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Extreme nonlinear dynamics of cantilever beams: effect of
gravity and slenderness on the nonlinear modes

Marielle Debeurre · Aurélien Grolet ·
Olivier Thomas

Abstract In this paper, the effect of gravity on the
nonlinear extreme amplitude vibrations of a slender,
vertically oriented cantilever beam is investigated. The
extreme nonlinear vibrations are modeled using a finite
element discretization of the geometrically exact beam
model solved in the frequencydomain through a combi-
nation of harmonic balance and a continuation method
for periodic solutions. Thegeometrically exactmodel is
ideal for dynamic simulations at extreme amplitudes as
there is no limitationon the rotationof the cross sections
due to the termsgoverning the rotation being kept exact.
It is shown that the very large amplitude vibrations of
dimensionless beam structures depend principally on
two parameters, a geometrical parameter and a gravity
parameter. By varying these two parameters, the effect
of gravity in either a standing or hanging configuration
on the natural (linear)modes aswell as on the nonlinear
modes in extreme amplitude vibration is studied. It is
shown that gravity, in the case of a standing cantilever,
is responsible for a linear softening behavior and a non-
linear hardening behavior, particularly pronounced on
the first bending mode. These behaviors are reversed
for a hanging cantilever.
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1 Introduction

This paper considers the extreme amplitude vibrations
of cantilever beams with a focus on two particular
effects: the influence of a gravitational field and that
of the geometry of the cantilever, namely its slender-
ness. Slender beam structures are particularly suscep-
tible to large amplitude vibrations because of the thin-
ness of their cross section, which leads to a low bend-
ing stiffness and occasions large amplitude transverse
vibrations for only moderate input forces. Moreover, in
the special case of clamped-free boundary conditions,
there is no restriction of the in-plane displacements (as
in the case of a clamped-clamped beam, for instance)
and, therefore, the oscillations can be extreme, espe-
cially near the first resonance of the structure. For
example, the free end of the beam can be easily sub-
jected to more than half of a complete turn, even reach-
ing a state of bending “backwards” beyond thefixed end
(see Fig. 4a and [1–4]). At large amplitudes of vibra-
tion, so-called geometrical nonlinearities (trigonomet-
ric terms related to the cross-section rotation) become
consequential. Although at first glance the oscillations
in such cases may seem highly complex, using the con-
cept of nonlinear modes, it is possible to characterize
the vibrations very easily in terms of oscillation fre-
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quency and mode shapes. The purpose of this paper,
then, is to address the effect of both gravity and the
beam geometry on the nonlinear modes of cantilever
beams, up to extreme amplitudes of vibration.

Past works in the literature on cantilever beam
mechanics have investigated the effect of gravity on
their static and dynamic behavior. In statics, Green-
hill analyzed more than a century ago in [5] the point
at which a tree, modeled as a “heavy column” can-
tilever, would buckle under its own weight, a phe-
nomenon known as self-buckling. In dynamics, addi-
tional studies have investigated the influence of grav-
ity on the free vibration of vertical cantilevers. An
early study on the topic is found in the work of
Paidoussis and Des Trois Maisons [6], who stud-
ied the influence of gravity on the free vibration of
damped vertical cantilevers and recovered the self-
buckling behavior described in [5]. In [7], Schäfer
computed the effect of gravity on the eigenfrequen-
cies of the first five modes of hanging Euler–Bernoulli
cantilevers using a closed-form approximation based
on the Ritz–Galerkin method for aerospace applica-
tions. The results of [7] were confirmed by the work of
Yokoyama [8], where the eigenvalues were computed
based on a finite element discretization of vertically
hanging Timoshenko beams. Other studies on the free
vibration of gravity-loaded beams include the work of
Naguleswaran [9,10] and Bokaian [11,12] for Euler–
Bernoulli-type cantilever beams, Abramovich [13] for
composite Timoshenko-style hanging cantilevers and
Xi et al. [14] for Rayleigh-type cantilevers. Nag-
uleswaran, Bokaian and Xi et al. derived closed-form
approximations of the natural frequencies of gravity-
loaded cantilevers, while Abramovich estimated the
eigenproblem using aGalerkin approach. In addition to
these,Hijmissen andvanHorssen [15] derived a closed-
form approximation of the eigenfrequencies based on
the linearized equations of motion of a vertical uniform
Timoshenko cantilever using the method of multiple
scales. This linear approximation is valid in particular
for small effects of gravity. Furthermore, Virgin et al.
experimentally investigated the influence of gravity on
vertical cantilevers in [16,17] and, most importantly,
validated experimentally in [17] the influence of grav-
ity on the eigenfrequencies (e.g., Figure 2 in [14]) of
the first four modes.

In all of these works, the primary interest was to
investigate the influence of gravity on the linear eigen-
frequencies of the vertical cantilevers. However, very

little investigation has been done to date on the effect
of gravity on the nonlinear dynamics of vertical can-
tilevers, especially at extreme amplitudes of vibration,
which is the present aim of this paper. Santillan et al.
derived an analytical perturbation approximation based
on the elastica model for the first nonlinear mode of
a standing cantilever including self-weight and com-
pared the resultswith numerical finite difference results
[18]. In [18], the authors also compared their back-
bone approximations to the analytical expression for
the amplitude-vs-frequency relationship of cantilever
beams derived by Luongo et al. [19], though this work
did not include the effect of gravity. Finally, the recent
work of Farokhi et al. [20] on the parametric response
of cantilever beams at very large amplitudes of dis-
placement discussed the strong influence of gravity on
the nonlinear dynamic response of the system.

An appropriate beam model should be selected in
order to properly capture the geometrical nonlinearities
at very large amplitudes of vibration. In this paper, a
finite element discretization of the geometrically exact
beam model (also known as the Reissner–Simo beam
model [21–25]), based on Timoshenko kinematics of
the cross section, is used. The advantage of this model
is that the geometrical nonlinearities are kept exact
without any truncation or linearization, a strong advan-
tage over other nonlinear models that break down at
high amplitudes when the rotation of the cross section
becomes large. An example of the latter is the widely
used inextensible beam model of Crespo da Silva et
al. [26,27], where the nonlinearities expanded in Tay-
lor series were truncated at order three; this truncation
begins to break down when the rotation of the cross
section nears or exceeds π/4 rad. By contrast, the geo-
metrically exact model remains exact at any amplitude
of rotation, even beyond π rad, which is extreme in a
standard vibration test.

The discretized geometrically exact beam model is
then solved in the frequency domain using a combi-
nation of the harmonic balance method (HBM) and
numerical continuation basedon the asymptotic numer-
ical method (ANM) to compute periodic solutions, a
process developed in many previous works [28–32].
Although many works on the modeling of flexible
beam structures using the geometrically exact model
involve time domain strategies to solve the system [33–
37] (as in commercial finite element codes), a solving
technique based in the frequency domain has certain
advantages. Solving in the frequency domain targets



the steady state of the periodic oscillations under har-
monic forcing without needing to manage time steps
or transient oscillations and also allows for easy bifur-
cation detection and stability analysis [32,38]. In this
way, frequency domain strategies can target various
complex nonlinear vibratory phenomena such as bifur-
cations, instabilities, energy transfer between modes
(internal resonances) [39] and quasi-periodic or chaotic
responses [40,41] that enrich the overall nonlinear
dynamic analysis. Another set of works in the literature
also used the geometrically exact model solved in the
frequency domain to compute the dynamics of flexible
cantilever beams [2,42] and later validated this model
with experimental results, notably with the weight of
the cantilever incorporated into the equations ofmotion
in [42].

