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Abstract

In the context of intellectual property in the manufacturing industry, know-how is referred to practical knowledge on how
to accomplish a specific task. This know-how is often difficult to be synthesised in a set of rules or steps as it remains in the
intuition and expertise of engineers, designers, and other professionals. Today, a new research line in this concern spot-up thanks
to the explosion of Artificial Intelligence and Machine Learning algorithms and its alliance with Computational Mechanics and
Optimisation tools. However, a key aspect with industrial design is the scarcity of available data, making it problematic to rely
on deep-learning approaches. Assuming that the existing designs live in a manifold, in this paper, we propose a synergistic use
of existing Machine Learning tools to infer a reduced manifold from the existing limited set of designs and, then, to use it to
interpolate between the individuals, working as a generator basis, to create new and coherent designs. For this, a key aspect
is to be able to properly interpolate in the reduced manifold, which requires a proper clustering of the individuals. From our
experience, due to the scarcity of data, adding topological descriptors to geometrical ones considerably improves the quality
of the clustering. Thus, a distance, mixing topology and geometry is proposed. This distance is used both, for the clustering
and for the interpolation. For the interpolation, relying on optimal transport appear to be mandatory. Examples of growing
complexity are proposed to illustrate the goodness of the method.
© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Keywords: Structural optimisation; Machine learning; Dimensionality reduction; Locally linear embedding; Topological data analysis; Optimal
transport

1. Introduction

In the context of intellectual property in the industry, know-how is referred to the practical knowledge about how
to accomplish a specific task [1]. Most of this know-how resides in the intuition and expertise of engineers and
designers, among a wide variety of professionals. Thus, it is extremely difficult to characterise by rules or steps. In
order to not lose a given know-how, we would like to be able to extract it from the objects previously created.
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For this, as it is done today in many other domains in engineering, we propose to ally tools emerging
from Artificial Intelligence and Machine learning with techniques belonging to Computational Mechanics and
Optimisation. But what could be a possible strategy? A key difficulty is scarcity in the number of designs in a
given industry. This implies that it is not possible to properly use deep-learning approaches for this purpose [2].
Therefore, among the available tools, we have selected those allowing us to infer, if possible, a reduced manifold of
the existing designs. Being its existence our main hypothesis. It will be possible if these techniques can adequately
approximate the low dimensionality space where the current designs belong to. This is mandatory because, with
few individuals, compared to deep-learning approaches, one can expect to interpolate, in a sense to be precised
later, only in low dimensional space.

In our scientific context, a related question naturally arises: how to characterise the existing component designs?
This first paper will consider the design as the objects’ geometries. Clearly, in the future, we should include other
characterisations, as the strains or stress fields, for instance, two crucial measures in the structural mechanics field.
Even considering this restricted definition of design, one should be precise in characterising a geometry because there
exist multiple ways to do it. In fact, it is our experience that this choice may significantly influence the dimensions
of the reduced manifold. A criterion of choice is that the implicit space should be a manifold of possible designs.
That is, we need to create appropriate designs when interpolating between existing designs.

The first part of the paper is devoted to finding a shape characterisation that allows obtaining an attractive
latent space of existing designs and interpolating in this reduced space. The designs are characterised by their
geometry and topology. The relevance of the geometrical information is evident. However, in the context of small
data, topology play an important role since it is additional information than the algorithms may use. Among those
descriptors, the easiest to manipulate are those based on fields. Thus, for the geometry, we employ the Level-set
Functions [3,4]. For the topology we use the principle of persistent homology [5], which belongs to the field of
Topological Data Analysis tools [6,7], to create a geometrical 2D image of the topology of the object, the so-called
persistence image [8]. Mixing geometrical and topological descriptors is thus possible. Then, we adopt the use of
Manifold Learning techniques (ML) [9] to reduce the dimension of the data by extracting the latent structure stored
in it. There exists an immense variety of techniques in the ML field, such as the Principal Component Analysis
(PCA) [9], which finds the direction of maximum variation in the original dataset. To overcome the limit of this linear
technique, non-linear extensions have been proposed. These techniques can preserve the non-linear nature of the
original dataset. Among the different non-linear techniques such as Sammon mapping [10], k-PCA [11], Laplacian
eigenmaps [12], Isomaps [13] and Autoencoders [14–16], we select the Locally Linear Embedding (LLE) [17]. This
technique has been successfully used when data is highly non-linear [18], as in the case of the information coming
from the component’s topology, and has shown good results in previous works [19,20].

