and the conditions of its va-
lidity have been examined.

Analytical relationships between heq and VP for any value
of the inlet pressure must still be obtained. Nevertheless, the
current work shows that knowledge of such relationships is
not necessary in all cases. Indeed, the total flow rate through
the elastic bundle of channels has been shown to be pro-
portional to the one obtained for the elastic bundle within
the range of investigated boundary conditions. These results
represent a valuable starting point for the development of a
deformable pore network model. In parallel, the develop-
ment of a macroscopic transport model should be addressed
by using homogenization techniques applied to the local
problem.
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