In this paper, we investigate the effects of gravity
in both the linear and nonlinear regimes. For the latter,
we are particularly interested in the effect of gravity on
the nonlinear modes. Nonlinear modes provide a use-
ful framework for understanding nonlinear vibrations
as they constitute the skeleton of the nonlinear reso-
nance pattern and can be useful in obtaining accurate
reduced order models. Nonlinear modes are explicitly
defined as families of periodic solutions of the system in
free and undamped vibration [43], or as invariant man-
ifolds of the phase space [38], both definitions being
equivalent. In a way analogous to the eigenfrequen-
cies and mode shapes in the linear regime, nonlinear
modes are characterized by oscillation frequencies and
mode shapes, which are dependent on the amplitude of
the motion due to the presence of the nonlinearities, a
point on which this article especially focuses in order
to investigate the effect of gravity.

This paper is divided into five sections: In Sect. 2, the
governing equations ofmotion are presented, including
details on incorporation of the gravity terms. Section3
discusses the effects of the gravity on the linear eigen-
frequencies, including a comparison to the work of
Hijmissen and van Horssen [15]. The nonlinear effects
are treated in Sects. 4 and 5, with emphasis on compu-
tation of the nonlinear modes. Finally, the paper ends
in Sect. 6 with an analogy to a simple pendulum system
in order to provide a more physical interpretation of the
effect of gravity on the cantilever system.
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Fig. 1 Cantilever beam orientations with rectangular cross sec-
tion: a standing configuration, b hanging configuration

2 Governing equations

In this section, the equations of motion and their finite
element discretization are presented. Based on a pre-
vious work [44], the equations are here adapted to the
case of a weighted cantilever. Within this framework,
we begin by considering a straight cantilever beam of
length L oriented vertically with respect to the direc-
tion of gravity, as shown in Fig. 1. Two orientations of
the cantilever beam are equally considered: that of a
standing cantilever, with the free end at the top of the
beam (Fig. 1a), and that of a hanging cantilever, with
the free end at the bottom (Fig. 1b).

2.1 Beam model

Based on Timoshenko beam kinematics, it is assumed
that any cross section undergoes a rigid-body trans-
formation that may be arbitrarily large. Considering
that the undeformed centerline of the beam is aligned
with the eX -direction and that the motion of the beam
is restricted to the plane (eX , eY ) of a global basis
(eX , eY , eZ ), the displacement field of any point in the
cross section at location x along the beam in the refer-



ence (undeformed) configuration is written [44]:

u(x, y, t) = [u(x, t) − y sin θ(x, t)] eX
+ [w(x, t) + y (cos θ(x, t) − 1)] eY , (1)

where (x, y) are the coordinates of the point of the beam
in the reference configuration, t is the time, u(x, t) and
w(x, t) represent, respectively, the axial and transverse
displacements fields, and θ(x, t) is the total rotation of
the cross section, including any shearing (see Fig. 1).

The strains are definedby theGreen–Lagrange strain
tensor, to which a consistent linearization is applied;
in this process, the part of the strains relating to local
strains is linearized, while the part relating to rigid-
body rotation is kept exact (see [44] for more details).
It is appropriate in cases where the local strains remain
fairly small, as is true for our case of a very thin, slender
beamstructure, even for extremely large rotations of the
cross section. The strains can then be written:

e = (1 + u′) cos θ + w′ sin θ − 1, (2a)

γ = w′ cos θ − (1 + u′) sin θ, (2b)

κ = θ ′, (2c)

with e and γ being the axial and shear strains, respec-
tively, and κ the beam curvature, and where ◦′ =
∂ ◦ /∂x .

Following the derivations in [44], the strong form of
the equations of motion is written:

⎧
⎪⎨

⎪⎩

ρAü = (N cos θ − T sin θ)′ + n,

ρAẅ = (N sin θ + T cos θ)′ + p,

ρ I θ̈ = T (1 + e) − Nγ + M ′ + q,

(3a)

(3b)

(3c)

with the generalized constitutive laws:

N = E Ae, T = kGAγ, M = E Iθ ′, (4)

where ρ, E,G are the density, Young’s modulus and
Coulomb’s (shear) modulus, respectively, of the mate-
rial, assumed homogeneous and isotropic, A and I are,
respectively, the area and second moment of area of
the cross section, and k is the shear correction factor
that accounts for the non-uniformity of shear stresses
in the cross section. The internal forces are denoted by
N , T and M , the axial force, shear force and bending
moment, respectively. They are linearly related to the

strains according to a linear Kirchhoff–Saint–Venant
constitutive law [45],which remains valid as long as the
strains are small. The external forcing appears within
n, p and q, which are, respectively, the axial force,
transverse force and bending moment per unit length.
Notice in Eq. (3) the geometrical nonlinearities sin θ

and cos θ governing the rotation of the cross section,
which are kept fully exact in the geometrically exact
beam model.

For the cantilever beam under consideration, the
boundary conditions are such that one end of the beam
(at x = 0) is fixed and the other free (at x = L), written
explicitly as:

u = w = θ = 0, at x = 0, (5a)

N = T = M = 0, at x = L . (5b)

2.2 Dimensionless equations and independent
parameters

The weight of the beam intervenes as a constant force
in the direction of the gravitational acceleration vec-
tor. For the sake of this derivation, we choose as our
reference configuration the standing beam (Fig. 1a),
and thus, the gravitational acceleration is written g =
−geX . Since n, p and q are expressed in material
coordinates, gravity simply leads to an axial force
n = −ρAg.

To better understand the influence of the gravita-
tional field on the beam Eq. (3) and to obtain inde-
pendent parameters of the problem, it is convenient to
render the system dimensionless. To do so, the system
is normalized by injecting the following dimensionless
parameters into the equations:

ū, w̄ = 1

L
(u, w), x̄ = x

L
,

t̄ = t

L2

√
E I

ρA
, ω̄ = L2

√
ρA

E I
ω, (6a)

N̄ , T̄ , q̄ = L2

E I
(N , T, q),

n̄, p̄ = L3

E I
(n, p), M̄ = L

E I
M, (6b)

where ¯( ) indicates a dimensionless parameter and L
is a characteristic length, chosen here as the length of
the cantilever. Injecting these dimensionless parame-
ters into Eqs. (3) and (4) results in the following dimen-



sionless equations of motion:

⎧
⎪⎪⎨

⎪⎪⎩

¨̄u = (N̄ cos θ − T̄ sin θ)′ − α,

¨̄w = (N̄ sin θ + T̄ cos θ)′ + p̄,

ηθ̈ = T̄ (1 + e) − N̄γ + M̄ ′ + q̄,

(7a)

(7b)

(7c)

with

N̄ = e/η, T̄ = γ /μ, M̄ = θ ′. (8)

It can be seen in the above equations that the system
depends only on three independent parameters: η, μ

and α, defined as:

η = I

AL2 , μ = E I

kGAL2 = 2(1 + ν)η

k
,

α = ρgAL3

EI
= ρgL

Eη
, (9)

where ν represents the material Poisson’s ratio, with,
for a homogeneous isotropic material, G = E/[2(1 +
ν)]. Rewriting η for the case of a rectangular cross
section as:

η = I

AL2 = bh3/12

bhL2 = 1

12

(
h

L

)2

, (10)

with h being the thickness of the cross section and b the
width, η can bemore easily interpreted as a slenderness
parameter: the thinner the beam, i.e., the smaller the
thickness-to-length ratio h/L , the smaller the η. The
second parameter, μ, represents the ratio between the
bending stiffness of the beam and its shear stiffness and
is entirely related to the Timoshenko kinematics. In the
case of Euler–Bernoulli kinematics, the shear stiffness
would be infinite, leading to μ = 0 and γ = 0. For
a homogeneous and isotropic material, μ is a function
of η, as shown above. For the special case of slender
beams, both η and μ are very small (see Table 1).