The second part of the paper is devoted to the interpolation of objects in the manifold of the existing designs.
Apart from dimensionality reduction, rather than using the entire basis, LLE identifies the neighbours used to
reconstruct an individual decreasing the computational cost. The evaluation of the vicinity needed for LLE is usually
made employing the distances between individuals, which, in the standard LLE implementation, corresponds to the
L2 euclidean metric. As the scarcity of data is a usual situation in the context we work on, relying on the euclidean
norm and the linear interpolation as a basis for the component generator could be ineffective and could also produce
components with no physical sense and artefacts. Then, we propose to make use of Optimal Transportation tools
(OT) [21–24], which include the Wasserstein metric [22,23]. Additionally, we will consider this metric in the solution
of the barycentre problem [25] to interpolate within the objects based on the vicinities defined by the LLE. As a
reminder, solving the search of the barycentre problem considering the L2 euclidean metric is equivalent of using
the linear interpolation.

The outline of this article is established as follows. We intend to illustrate the basic ideas with a simple example
in each section before applying them to a more complex numerical example of a car bumper. Then, we first try the
standard procedure with the LLE algorithm, and in the following sections, we assess the improvements achieved
when applying the techniques presented in this introduction. Later, we employ the selected strategy in the car bumper
example. To finalise, we conclude the article by gathering some final thoughts.

2. Methodology

Fig. 1 represents the main steps of the methodology presented. In summary, the main goal of this work is to
define an interpolation procedure between existing components living in a common manifold. The procedure has
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Fig. 1. Simplified workflow of the methodology proposed.

Fig. 2. Signed Distance Function of a representative sampling of the complete database (75 individuals).

an offline and an online phase. The offline phase refers to gathering the dataset and the subsequent treatment that
generates the reduced manifold, while the online phase involves the navigation within the manifold and the creation
of new components through the interpolation scheme.

2.1. Reference database

We will apply each of the strategies considered in this paper to an elementary academic problem. It consists of a
dataset of 75 individuals, the geometry being a square including one, two and three holes, preserving the local shape,
but modifying the position. Therefore, the geometry is defined with only 3 parameters: the horizontal position, the
vertical position and the number of holes. The reference database is composed of the shape descriptors of each
individual. In the introduction, we suggested that geometry descriptors based on domain fields are more convenient
for our purpose. Thus, for the geometrical characterisation, we rely on the Level-set method [3,4]. Among the
variety of level-set functions available in the bibliography, we employ the Signed Distance Function (SDF), which
has the particularity of storing the distance to the boundary of the component. Therefore, the zero-isovalue of the
level-set function corresponds to the boundary of the component [26–31]. In this example, each level-set function
is discretised by 961 nodes. A subset of the database is shown in Fig. 2. In this Figure, as in the rest of the paper,
the geometry of each individual is defined by its SDF.
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2.2. Geometry-based strategy

Following the steps illustrated in the workflow scheme, see Fig. 1, the database is gathered and represented
in Fig. 2. As we mentioned above, we consider an elementary academic example to describe the proposed strategy.
In Fig. 2, we show a sampling of the 75 individuals that compose the database. Each of the individuals is defined
by its Signed Distance Function whose zero level (black contour in the images) represents their geometry. Each
individual of the database consists of a set of circles of constant diameter that can be located at any position in a
square domain. In the standard implementation of the strategy, no further preprocessing of the data is needed, that is,
the topological characterisation (step 3 in Fig. 1) is not applied. Then, the next step is to reduce the dimensionality of
the database. As we expect the manifold to be of a non-linear nature, we rely here on the Locally Linear Embedding
(LLE) algorithm. We chose the LLE algorithm since it provides not only the manifold but a set of non-linear modes
that could be used to move into the manifold.

2.2.1. Overview of the original LLE algorithm
Let Xi be each sample of the training set in the high-dimensional space. The LLE algorithm hypothesise that any

point in the database must be obtained as a weighted linear combination of k neighbours with wi j , j ∈ [1, k] as,

Xi =

k∑
j

wi j X j , (1)

The neighbours that compose the vicinity of each individual are obtained by choosing the k individuals with smallest
distance di j , evaluated as,

di j = ∥Xi − X j∥ (2)

where ∥ · ∥ is the Frobenius norm.
The number of neighbours k is user-defined, and the weights wi j are obtained by minimising the functional

represented in Eq. (3):