Whereas parameters η and μ are common to any
structure modeled as an assembly of beams (see, e.g.,
[4]), the effect of gravity appears solely in the equations
through a new parameter, α, that can be interpreted as
the ratio between the effect of the restoring force due
to gravity and the one due to the bending stiffness. This
parameter was previously introduced in the literature to
explain the buckling of a standing cantilever under its
own weight when exceeding the critical value αcrit =
7.837, as shown in [5].

Table 1 Thickness-to-length (h/L) ratio corresponding to dif-
ferent values of η for a rectangular cross section and μ =
2(1 + ν)η/k, with k = 5/6 and ν = 0.3

η = 1
12

( h
L

)2
h/L μ

2 · 10−4 0.0490 � 1/20.4 6.24 · 10−4

1 · 10−4 0.0346 � 1/28.9 3.12 · 10−4

5 · 10−5 0.0245 � 1/40.8 1.56 · 10−4

1 · 10−5 0.0110 � 1/91.3 3.12 · 10−5

1 · 10−6 0.0035 � 1/289 3.12 · 10−6

1 · 10−7 0.0011 � 1/913 3.12 · 10−7

1 · 10−8 0.0003 � 1/2887 3.12 · 10−8

Referring back to the definition of the gravitational
acceleration vector g and Fig. 1, it can be seen that
Eq. (7) apply also to the hanging beam configuration
simply by changing the sign of g and, thus, the sign of
α. Consequently, a standing cantilever configuration is
obtained when α > 0 and a hanging cantilever when
α < 0 as shown in Fig. 1; both cases will be considered
in Sects. 3, 4 and 5.

Since the effect of gravity on the mechanics of the
beam depends solely on the magnitude of α, it is worth
analyzing in more detail the parameters that govern
it. Returning to its definition in Eq. (9), it can be seen
that α naturally increases linearly with the gravitational
acceleration g. It also depends on the material charac-
teristics of the beam through ρ and E , which is logical
since α is related to the ratio between the weight of
the beam and its bending stiffness. Finally, α depends
on the geometry of the beam through L and η, indi-
cating that the effect of gravity increases as the beam
becomes more slender (i.e., as η decreases). For this
reason, it is important to investigate both the effects of
gravity (through α) and the slenderness (through η) on
the beam mechanics. In this study, only slender beams
will be considered, i.e., with very small η. We consider
a maximum threshold ratio h/L of around 1/20 for
the beam to be considered very slender, meaning that
η ≤ 2 · 10−4 (see Table 1). The values of η selected
in this paper are chosen accordingly, ranging between
η ∈ [10−8, 2 · 10−4].

As seen above, μ conditions the shear stiffness of
the beam and is very small for slender beams, being
proportional to η. Apart from η, its value is governed
by the Poisson’s ratio 0 ≤ ν ≤ 0.5 and the shear coef-
ficient k. The value of k itself depends on ν along with



the geometry of the cross section. It may be computed
based on an energetic equivalence and roughly takes
values between 0.8 and 0.9 (for rectangular cross sec-
tions, k = 5/6 � 0.833 ) [46–48]. However, since only
slender beams are considered in this article, the effect of
shearing is, in fact, negligible and therefore virtually no
difference between Timoshenko and Euler–Bernoulli
kinematics is noticed. Consequently, the effect of vari-
ations in μ is not considered in what follows. (Values
of ν = 0.3 and k = 1 have been used in the simula-
tions.) Instead, we consider that the principal parame-
ters governing the behavior of the weighted cantilever
are simply η and α. Additional analysis justifying this
choice and further highlighting the minimal influence
of shearing for the case of very slender beams is pre-
sented in Appendix A.

2.3 Finite element geometrically exact formulation

The problem under consideration here has been fully
defined by Eqs. (3), (4) and (5). It is highly nonlin-
ear due to the geometrical nonlinearities (the sin θ and
cos θ terms) and has no closed-form solution in non-
linear dynamics. An approximate analytical solution,
valid up to moderate rotations of the cross section, can
be derived based on Euler–Bernoulli kinematics and
assuming the condition of inextensibility and a third-
order truncation of the nonlinearities (seeAppendixC).
However, as we concern ourselves more with extreme
amplitude vibrations, we rely instead on a finite ele-
ment (FE) method to discretize the spatial part of the
problem. An alternate approach would have been to
keep the model of Appendix C exact (i.e., without the
third-order truncation), rewriting it solely as a function
of the rotation of the cross section θ(x, t) and solving
it via discretization on a mode shape basis, as done in
[1,2].

The problem is discretized using standard finite ele-
ments with linear shape functions, as done previously
in [4,44] without incorporating the effect of gravity,
which is here added in. The beam is discretized into
Ne two-node Timoshenko beam elements [49], each
of length Le, which could depend on x if the mesh is
not uniform. The ( )e superscript is used to differentiate
quantities related to the individual elements from their
global counterparts. For each node of the mesh, there
are three degrees of freedom (ui , wi , θi ), representative
of the axial displacement, transverse displacement and

rotation of the cross section, respectively. For each ele-
ment, the degrees of freedom at each of the two nodes
are gathered in the vector qe:

qe = [u1 w1 θ1 u2 w2 θ2
]T

, (11)

which relates to the displacements interpolated over the
element ∀x ∈ [0, Le] according to:

⎡

⎣
ue(x, t)
we(x, t)
θe(x, t)

⎤

⎦ = N(x)qe(t), (12)

where N is the matrix of shape functions for each ele-
ment, defined as:

N(x) =
⎡

⎣
N1(x) 0 0 N2(x) 0 0
0 N1(x) 0 0 N2(x) 0
0 0 N1(x) 0 0 N2(x)

⎤

⎦ .

(13)

Since linear shape functions are used, N1 and N2

take the form:

N1(x) = 1 − x

Le
, N2(x) = x

Le
. (14)

The equations of motion of the finite element model
are derived from the principle of virtual work, which is
written, for all virtual displacement δu:

δWa + δWi = δWe, (15)

with δWa being the inertial, δWi the internal and δWe

the external virtual works. Integrating Eq. (12), the vir-
tual work terms are discretized in order to define the
elementary mass matrix, the internal and external force
vectors and any other elementary quantities for a single
element (the explicit details of which, omitted here, are
outlined in [4]).

The effect of gravity is introduced as an applied force
in the external virtual work component δWe, which is
written:

δWe
e =

∫

V e
(δu)Tb dV =

∫ Le

0

(
δu δw δθ

)

⎛

⎝
n
p
q

⎞

⎠ dx,

(16)



where n(x, t), p(x, t) and q(x, t) correspond to the
distributed axial force, transverse force and bending
moment, respectively, as in Eq. (3), and where b is
the vector of body forces. As explained in Sect. 2.2,
gravity appears in the axial direction as n = −ρAg,
p = q = 0, which, integrating Eq. (12) into (16), leads
to:

δWe
e = (δqe)T

⎛

⎝−ρAg
∫ Le

0
NT

⎡

⎣
1
0
0

⎤

⎦ dx

⎞

⎠

︸ ︷︷ ︸
feg

, (17)

with:

feg = −1

2
ρAgLe [1 0 0 1 0 0

]T
. (18)

Following this, the expressions for the elementary
quantities are assembled for the entire structure accord-
ing to traditional finite element assembly procedures.
Formally, the problem can be written:

Mq̈ + Dq̇ + fint(q) = fg + fext, (19)

where q is the column vector containing all degrees
of freedom ui , wi and θi , i ∈ [1, N ] with N ∈ N

being the number of nodes, M is the mass matrix of
size 3N × 3N , fint(q) is the internal force vector, fg is
the gravitational force vector, and fext is the external
force vector (housing all external forces except grav-
ity), all three of size 3N × 1. The geometrical non-
linearities sin θi and cos θi appear in the internal force
vector fint, the full expression of which is found in [4].
A linear damping term, with the damping matrix D of
size 3N × 3N , is also introduced for the sake of gen-
erality, although this term is not used in what follows
since we focus on free, undamped vibrations. Finally,
considering the fixed-free boundary conditions defined
by Eq. (5), a null value for degrees of freedom (u, w, θ)

is enforced at the node located at x = 0.