ε(w) =

∑
i

∥Xi −

k∑
j

wi j X j∥
2, (3)

where wi j are subjected to the constraint
∑

j wi j = 1. The LLE entrust that these weights are invariant to space
transformations. Hence the value of the weights is preserved when changing between spaces. Keeping the weights
unchanged, the projection of Xi on the reduced space, denoted Yi is defined by the minimisation of the functional
in (4):

ϵ(Y) =

∑
i

∥Yi −

k∑
j

wi j Y j∥
2, (4)

If all eigenvectors are kept, all the original information is stored, otherwise, we retain the eigenvectors associated to
the d smallest eigenvalues and maintain the latent structure of the database. The number of eigenvalues is defined
by the user and it is assumed to be small. In the reference example, if the technique succeed, it will be 3.

High-dimensional individuals may be obtained as a weighted linear combination of k neighbours, therefore, the
reduced manifold of existing designs may be defined as the set of points Y such that:

Y =

⎧⎨⎩
k∑
j

w̄i j Y j ∈ Rd
|

k∑
j

w̄i j = 1

⎫⎬⎭ (5)

Even though this set is never constructed, an element Ȳi in Y may be associated to the element X̄i of the original
space as,

X̄i =

k∑
j

w̄i j X j , (6)
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Fig. 3. Resulting eigenvalue distribution (a) and reduced coordinates (b) by using the LLE technique with the original data.

Fig. 4. Examples of original components removed from the database and the recovered ones by the vicinity information.

where the weights w̄i j are obtained by minimising the following functional:

ϵ̄(w̄) = ∥Ȳi −

k∑
j

w̄i j Y j∥
2. (7)

When seeking for a new individual, for example in order to optimise a product, one may search for the best element
within the manifold. The technique to perform such a search will be the object of a companion paper.

2.2.2. Application of the LLE to reference database: results and drawbacks
We apply here the LLE algorithm to the reference database with the number of neighbours in the vicinity taken as

k = 4. The resulting eigenvalues are represented in Fig. 3(a) while, in Fig. 3(b), we illustrate the spatial distribution
of the coordinates in the reduced space, where each individual is classified by its topology, that is, the number of
holes is represented by the colour of the points.

On Fig. 3(a) the eigenvalue spectrum of the problem in (4) is displayed. On this graph the 2 lowest eigenvalues
are separated from the rest of the spectrum. This information is used to retain a latent space of dimension 2. In
this case, we know beforehand that the reduced space is of dimension 3 (horizontal and vertical position of the
holes and number of holes), but the method fails in obtaining it. To evaluate the performance of this methodology,
we design an experiment where one of the individuals is removed from the database. Then we try to recreate it by
using the inverse mapping of the LLE. In Fig. 4 we illustrate the original individual (on the left) along with the
recovered one (on the right).

Comparing the original individual with the recovered one, we could conclude that the performance of this strategy
is unsatisfactory. Indeed, it cannot reconstruct any of the original individuals. One of the aspects that may improve
the methodology’s performance is to add topological information to the strategy in order to obtain an appropriate
clustering of the original database. As you can observe, the recovered individuals preserve the position of the holes
in two scenarios (cases a and c) but never match the number of holes. Presumably, this behaviour is due to the
reduced amount of information (small data). Therefore we propose to harness the available samples by extracting
more information, i.e. the topology.
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Fig. 5. Synthetic example for TDA (a) SDF (zero value corresponds to the boundary, in black) (b) the resulting points employed for the
TDA tools.

2.3. Geometry and topology-based strategy

This section revisits the conclusions gathered in the previous section and develops a strategy to possibly improve
the overall performance of the previous one. The first modification considered consists in the addition of topological
information. This section explains how topology is characterised, how this information is obtained and how we
propose to merge geometrical and topological information. The final objective is to cluster the data into its different
topologies to aid the interpolation scheme to create pertinent individuals.

2.3.1. Topological data analysis overview
In this work, we consider that the number of holes defines the topology of an object, so we need a tool to

automatically infer the number of holes and give some sense of its size, but we also need to define a technique
to properly compare different topologies. We propose to employ the Topological Data Analysis (TDA) [6,7] that
encompasses a set of tools from high-dimensional data analysis which extract topological information from a group
of points. These techniques are directly applicable as any SDF can be converted into a cloud of points employing
the coordinates on the nodes in a Cartesian grid and its function value. The topological characterisation we use is
based on the principle of persistent homology [5], which extracts the most relevant features in a point cloud; as
mentioned, these features may be the number of holes and a sense of its size, for instance. In Fig. 5(a) we show an
synthetic example of a component’s SDF, along with its boundary, while, in Fig. 5(b), we represent the resulting
set of points considered for the TDA strategy, i.e. negative values of the SDF represent the domain of the geometry.