2.4 Numerical solving and type of problems
considered

As explained in the introduction, in this study we focus
primarily on computation of the nonlinear modes of the
system under the influence of gravity. Consequently,

we consider the free and undamped problem associated
with Eq. (19), namely:

Mq̈ + fint(q) − fg = 0. (20)

The nonlinear modes are here computed by contin-
uation of periodic solutions as the families of periodic
orbits that emerge from the equilibrium position of the
system in the phase space. They are identical to the
invariant manifolds of the system, as explained, e.g., in
[38]. In practice, the harmonic balance method (HBM)
is used to compute the periodic solutions of the prob-
lem as Fourier series of q(t). The HBM transforms
Eq. (20) into an algebraic system, which is then solved
by the asymptotic numerical method (ANM) in a pro-
cess extensively documented in previous works [4,32].
Solving the system yields the evolution of the Fourier
components of q(t) as a function of the frequency 


of the oscillations, leading to the frequency/amplitude
relations of the nonlinear modes, well known as the so-
called backbone curves, as well as the nonlinear mode
shapes. These are investigated in Sects. 4 and 5. As a
final detail, it should bementioned that since Eq. (20) is
autonomous, a phase condition and a fictitious damp-
ing term are added for numerical purposes, as fully
explained in [4].

Due to the presence of gravity, the equilibrium
(static) configuration of the system is not qs = 0 but
the solution of:

fint(qs) − fg = 0, (21)

which is representative of an axial compression of the
cantilever in the standing equilibriumconfiguration and
to a stretching in the hanging configuration. The static
solution is used in two different computations, either
as the starting point for computation of the nonlinear
modes or in computation of the evolution of the (linear)
eigenmodes of the problem.

Since we are interested in vibrations of the system,
it is convenient to consider its oscillations around the
equilibrium configuration q̃(t), defined by:

q̃(t) = q(t) − qs. (22)

Introducing this equation into Eq. (20), the problem
is rewritten for q̃(t):

M ¨̃q + fint(q̃ − qs) − fg = 0. (23)



Equation (23) can be linearized using the Taylor
expansion of fint(q) around qs, yielding:

fint(q) � fint(qs)+Kt(qs)q̃, Kt(qs) = ∂fint
∂q

∣
∣
∣
∣
q=qs

,

(24)

where the nonlinear terms in the Taylor expansion have
been neglected and with Kt being the tangent stiffness
matrix. Introducing Eq. (24) into Eq. (20) and using
Eq. (21), the following relation is obtained:

M ¨̃q + Kt(qs)q̃ = 0. (25)

This problem defines the small (linearized) oscilla-
tions of the system around its equilibrium (weighted)
position, which leads to the eigenvalue problem:

[
Kt(qs) − ω2M

]
� = 0. (26)

The solutions of Eq. (26) are the (linear) eigen-
modes (ωm,�m), m = 1, . . . N of the system. Since
qs is directly tied to gravity (Eq. (21)), the effect of the
weight of the cantilever beam on its own eigenmodes
can be analyzed by solving this eigenvalue problem.
The results of this analysis are described in Sect. 3. In
practice, the tangent stiffness matrix Kt is computed
according to standard FE assembly procedures, a pro-
cess explained in Appendix B.

Two different methods for computing qs are imple-
mented and compared. The first method computes the
solution of the full nonlinear problem directly using a
Newton–Raphson iteration algorithm to solve the non-
linear Eq. (21). A second method computes qs, which
is assumed very small since the beams under consid-
eration are very stiff in the axial direction, with the
linearized version of Eq. (21), written:

Kt(0)qs = fg. (27)

It is noted that since qs is typically small, the results
of the two methods are virtually identical; however,
some inconsistencies are uncovered when computing
qs for very small values of η (i.e., η ≤ 10−8), which is
discussed in the next section (§3).

Moreover, recall from Sect. 2.2 that the system can
benormalizedby introducing the dimensionless param-
eters defined in Eq. (6). For better conditioning of the

numerical problem and to bring more universality to
the results, the normalized system is used in prac-
tice, simply by selecting the following values for the
material and geometrical parameters of the system:
L = 1, E I = 1, ρA = 1, ρ I = η, E A = 1/η,
kGA = 1/μ = k/[2(1 + ν)η] and g = α. Since, as
explained before, variations of μ are not investigated,
values of ν = 0.3 and k = 1 are selected in the simu-
lations. Finally, all numerical computations presented
in this work are carried out on a finite element mesh
of N = 50 nodes (i.e., 49 elements) and with H = 20
harmonics in the HBM computations.

3 Effect of (α, η) on the natural frequencies

In this section, the effect of gravity on the (linear)
natural frequencies of the (dimensionless) system is
investigated. Following the discussion of Sect. 2.2, only
two independent parameters condition the mechanics
of the beam: the slenderness parameter η and the grav-
ity parameter α. In order to investigate first the effect
of (α, η) on the natural frequencies, the beam’s param-
eters are chosen as explained at the end of Sect. 2.4
and the modes of the beam (ω̄m,�m) are computed
by numerically solving Eq. (26) for several values of
(α, η). Throughout this work, we choose to concentrate
on the first three bendingmodes of the cantilever beam,
m = 1, 2, 3.

The results of the effect of (α, η) on ω̄m are sum-
marized in Fig. 2a for the first three bending modes.
For reference, the deformed shape of the first bending
mode is depicted in Fig. 3a, while the second and third
bendingmodes are depicted in Fig. 3b and c. The linear
natural frequencies ω̄m form = 1, 2, 3 are solved for a
range ofα values for six different η values (six different
beam geometries). The black dashed line at α = 0 indi-
cates the location of zero gravity (i.e., where the weight
of the beam is not taken into account), with negative
α to the left indicating a “hanging” beam configura-
tion and positive α to the right indicating a “standing”
beam. At the point of “no gravity” (α = 0), the value
of ω̄m for each mode matches its classical dimension-
less natural frequency for a uniform cantilever beam
[50] (ω̄m = [3.516, 22.034, 61.701] for m = 1, 2, 3).
In addition, Fig. 2b shows a zoom of Fig. 2a onto the
first bending mode.

First, consider the effect of η on ω̄m . The computa-
tion of ω̄m = f (α) is performed for six different values
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Fig. 2 Effect of gravity on the dimensionless natural frequen-
cies ω̄m : a for the first three bending modes of the cantilever
beam, b zoom of a onto the first bending mode, c the same as
a but depicting ω̄2

m = f (α), d zoom of c onto the first bending
mode. Several values of the slenderness parameter η as well as

approximations based on [15] are depicted, as specified in the
legend. The vertical blue dashed lines indicate the self-buckling
point at αcrit . A linear fit based on the two points indicated with
circles in d is shown in cyan

of η ranging from 2 · 10−4 to 10−8, i.e., from a rather
thick beam to a very thin one (see Table 1 for the values
of h/L corresponding to η in the case of a rectangular
cross section). In Fig. 2a, it is readily seen that, for all
three modes, ω̄m = f (α) varies little for different val-
ues of η. In fact, there is virtually no difference in the
curves apart from on the third bending mode, where
an η = 2 · 10−4 or 10−4 reduces ω̄3 slightly compared
to other η. (Some discussion on the larger effect of η

on mode 3 is presented at the end of Sect. 4.1.) It can
be said, then, that the effect of η for η ≤ 10−5 on the
natural frequencies ω̄m is negligible.