Considering the resulting unconnected set of points ∈ R2, we define a circle with a radius r from each point. As
the value of r increases, the connectivity of points changes. A connection is established when two or more points
are inside of a circle of radius r . This change in connectivity allows the creation of geometrical entities such as
edges or triangles, whose vertices are the set of points. At some moment, the connectivity of the points will create
a set of edges that form a closed polygon. If we keep increasing r , the connectivity will create entities of higher
dimensions, such as triangles that will cover the hole and then disappear. Persistent features detected with a wide
range of spatial scales r are considered more likely to represent a true topological feature of the underlying point
cloud instead of artefacts of the sampling or noise. The value r in which a persistent feature appears and disappears
is used to create the persistence diagram (PD), representing the birth x and death y of each topological feature

6
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Fig. 6. Space transformation of the persistent homology from the lifetime diagram (a) to the persistence image (b).

found during the growth of r . As for any persistent feature, for instance, a hole, the birth precedes the death, all
the points of the persistence diagram are located above the diagonal y = x , and any point (x, y) near the diagonal
may represent noise or small scale features. Points far from the diagonal represent topological features that persist
and may be considered to define the overall topology of the component.

The persistence diagram belongs to a non-metric space, so comparing or evaluating a distance between different
persistence diagrams is not directly possible. Different representations of the persistent homology are available that
contain the same information but are displayed differently. We obtain the lifetime diagram (LD) (see Fig. 6(a)) if we
apply the mapping f : (x, y) → (x, y − x) to the persistence diagram (PD), as in the PD, points far from the x-axis
represent more relevant topological features. The drawback of using those spaces is that they are not equipped with
a norm, such as the L2 metric commonly used in most Machine Learning applications. Thus, we need to apply
space transformation to the current descriptor of topological features to a more appropriate representation equipped
with a suitable norm. For that purpose, following the rationale in [8], we use the persistence surface, which is based
on a Gaussian kernel evaluated in the space of the LD. The surface created is then reduced to a finite-dimensional
discretised space. In particular, we fix a grid in the plane with n × n subdomains (pixels). The integration of the
persistence surface over each pixel gives, as a result, the so-called Persistence Image (PI) ∈ R2 (see Fig. 6(b)) [8].

In Fig. 6(a), we illustrate how the four holes that appear in 5(b) are translated into the persistence diagram
employing the persistent homology. Fig. 6(a) represents one point per hole, and its coordinates correspond to the
value of r when the hole is detected in x − axis and the total lifetime of the hole in y − axis. Notice that the
birth of each feature is the same due to the uniformity of the grid used to describe the SDF. Fig. 6(b) illustrates the
resulting persistence image obtained from the space transformation of the persistence diagram.

2.3.2. Modifications in LLE to consider geometry and topology
The modification of the original strategy considers adding the persistence image (Ti ) of each individual to its

geometrical description defined by its SDF (Xi ) as the topological descriptor into the manifold learning stage. So
far, the information to feed the LLE algorithm corresponded to the geometrical representation of the components,
i.e., the SDF. To feed the LLE algorithm with both geometrical and topological information we propose to make
use of a weighted linear combination of the distances from each shape descriptor, topological and geometrical, as,

d2
i j =

θ∑
i
∑

j ∥Xi − X j∥
2 · ∥Xi − X j∥

2
+

(1 − θ )∑
i
∑

j ∥Ti − T j∥
2 · ∥Ti − T j∥

2 (8)

where θ is the weighting factor.

7
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Fig. 7. Resulting eigenvalue distribution (a) and reduced coordinates (b) by using the LLE technique including both, the original data and
the persistence images.

Additionally, we introduce the topological information in the LLE by modifying Eq. (3), leading to:

ε(w) =

∑
i

⎡⎣ θ∑
i
∑

j ∥Xi − X j∥
2 · ∥Xi −

k∑
j

wi j X j∥
2
+

(1 − θ )∑
i
∑

j ∥Ti − T j∥
2 · ∥Ti −

k∑
j

wi j T j∥
2

⎤⎦ , (9)

where Xi is the level-set representation of the geometry, i.e., the SDF and Ti is the corresponding persistence image.
The optimal w takes into account a mixture of the likeness of the geometry and topology.