The same cannot be said for the influence of α on
ω̄m . Particularly on the first mode of vibration, ω̄1

changes significantly for different values of α. In gen-
eral, for all three modes, a negative α increases the
natural frequency, while a positive α decreases it. The
effect of gravity on a standing (resp. hanging) cantilever
is to add a restoring force in the system which acts
qualitatively in the same way as a pre-compression
(pre-tension). This pre-compression (pre-tension) of
the beam results in a decrease (increase) of the bend-
ing stiffness and, thus, decreases (increases) the natu-
ral frequencies. A more physical interpretation of this



effect can be described using a simple pendulum sys-
tem,which is explained in detail in Sect. 6. In the case of
the standing cantilever (α > 0), the gravity decreases
the global bending stiffness of the cantilever until it is
completely canceled, which occurs at a critical value
of the gravity parameter α = αcrit = 7.837. In stat-
ics, αcrit corresponds to the point of self-buckling, well
known in the literature [5], at which the standing beam
buckles under its own weight. In dynamics, αcrit cor-
responds to the first natural frequency ω̄1 tending to
zero [51–53], as shown in Fig. 2b. Beyond the point
of self-buckling, the compressed, straight and vertical
equilibrium configuration of the beam is no longer sta-
ble, indicated by the dashed portions of the mode 2
and 3 curves in Fig. 2a. The dashed blue line in Fig. 2
indicates the location of failure due to self-buckling at
αcrit .

Note, however, that as α approaches αcrit, the lin-
earized tangent stiffness matrix Kt approaches a singu-
larity, which occurs exactly at the self-buckling point
(at α = αcrit ⇔ ω̄1 = 0). This effect is explained
since the terms inKt related to the bending stiffness are
decreased (and canceled at α = αcrit) due to the influ-
ence of gravity. This effect is magnified when η is very
small, which explains the numerical noise observed in
the ω̄1 = f (α) curve of Fig. 2b close to the buck-
ling point when η = 10−8. For very small values of η

(observed in our case only for η = 10−8), the linear
computation of qs using Eq. (27) is not considered suf-
ficiently accurate due to the existence of this numerical
noise in the ω̄1 = f (α) curve. To avoid this, the non-
linear computation of Eq. (21) is used, although some
numerical noise remains very close to αcrit .

In the stable equilibrium region α < αcrit, it can be
seen that α does not have as strong of a relative influ-
ence on ω̄m form > 1. To describe this effect quantita-
tively, compare the values of ω̄m atα = 0 andα = 7 for
all three modes: at α = 0, ω̄m = [3.51, 21.93, 61.03]
and at α = 7, ω̄m = [1.18, 20.64, 60.44] for m =
1, 2, 3, respectively. On modes 2 and 3, ω̄m decreases
by less than 6% and 1%, respectively, while on mode
1, it decreases by more than 66% between α = 0 and
α = 7. This simple comparison highlights the large
influence of the gravity parameter α on the natural fre-
quency of the first bending mode of vibration of the
cantilever beam, while its influence remains relatively
small on higher-frequency bending modes. The same
was found in the work of Hijmissen and van Horssen in
[15]; computing their linear estimation of ω̄m = f (α)

for m = 1, 2, 3 revealed a weaker α influence on the
higher-frequency modes. The linear estimations pro-
vided by Hijmissen and van Horssen [15] are given by
the red dashed lines in Fig. 2a for comparison, again
with a zoom on the first mode in Fig. 2b. Our results
are in good agreement with the estimation of [15] (par-
ticularly close to α = 0), once again highlighting the
strong influence of α on ω̄1.

An interesting feature can be seen when plotting ω̄2
m

as a function ofα, as done in Fig. 2c and d: It is observed
that an almost linear relationship exists between the
square of the natural frequencies and α, a trend like-
wise noticed in [17]. A linear fit through the two known

points
(
0, ω̄2

0,1

)
and (αcrit, 0) is overlaid onto Fig. 2d

to further highlight this, where ω̄0,m = ω̄m(α = 0). By
consequence, a good approximation of the α depen-
dence of the natural frequencies can be written as a
square root relationship:

ω̄m = ω̄0,m
√
1 − α/αcr,m, (28)

where αcr,m is the m-th buckling point, with of course
αcr,1 = αcrit = 7.837. This relationship explains why
α has a stronger influence on ω̄1 than on the higher-
frequency modes: Considering the particular shape of
the square root, each curve ω̄m = f (α) is a scaled
version of the same overall shape, with a breakdown
at α = αcr,m (see Fig. 2a). Consequently, ω̄1 = f (α)

decreases more in the range α ∈ [0 αcr,1] than the
higher natural frequencies ω̄m , m > 1, justifying the
stronger effect of α on ω̄1.

4 Effect of (α, η) on nonlinear backbone curves

Next, we turn to the effects of gravity on the nonlin-
ear dynamics of the slender cantilever beam.When the
displacement of the beam becomes sufficiently large,
the geometrical nonlinearities (recall Eqs. (2) and (3))
are activated. As explained in the introduction, in this
paper we choose to focus on the nonlinear modes of the
cantilever, represented here by their backbone curves
and nonlinear mode shapes. The nonlinear modes are
defined as the particular solutions of the undamped and
free oscillation problem, defined here by Eqs. (20) or
(23). Note that they share this definition with the stan-
dard (linear) eigenmodes of a linear system, the differ-
ence being the nonlinearities in the equations ofmotion.
They correspond equivalently to invariant manifolds of
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Fig. 3 Snapshots of the cantilever beam vibrating on its first
three nonlinear modes at moderate amplitude: a first mode, b
second mode, c third mode. The locations on the backbones at

which the snapshots are taken are marked with black circles in
Figs. 5, 6, 8a and 9

(a) (b) (c)

Fig. 4 Snapshots of the cantilever beam vibrating on its first
three nonlinear modes at high amplitude: a first mode, where the
cantilever has “bent backwards” beyond its fixed end, b second

mode, c third mode. The locations on the backbones at which the
snapshots are taken are marked with blue circles in Figs. 5, 6, 8a
and 9

the phase space or to families of periodic solutions (see,
e.g., [38]). The latter (families of periodic solutions)
definition is used here to compute the nonlinear modes
with theHBM-ANMstrategy.Themaindifferencewith
linear modes is that the free oscillation frequency and
the shape of the motion on the mth nonlinear mode—
the extension of the natural frequencies ωm and the
mode shape �m to the nonlinear regime—now depend
on the amplitude (or energy) of the motion. The former
is represented here in a classical amplitude/frequency
plot called the backbone curve. The latter, the nonlin-
ear mode shape, depends on the amplitude and is illus-
trated by plotting snapshots of the beam oscillations
over a half period, at a given energy. Examples for the
first mode are shown in Figs. 3a and 12 for low-to-
moderate amplitudes of vibration and in Fig. 4a at very

large amplitude. The second and third mode shapes are
shown in Fig. 3b and c at moderate amplitude and in
Fig. 4b and c at a higher amplitude. In this section, we
focus on the effect of (α, η) on the backbone curves;
the effect on the nonlinear mode shapes is addressed in
Sect. 5.

As before, the influences of the two dimensionless
parameters α and η are studied separately. To this end,
the backbone curves are computed by solving Eq. (20)
with the HBM-ANM method for several values of
(α, η). Results are presented in Sect. 4.1 for constant
α and in Sect. 4.2 for constant η. Here, the backbone
curves trace the evolution of the amplitude of the first
harmonic (H1) of either the cross-section rotation at
the free end of the cantilever θ(L , t) or the transverse
displacement w(L , t) as a function of the frequency



of oscillation 
 (
 = 2π/T with T the period of the
motion) in Figs. 5, 6, 8 and 9. Based on the results
of [1,4], it was found that showing only H1 gives an
excellent image of the amplitude of the periodic solu-
tion since this harmonic is heavily dominant up to very
large amplitudes of displacement. Moreover, the back-
bone curves tied to the cross-section rotation θ(L , t)
are considered more readable than those of the trans-
verse amplitude w(L , t) since they increase monoton-
ically, whereas the latter fold at large amplitude, i.e.,
beyond θ(L , t) > π/2 when the beam bends back-
wards (compare Fig. 5a and b). For this reason, mostly
θ(L , t) backbones are depicted in this work, instead of
w(L , t). Note also that all backbone curves have been
normalized by the (linear) natural frequency ωm(α),
which depends on gravity, as analyzed in Sect. 3.

4.1 Effect of η

First, we study the isolated effect of the dimension-
less slenderness parameter η on the first three nonlin-
ear modes. In this case, the effect of gravity is removed,
i.e., α is fixed at 0. The amplitude of the first harmonic
H1 backbone curve is traced for the rotation degree of
freedom θ at the free end of the cantilever, i.e., the loca-
tion of maximum displacement on a cantilever beam,
for several values of η. The θ backbone curve is shown
for nonlinear modes one, two and three in Figs. 5a and
6. To these is also added the backbone curve of the first
nonlinear mode for the transverse displacement degree
of freedom w̄ at the tip of the beam in Fig. 5b.

Beginning with the first nonlinear mode, the shape
of the backbone curves in Fig. 5 highlights several
classical phenomena in the field of nonlinear dynam-
ics. First, it is seen that as the displacement ampli-
tude of the vibrating cantilever increases, the oscillat-
ing frequency 
/ω1 likewise increases. This behav-
ior is known as frequency dependence on the vibration
amplitude and is strictly a nonlinear effect. (A linear
“backbone” curve would be a straight vertical line at
the resonant frequency.) If the frequency increases with
increasing amplitude, the trend is referred to as harden-
ing (versus softening if reversed). All backbone curves
in Fig. 5 for different values of η depict this hardening
trend, which validates the known hardening of the first
nonlinear mode of the cantilever beam [2,42,44,54].
Another classical nonlinear effect is seen in the jumps
and branches or “offshoots” from the main backbone

curve. Such instances represent locations of internal
resonance (IR), when some energy is transferred from
one mode to another one because of a frequency lock-
ing between the harmonics of the oscillating mode and
the nonlinear frequencies of other modes (see, e.g.,
[38,43,55]).

The appearance of internal resonance points along
the backbone curve can take different forms and can
sometimes be challenging to compute numerically. For
the present case of a cantilever beam, thiswas discussed
in [4]. Furthermore, since the focus in this article cen-
ters on the main backbone curves, the IR branches are
not computed entirely, leading in some cases to inter-
ruptions in the curve shown (as explained in [4]). Note
that the shape of the backbone curves inFig. 5 is slightly
different from those shown in [4], especially in the
vicinity of the IRs as well as at large amplitude. This is
due to the fact that in [4], the maximum amplitude over
one period of oscillation—thereby including the effect
of all harmonics—was shown, whereas, here, only the
amplitude of the first harmonic is depicted. However,
the difference between the maximum amplitude and
the first harmonic of θ is, in this case, slight; as men-
tioned earlier, the first harmonic greatly dominates the
higher harmonics, which become consequential only
at higher amplitude. This is illustrated in Fig. 7, which
superimposes the backbone curve in terms of the max-
imum amplitude of θ(L , t) over one period onto the
backbone curves of the first three odd harmonics H1,
H3 andH5, and inwhich the dominance ofH1 is clearly
visible.Moreover, since the oscillations of the structure
are symmetrical, θ(x, t) is an odd function of t and its
even harmonics are zero (and, thus, are not included
in Fig. 7). Some differences between [4] and this work
can also be explained by the differences in the number
of finite elements (FEs) and harmonics H . The number
of FEs greatly influences the values of the natural fre-
quencies of the higher modes and thus the locations of
the IRs on the main branch, which is itself much less
affected. A greater number of FEs also increases the
number of IRs since it increases the number of natural
modes and therefore the number of possible frequency
lockings,which is also influenced by the number of har-
monics H retained in the HBM. We use 50 FEs in the
present article, whereas between 20 and 30 (depending
on the mode) were used in [4], with the same number
(H = 20) of harmonics in both cases. In practice, the
IR branches are avoided during the continuation pro-
cess by manually jumping across their zone of appear-



(a) (b)

Fig. 5 Effect of the slenderness parameter η on the first nonlin-
ear mode: a amplitude of the first harmonic H1 of θ at the free
end of the beam for different values of η and comparison with

inextensible (analytical) beammodel [26,27], b amplitude of the
first harmonic H1 of w̄ at the free end of the beam for different
values of η. Case with no gravity (α = 0)

(a) (b)

Fig. 6 Effect of the slenderness parameter η on the second and
third nonlinear modes: a amplitude of the first harmonic H1 of θ

at the free end of the beam for different values of η (mode 2) and
comparison with inextensible (analytical) beam model [26,27],

b the same as (a) for mode 3. Case with no gravity (α = 0).
Note that some curves (particularly for small η) overlap others
and therefore some curves may not be visible

ance using an initial guess in frequency after the critical
region and a Newton–Raphson algorithm to initiate the
computation on the next branch. In the present case
of a cantilever beam, this process is found to be deli-
cate because some unusually large frequency ranges for
the IR branches are uncovered: Notice the IRs around

 � 1.04ω1 for the first mode and 
 � 0.92ω2 for
the second mode in Fig. 7a and b). For the latter case,

as shown in Fig. 7b, it is even more unusual that the
branch of the first harmonic (dark blue) is virtually
unaffected by the presence of the IR, meaning it can
go undetected during continuation unless the third har-
monic (brown) or the maximum amplitude of the peri-
odic solution (light blue) is also monitored.

As in Sect. 3 for the natural frequencies, it can be
seen that the effect of η on the mode 1 backbone curves



(a) (c)(b)

Fig. 7 Comparison of the maximum amplitude of θ(L , t) over
one period of oscillation on the first three nonlinear modes with
the amplitudes of the first three odd harmonics H1, H3 and H5.

Note that the H1 curves are the same as those shown in Figs. 5
and 6 for α = 0, η = 10−7: a first nonlinear mode, b second, c
third

(Fig. 5) is very slight, almost indistinguishable, so long
as η remains small (η ≤ 10−5). The effect of η on the
backbone curves becomes apparent only for larger val-
ues of η, i.e., when the beam is less slender. In this case,
the location of the internal resonances shifts slightly
due to changes in the frequencies of the higher modes
that are affected by the change inη, thusmoving the fre-
quency locking.An analytical computation of the back-
bone curves is also included in Fig. 5, depicted with the
dashed black curve, based on the approximate inexten-
sible beammodel of [26,27] restricted to the first bend-
ing mode (see Appendix C for details on this model).
In this model, the geometrical nonlinearities are trun-
cated in the Taylor series expansions at order 3 inw/L ,
leading to this model being valid only up to moderate
amplitudes of vibration and diverging from the numeri-
cal (i.e., geometrically exact) backbone curves (around
θ = 0.2π rad and w = 0.5 L at the beam’s tip). This
model is included in order to validate the finite element
discretization of the geometrically exact model used
here at low-to-moderate amplitudes.