2.3.2.1. Weighting factor selection. Considering the previously discussed modifications of the standard LLE
implementation and the reference database, we compute the local vicinities of each individual considering the
distance defined in Eq. (8). Later, we continue with the minimisation of the functional in Eq. (9). The next steps of
the algorithm LLE are not modified. As in the previous example, we consider k = 4 neighbours with a randomly
defined weighting factor of θ = 0.5. In Fig. 7(a) we show the distribution of the eigenvalues obtained from the
LLE, and we conclude that the reduced dimensions are 2, again failing in obtaining the right number of dimensions.
Fig. 7(b) illustrates the projection of each individual to the reduced manifold of two dimensions.

Here we see that each cluster is collapsed in one point in the reduced manifold, which prevents the extraction
of geometrical modes, as well as the interpolation between individuals, indicating, perhaps that the topology
information has too much influence. Hence, we modify the value of the weighting factor, in this case, θ = 0.8. As
in the previous example, Fig. 8(a) shows the eigenvalues obtained, which suggests us that 3 reduced dimensions
seem acceptable, as expected, in this case. In Fig. 8(b) we also represent the spatial distribution of the projected
individuals in the reduced manifold.

With this value of the weighting factor θ , we improve the clusterisation with respect to the previous example.
We could also extract geometrical information related to the horizontal and vertical location of the circles, which
was impossible considering the previous value of the weighting factor θ .

As in the previous experiment, we evaluate the method’s performance trying to recover several individuals
removed from the dataset. Fig. 9 shows the comparison between the original individual and the recovered one
using the expression shown in (1). Even though the clusterisation is drastically improved, the recovered functions
are far from the original ones, they match the position of the holes and slightly the topology but the results are not
satisfactory so far. At this moment, our hypothesis here is that we have been able to properly organise the dataset
in the reduced space, but that we lack of a proper interpolation approach to define the manifold.

The influence of the weighting factor may be seen as a regularisation in the metric. This regularisation enables
the modification of the quantity of topological information added to the metric. However, the weighting factor is a
hyperparameter and must be set by the user. The fulfilment of some criterion may guide the selection of its value.
Different criteria may be considered, such as seeking a particular characteristic in the reduced manifold, for instance,
the clusterization in topologies, or improving the quality of the recovered individuals.

8



D. Muñoz, O. Allix, F. Chinesta et al. Computer Methods in Applied Mechanics and Engineering 405 (2023) 115859

Fig. 8. Resulting eigenvalue distribution (a) and reduced coordinates (b) by using the LLE technique considering the original data and the
persistence images.

Fig. 9. Examples of original components removed from the database and the recovered ones by the vicinity information.

2.3.3. Optimal transport-based interpolation to recover dimensionality
A relevant characteristic of the LLE is that it allows to define one individual through the linear interpolation

between the neighbours of its vicinity (1). Due to the scarcity of data this interpolation scheme, considering the
original LLE technique is not appropriate, as seen before. This is why we propose to rely on an Optimal Transport
approach for the objects’ interpolation [21–24].

2.3.3.1. Optimal transport overview. Optimal Transport techniques are based on the use of the Wasserstein distance
W2 between objects, also known as Earth Mover’s distance [22,23]. These distances represent the geometric likeness
between two objects by measuring the minimal amount of “work” needed to move the mass contained in one
object onto the other. We may extrapolate this capability to tasks like geometric domain interpolation by solving
the barycentre problem [25] stated as,

Z∗

i = arg min
Zi

k∑
j=1

w j W 2
2 (Zi , Z j ). (10)

where, Zi and Z j correspond to the interpolated individuals and the individuals used for the interpolation,
respectively. Also, W2 corresponds to the Wasserstein metric and w j are the interpolation weights. In Fig. 10 we
illustrate the resulting functions obtained from the linear and the optimal transport interpolation between two original
functions.

2.3.3.2. Applying optimal transport-based interpolation to the reference database. As seen in Section 2.3.3.1 the
improvements achieved in the clustering task were not translated to the recovery performance. Considering the
manifold obtained in Fig. 8(b), we modify the interpolation scheme, in this case, using the tools from OT. In
Fig. 11, we solve the barycentre problem considering the Wasserstein distance after transforming the original SDF
into a probabilistic function which indicates the probability that a point is inside the geometry, being the implicit
boundary described by the 0.5 value. Fig. 11 shows that the original components and the recovered ones are virtually

9
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Fig. 10. Comparison between linear and optimal transport interpolation. Figures on left and right are the original functions while the middle
figures show their weighted interpolation.