For the second nonlinear mode, the same two obser-
vations as for mode 1 are made, as shown in Fig. 6a: the
influence of η on the backbone curve is negligible, so
long as η remains small (η ≤ 10−5), and also the back-
bone curve is validated at low amplitudes by themode 2
inextensible model of Crespo da Silva et al. (Appendix
C). The same cannot be said for the third nonlinear
mode. As shown in Fig. 6b, the global trend of η’s influ-
ence diminishing for small values of η holds, but only
for very small η, around η ≤ 10−6. The influence of
the slenderness of the beam seems to be quite large on
the third nonlinear mode for “larger” η, e.g., η > 10−5,

even greater than on the first nonlinearmode. Themode
3 backbones for small η ≤ 10−6 are again validated by
the inextensible analytical backbone, but these results
seem to suggest a greater influence of the h/L ratio on
the third nonlinear mode than on either of the first two.
This trend seems logical when considering the mode
shapes of the structure (see Fig. 3); an “improved” def-
inition of the slenderness ratio ηwould consider instead
h/λm , with λm a fraction of L representing the wave-
length of the mode. Referring to Fig. 3 and according
to the “improved” definition, as the mode number m
increases, λm decreases, thereby suggesting a greater
influence of η on the backbone curves of the higher
modes. It is for this reason also that only η in the range
of [10−8, 10−4] is plotted for mode 3 in Fig. 6b.

4.2 Effect of α

Next, we investigate the influence of the dimension-
less gravity parameter α on the first three nonlinear
modes/backbone curves of the cantilever. A constant
η = 10−7 is selected, and the H1 backbones for the
rotation degree of freedom θ at the free end of the beam
(analogous to the backbones in the previous section) are
shown as a function of the normalized frequency
/ωm

for different values of α. The results are summarized
for mode 1 in Fig. 8 and for modes 2 and 3 in Fig. 9.
Note that the mode 1 backbone for (α, η) = (0, 10−7

)

is the same in both Fig. 5a and Fig. 8.
Beginning with the first nonlinear mode, as in

Sect. 3, it can be seen that the dimensionless gravity
parameter α has a significant effect on the backbone
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Fig. 8 Effect of dimensionless parameters on first nonlinear
mode, isolation of the effect of α: a amplitude of the first har-
monic H1 of θ at the free end of the beam for different val-
ues of α with inset zoom onto hardening-to-softening behavior
for α = −2, b a zoom of a at low amplitudes. Comparison
(η = 10−7) with results of Santillan et al. [18] and Luongo et al.

[19]: c maximum transverse displacement of the free end over
one period of oscillation for α = 0 (solid black curve: pertur-
bation approximation [18], dashed curve: finite differences [18],
dots: analytical approximation [19], solid blue curve: η = 10−7

backbone curve of Fig. 5), d the same as (c) but for (from left to
right) α = 5.859, 2.989, 1.655, 0

curve, much more of an effect than η in Sect. 4.1. It
can be seen that, noting that the α = 0 backbone is
already of hardening type, increasing α in a standing
configuration (i.e., increasing positive α) drastically
hardens the backbone curve. In a similar way, decreas-
ing α in a hanging configuration (i.e., decreasing neg-
ative α) softens the backbone curve, until it eventu-
ally becomes a globally softening backbone instead
of the classical hardening mode 1 backbone. Notice
in the inset of Fig. 8a that the backbone curve for
α = −2, which is globally of softening type, is initially
of hardening type, before switching direction around
θ = 0.35π rad. A softening-to-hardening transition

of the backbone curve is classical for initially curved
structures (see, e.g., [56,57] for shallow shells, [58–60]
for shallow arches or [61] for curved cantilevers). How-
ever, an example of the hardening-to-softening tran-
sition like that of the α = −2 backbone in Fig. 8
is much more uncommon, but was observed on the
second nonlinear mode of a flexible ring structure in
[4]. In addition, a comparison is made to the backbone
approximations of Santillan et al. [18] and Luongo et
al. [19] as shown in [18] for cantilever boundary con-
ditions. In Fig. 8c, the maximum transverse displace-
ment at the free end of the beam over one period for the
η = 10−7 backbone of Fig. 5 is computed and com-
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Fig. 9 Effect of dimensionless parameters on second and third nonlinear modes, isolation of the effect of α: a amplitude of the first
harmonic H1 of θ at the free end of the beam for different values of α (mode 2), b the same as a for mode 3

pared to Fig. 5 of [18]. Likewise, the same comparison
is carried out for Fig. 7 of [18] for three nonzero values
of α = [1.655, 2.989, 5.859] in Fig. 8d. Up to very
high amplitudes, it can be seen that there is excellent
agreement between our results and thefinite differences
computation of [18]. The differences at high amplitude
are probably due to the time integration method used in
[18], which did not enforce periodicity of the response
(or invariance), the property used here to compute the
nonlinear modes.

With regard to the second and third nonlinearmodes,
the H1 backbone curves for the same θ degree of free-
dom at the free end of the beam as formode 1 are shown
for several values of α in Fig. 9a for mode 2 and 9b for
mode 3. It can be seen that gravity has only a veryminor
influence on the backbone curves, almost unnoticeable.
It is for this reason that only a few very different values
of α ∈ {−6, 0, 6} are selected for modes 2 and 3 prior
to the self-buckling occurring at αcrit = 7.837, where
α = 6 can be considered as a “large” effect of gravity
on a physical standing cantilever.

Finally, the joint effect of η and α on the nonlin-
ear modes is studied, where η is varied while including
the effect of gravity, i.e., α 	= 0. On the first nonlinear
mode, η is varied as in Fig. 5 for α = 7 and α = −2,
this latter case being selected in particular due to the
unique hardening-to-softening transition of the back-
bone curve observed in Fig. 8. On the second and third
nonlinear modes, η is varied for α = 6 and α = −6
in order to be consistent with Fig. 9. The results are

summarized in Fig. 10 for the first nonlinear mode and
in Fig. 11 for the second and third nonlinear modes. In
general, the main conclusions already established for
the ranges of η and α studied in this work hold also
for η, α 	= 0, namely that η does not have a strong
influence on the backbone curves no matter the value
of α so long as η is small, and that α has a strong influ-
ence only on the first nonlinear mode. Interestingly,
however, larger values of η (η > 10−5) appear to have
a greater influence on the first nonlinear mode as α

decreases: Comparing Figs. 5 and 10, large η (such as
η = 2 · 10−4) has the least influence when α = 7 and
the greatest influence when α = −2.

To summarize, it can be said that the effect of grav-
ity on the nonlinear modes of the system is significant
on the first nonlinear mode, but comparably insignif-
icant on higher-frequency modes. On the first nonlin-
ear mode, it is observed that in a standing configura-
tion (α > 0), increasing the effect of gravity serves to
increase the hardening trend of the backbone, mean-
ing that the global backbone becomes more hardening
when taking into account the gravitational field. In a
hanging configuration (α < 0), the effect is reversed.
Interestingly, gravity has an opposite effect on the first
nonlinear mode as compared to the linear one: In the
standing configuration, gravity has a hardening effect
on the backbone curve of the first nonlinear mode,
whereas it has a softening effect on the (linear) nat-
ural frequencies, since they decrease as α increases, as
described in Sect. 3. A more physical interpretation of



(a) (b)

Fig. 10 Effect of dimensionless parameters on the first nonlin-
ear mode, isolation of the effect of η for α 	= 0: a amplitude of
the first harmonic H1 of θ at the free end of the beam for different

values of η in the standing configuration (α = 7), b the same as
(a) but in the hanging configuration (α = −2)

(a) (b)

Fig. 11 Effect of dimensionless parameters on the second and
third nonlinear modes, isolation of the effect of η for α 	= 0:
a amplitude of the first harmonic H1 of θ at the free end of the

beam for different values ofη (solid curve:α = −6, dotted curve:
α = 6), b the same as a but on the third nonlinear mode

these effects is outlined in Sect. 6 using a simple pen-
dulum system.