Fig. 11. Examples of original components removed from the database and the recovered ones by the vicinity information.

Fig. 12. Examples of original components removed from the database and the recovered ones by the vicinity information, considering the
OT strategy but not taking into account topology information.

the same; thus, the modification in the interpolation scheme entail a relevant improvement in the reconstruction of
objects.

It is interesting to get insight of the relative effect of optimal transport and the use of topological descriptors. For
this, we apply the OT strategy without adding topological information (manifold shown in Fig. 3(b)). This change
the set of neighbours used to reconstruct individuals. From Fig. 12 we can see that an OT strategy associated
with a poor clustering does not lead to satisfactory results. Hence, from now on, in this paper we will rely on the
simultaneous use of both strategies.

3. Numerical example

This section shows how the previous methodology is applied to an industrial example that mimics car’s bumpers.
Due to the impossibility of gathering actual data, we create the database artificially through a hybrid optimisation
technique [20,32]. We have generated a database that simulates the work of manufacturers, specifically those
engaged in the car’s bumper design. This example tries to mimic the actual designs of a car’s bumper considering
a simplified 2D domain. The design domain of the problem (see Fig. 13) is characterised by variables h1, h2, and
X , which define the region where the material is allowed to exist. The Dirichlet boundary conditions are defined by
the variables w and W , that specify the position where all displacements are restricted. Additionally, the variable

10
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Fig. 13. Parametrisation of the variables that define the design domain and the boundary conditions of the hybrid optimisation algorithm.

Fig. 14. Conversion of the SDF (a) into a probabilistic distribution (b).

P determines the value of the pressure applied; for all bumpers, we define the value of P in order to get the same
resulting force applied to each bumper. This problem shows how the presented strategy works with more complex
examples where the scarcity of data is also considered.

Fig. 14(a) shows an example of the resulting component obtained through the hybrid optimisation algorithm.
This figure represents the SDF, with the boundary defined by its zero value. However, the input geometrical objects
must be described by a probabilistic function to use the OT tools properly. In our case, we convert the SDF into
a probabilistic function with its limits between 0 and 1 and the boundary described using the mid-value, 0.5. The
value of the probabilistic function indicates the probability that a point belongs to the interior of the geometry,
which, for a given kernel, is straightforward when the SDF is available. Then, Fig. 14(b) illustrates the resulting
function that describes the geometry of the component after its transformation.

Fig. 15 shows a representative sampling of 9 individuals the database, which is composed of 83 individuals.
Also, each individual is discretised by 10,201 nodes. From now on, the standard geometrical descriptor will be
the probabilistic function for representation purposes. Even though bumpers conform to the original dataset with
various topologies, we neglect those with little importance. Then, the final database, as illustrated in Fig. 15 consists
of bumpers whose topology has 2 holes or none of them, as only a very reduced number of bumpers with more
than 2 holes were obtained during the creation of the database.
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Fig. 15. Probabilistic functions of sampled components from the database.

Fig. 16. Persistent homology of the car’s bumper in Fig. 14 considering the repeatability of each persistent feature.

3.1. Topological characterisation

As a reminder, the final proposed strategy considers the complete characterisation of the shape of a component,
including its geometry and topology. Thus, the next step is to obtain the persistent homology of each bumper in
the database. Let us consider the bumper in Fig. 14(b), which presents two holes, to better illustrate the topological
characterisation. We would compute the persistence image of each individual employing its persistent homology.
The persistent homology, in this example (see Fig. 16(a)), seems to capture one of the two holes, which may indicate
that they are overlapped in the representation as the birth and lifetime are the same. This behaviour may be a source
of issues in the clustering task, so we consider a different coordinate system to represent the persistent homology.
As the we use a uniform grid to represent the probabilistic function of each bumper, the birth of each hole is
always the same (the spacing of the grid), so we assume that this coordinate its not that relevant and consider a
different coordinate that includes the times a identical topological feature is repeated. So, the x-axis of the lifetime
diagram, previously representing the birth, is replaced by the repeatability coordinate, providing the corresponding
persistence image in Fig. 16(b), where two holes are now represented. As most of the image domain has 0 value,
this image may be converted into a function over the whole domain, for instance, employing the level-set method
(see Fig. 16(c)).
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Fig. 17. Resulting eigenvalue distribution (a) and reduced coordinates (b) by using the LLE technique with the original data plus the
persistence images.

Fig. 18. Resulting eigenvalue distribution (a) and reduced coordinates (b) by using the LLE technique with the original data plus the
persistence images.

3.2. Influence of the weighting factor θ

Once the database has been processed, we have two shape descriptors for each component: a geometrical
descriptor defined as a probabilistic function and a topological descriptor described with the persistence image.
The next step within the proposed strategy consists in obtaining the reduced manifold containing the projection of
each individual. For this problem, we used the modified version of the LLE that merges geometrical and topological
information and use the euclidean distance to evaluate the local vicinities as in Eq. (8). The value of the weighting
factor is arbitrarily set to θ = 0.5, and the vicinity is set to 9 neighbours. Fig. 17(a) shows the eigenvalue distribution,
where the smallest one is far from the rest, which implies that there is one dominant dimension in the reduced
manifold. This seems strange as it is difficult to represent properly all the geometrical and topological details we
described above with just one dimension. That is why we decided to modify the value of the weighting factor.
Indeed, Fig. 17(b) shows the representation of the components in the reduced manifold and we conclude that just
the topology is inferred, so we must increase the contribution of the geometrical descriptor.

For the next test, we set the value of the weighting factor to θ = 0.7. Fig. 18(a) shows the eigenvalue distribution
where now more dimensions seem to characterise the database. In this example, we selected the 3 first dimensions,
for representation purpose, as shown in Fig. 18(b), to describe the resulting reduced manifold. These results
show that an appropriate selection of θ is required. In practice, the user should test several configurations of the
hyperparameters θ and number of neighbours k until satisfied with the reduced space.
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Fig. 19. Recovery of a bumper of the cluster with 0 holes removed from the database. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)

Fig. 20. Error measure of each natural frequency for the reconstruction employing the linear interpolation (blue) and the optimal
transport-based interpolation (orange).

3.3. Results

To check the feasibility of this methodology to produce components with physical sense and framed on the nature
of the database, we repeat the same experiment as done with the moving circles example. This experiment consists of
removing an individual from the database and trying to recover it using the inverse mapping of the LLE proposed in
this paper. Figs. 19 and 21 show examples of recovered individuals. Each Figure shows the recovery of one random
individual selected from each of the clusters (cluster of topologies with 0 holes in Fig. 19 and with 2 holes in Fig. 21).
In each case, we present, using probabilistic functions, the original geometry to be recovered and the results obtained
through linear interpolation and with the proposed strategy that computes the barycentre problem considering the
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Fig. 21. Recovery of a bumper of the cluster with 2 holes removed from the database. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)

Fig. 22. Error measure of each natural frequency for the reconstruction employing the linear interpolation (blue) and the optimal
transport-based interpolation (orange).

Wasserstein distances. Some individuals are highlighted in these figures: the reference bumpers to be recovered,
removed from the database, (highlighted with a black contour) and the neighbours used to recover the reference
bumper (highlighted with a green contour). Analysing the recovered components, we conclude that the interpolation
based on OT techniques provides components with physical sense, quite similar to the reference component and
preserving the features in the database, while, on the contrary linear-based interpolation schemes seem to produce
bumpers with artefacts and loss of features, that, consequently will prevent any successful numerical simulation.
Additionally to the qualitative comparison in Figs. 19 and 21, we compute a quantitative difference between the
recovered bumpers and the reference one. As this component will fulfil certain structural criteria, we consider it
interesting to compute an error metric based on its structural behaviour. Therefore, we carry out a modal analysis
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Fig. 23. Creation of a new bumper employing the proposed methodology. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)

in each recovered component and then, we compare its first natural frequencies (removing those associated with
the rigid solid movement) considering the following expression to measure its error,

Errori = 100 ·

⏐⏐⏐⏐ ω̂i − ωi

ωi

⏐⏐⏐⏐ , (11)

where, ω̂i and ωi correspond to the ith natural frequency of the recovered bumper and the reference one, respectively.
The error of the example in Fig. 19 is illustrated in 20, while Fig. 22 represents the error of the example pictured
in Fig. 19. In general terms, both Figures show that the bumper obtained employing the optimal transport-based
interpolation presents lower error levels for the first 50 natural frequencies.

With the creation of the reduced manifold, we are not limited to recover individuals in the database. Instead we are
also able to navigate along this manifold being able to obtain the projection of the original high dimensional space
corresponding to the points on the low dimensional manifold. The resulting projection of these points will entail the
creation of new components non-existing in the original database, as we will be able to retrieve the geometrical and
topological information. Fig. 23(a) shows an arbitrary point in the reduced manifold located between the topological
clusters, along with the neighbours, of different topologies, used for its interpolation. Figs. 23(b) and 23(c) illustrate
the resulting component obtained by linear and by optimal transport interpolations.

In order to illustrate the robustness and the generative capability of the methodology proposed, we extend
this numerical example by adding a new experiment. Based on the previous example (Fig. 23), this experiment
navigates within the manifold and generates new bumpers that are non-existing in the original database. We use
the bumper coordinates in Fig. 23 as a reference. Then we define 3 directions, each corresponding to the axis of
the coordinate system of the reduced parametric space. As a reminder, we use the LLE technique that extracts the
non-linear structure of the high-dimensional data. In our example, these are a set of non-linear geometrical modes.
The non-linearity means that each mode may influence the recovered data differently depending on its position
in the manifold. Therefore, this experiment shows the local influence of each axis in the neighbourhood of the
reference coordinates. Generally, we can conclude that the first dimension is in charge of the bumper’s curvature.
In contrast, the second one seems more related to the topological change and the holes’ size. Finally, the third one
may modify the bumper’s overall height and the holes’ size. Fig. 24 illustrate this experiment where the reduced
manifold along with the points of the study are represented in Fig. 24(a). Also, Figs. 24(b)–24(d) show the resulting
set of bumpers in each axis. Not all bumpers have the structural qualities we might expect, for instance, the first
bumper of the second axis. It seems that this is a region where the topology of the bumper changes. The holes
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Fig. 24. Creation of a set of new bumpers employing the proposed methodology. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

in the component get bigger until they reach the surface, therefore, modifying the topology. However, we can still
extract some conclusions about the influence of each axis on the characteristic of the generated bumper.

4. Conclusions

We have proposed a strategy to create a low dimensional manifold to describe an existing database of designs
defined by their geometry and topology. We are able to navigate within this manifold not only to recover existing
designs but, more interesting, to create new coherent designs. We have accomplished this goal using different tools
such as the LLE, the TDA and the OT. To conclude the current work, we would like to synthesise some final
thoughts:
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- Manifold Learning (ML) strategies, such as the Locally Linear Embedding, are appropriate tools to visualise
and manipulate high-dimensional data by extracting the inherent latent structure. The resulting dimensions may
be considered a shape generator basis, employing the inverse mapping to recover the original dimensionality.

- The use of the level-set method seems to be a coherent framework to characterise the geometry of the
components as it allows direct comparison between different shapes. We found the widely used Signed
Distance Functions convenient for our purposes.

- Topological Data Analysis tools aid the clustering task carried out by the dimensionality reduction algorithm.
- We propose to adequately combine the geometrical description provided by the SDFs with topological

information to obtain a synergetic effect. This requires the definition of θ , a parameter that weights the
influence of these two different informations.

- The use of Optimal Transport tools in the ML strategy represents a definitive improvement with respect to the
standard LLE algorithm implementation. Thanks to these techniques, the recovered individuals resemble the
original database and have a physical sense from a structural point of view.

- Due to the computational cost of evaluating the Wasserstein distances, we propose a compromise strategy,
where the Wasserstein distances are computed just when interpolating, instead of using them to create the
reduced space.

- In the same way, using the LLE, allows to evaluate the Wasserstein distances among few neighbours instead
of the full database.

- One of the limitations of the proposed methodology is its maturity. We still need to establish a metric that
assesses the quality of the component reconstruction for any problem. For this reason, we cannot measure the
influence of each hyperparameter appearing in the methodology, like the weighting factor or the number of
neighbours, possibly leading to reduced manifolds not being able to extract the knowledge of the database.

- Once these limitations are surpassed, the potential applications of the methodology are several. For instance,
it could be used for the development of a design tool able to propose, taking the know-how into account,
predesigns characterised by the sets of parameters defined by the user. These predesigns may be then
modified to meet other design requirements. Also, this methodology could be used for the development of
an optimisation algorithm that navigates the resulting reduced manifold to find the optimal component that
maximises/minimises an objective function subject to a set of design constraints.

5. Future works

In this last section we would like to highlight some future developments from the current work:

- As we show with the last example, we are able to navigate the reduced manifold to obtain new components
non-existing in the original dataset. This tools could be used, for instance, to obtain components defined in
terms of geometrical and/or topological constraints or in terms of the structural behaviour of the component,
for example.

- The selection of the weighting factor θ may be guided by and optimisation algorithm by looking for some
specific characteristics of the resulting reduced manifold.
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