Finally, it is noted that the case of the hanging config-
uration is very similar to the case of a rotating cantilever
beam, in which the beam is subjected to a centrifugal
axial field. In this case, the effect of the centrifugal force
is hardening for the (linear) natural frequencies and
softening for the backbone curves (see, e.g., [44,62]).

The similarity between the two cases can be linked to
the axial preload condition, with the only difference
being that the load is not uniform (it increases with x)
in the case of the rotating beam.



(a) (b) (c)

(d) (e) (f)

Fig. 12 Snapshots of the cantilever beamvibrating on its first nonlinearmode for different values ofα. The locations on the corresponding
backbones at which the snapshots are taken are marked by red circles in Fig. 8a

5 Nonlinear mode shapes

5.1 Effect of α on the first nonlinear mode shape

In addition to the effect of (α, η) on the nonlinear back-
bone curves, it is also of interest to study the effect of
gravity on the deformed shape in the nonlinear region.
Based on the results of Sect. 4,we choose to concentrate
the investigation primarily on the influence of α for a
chosen η = 10−7 on the first nonlinear mode, since it is
shown in Sects. 3 and 4 that both η (when small) and α

do not have a strong influence on the higher-frequency
modes up to αcrit.

First, we investigate the effect of α on the deformed
shape of the beam at moderate-to-high cross-section
rotations, aroundamaximumH1amplitudeof 0.45π rad,
considering this region tobe representative ofmoderate-
to-high amplitudes of vibration (and, therefore, judi-
ciously considered as nonlinear behavior). This is jus-
tified since the analytical backbone computation based
on the third-order inextensible beam model of Crespo
da Silva et al., recalling the black dashed line in Fig. 5a,
begins to diverge from the geometrically exact model
around θ = 0.2π rad.

To study the effect of the gravity parameter α on
the deformed shape of the beam, the deformed shape is
traced at points of (nearly) constant amplitudes along

Fig. 13 Snapshots Fig. 12a-f condensed into one figure: α = 0
(green), α = −4 (blue), α = −2 (yellow), α = 2 (red), α = 5
(orange), α = 7 (purple). (Color figure online)

each of the α ∈ {−4,−2, 0, 2, 5, 7} backbones, shown
as red circles in Fig. 8a. Since the continuation points
are different for each numerical computation, it is not
possible to select an exact amplitude of 0.45π rad in
all simulations, the closest continuation point being
selected instead. The coordinates of the red circles in
Fig. 8a for each backbone curve are tabulated inTable 2.

The deformed shapes of the cantilever beam at
these points along the backbone curves are gathered
in Fig. 12. The deformed shapes are taken as a certain
number of snapshots over a fixed time interval equal
to half of the period of the periodic motion. Over the
half period, the individual snapshots of the deformed
shapes appear as the colored curves, the initial refer-



Table 2 Coordinates at which the deformed shapes in Fig. 12
are taken, as shown by the red circles in Fig. 8a

α 
/ω1 Amp. H1 θ [π rad]

−4 0.9854 0.4497

−2 0.9998 0.4497

0 1.0179 0.4500

2 1.0469 0.4491

5 1.1590 0.4511

7 1.5814 0.4505

ence (undeformed) configuration is the black curve, and
the dashed light gray curves joining the colored curves
represent the trajectory of the nodes (see Fig. 12). In
addition, the individual snapshots of Fig. 12 are gath-
ered together in a single plot in Fig. 13.

It is immediately observed that the deformed shapes
of the beam in Figs. 12 and 13 are nearly indistinguish-
able despite the points being taken at very different
frequencies. For example, the α = 0 deformed shape
(Fig. 12a) is traced for a frequency of 
/ω1 = 1.0179,
while the α = 7 deformed shape (Fig. 12f) is traced
for a frequency of 
/ω1 = 1.5814, 1.61 times larger,
yet the deformed shapes are nearly identical. Between
Fig. 12a–f, only the effect of α, i.e., of gravity, changes;
comparing Figs. 8 and 12 proves that although chang-
ing α bends the backbone curve either more hardening
or more softening depending on the sign of α (and,
therefore, shifts the frequency higher or lower), the
deformed shape of the nonlinear mode is essentially
not influenced by gravity.

5.2 Evolution of mode shape as a function of the
amplitude

The surface plots in Fig. 14 provide another useful visu-
alization for understanding the development of the non-
linear deformed shape of the cantilever for different
values of α. Each surface plot corresponds to a back-
bone curve of Fig. 8a for α ∈ {−2, 0, 5}, η = 10−7.
The surfaces depict the amplitude of the first harmonic
H1 of the rotation θ(x, t), normalized by its value at
x = L , as a function of (1) the cross-section positions
x̄ = x/L and (2) the amplitude of the first harmonic H1
of the rotation θ(L , t) at the free end. Consequently, at
x = L , the amplitude of the surface is exactly 1. The
curves are plotted, for each α, for the same range of

amplitudes H1 of θ(L , t) as their backbone counter-
parts in Fig. 8.

These surface plots can be interpreted as the evolu-
tion of the first mode shape of the beam as a func-
tion of the amplitude of the motion. To understand
this, consider first the case of the linearized model,
valid for small amplitude. In this case, the motion on
the first mode would be exactly θ(x, t) = w′(x, t) =
�′

1(x) cos
t , with

�′
i (x) = βi [sin βi x + sinh βi x

+ai (cosβi x − cosh βi x)] , i ∈ N
∗, (29)

obtained by differentiating Eq. (47), showing naturally
that the deformed shape �′

1(x) of the motion does not
depend on the amplitude. The first mode shape �1(x̄)
and its derivative �′

1(x̄), normalized by their values at
x = L , are overlaid on top of the surfaces in Fig. 14.

Analyzing Fig. 14, it can be concluded that, simi-
lar to a linear system, the deformed shape of the first
(leading) harmonic of the cross-section rotation θ(x, t)
motion on the first nonlinear mode is nearly indepen-
dent of the motion amplitude, since the surfaces are
almost flat as a function of H1 of θ(L , t). Since the first
harmonic is leading up to large amplitude, this conclu-
sion indicates that the motion can be approximated by:

θ(x, t) =
+∞∑

i=1

�′
i (x)qi (t), (30a)

= �′
1(x)a

(1)
1 (
) cos
t

+
[+∞∑

i=1

�′
i (x)a

(3)
i (
)

]

cos 3
t

+
[+∞∑

i=1

�′
i (x)a

(5)
i (
)

]

cos 5
t + HH,

(30b)

� �′
1(x)a

(1)
1 (
) cos
t, (30c)

where a(h)
i (
) is the amplitude of the hth harmonic

of the i th modal coordinate qi (t) and HH stands for
“higher harmonics.” Above, Eq. (30a) is a standard
modal expansion, Eq. (30b) represents a Fourier series
decomposition explicitly enforcing the aforementioned
conclusion that the deformed shape of the first har-
monic is independent of the amplitude, and Eq. (30c)
neglects the higher harmonics. This result seems aston-
ishing at first sight since the motion of the beam at



(a) (b) (c)

Fig. 14 Surface plots depicting the (normalized) amplitude of
H1 of θ(x, t) as a function of the position x̄ = x/L and of the
amplitude of H1 of θ(L , t), for several values of α. These surface

plots correspond to the backbones shown in Fig. 8 a. In addi-
tion, the linear mode shapes �1(x̄)/�1(L) and �′

1(x̄)/�
′
1(L)

are shown in blue and orange, respectively

high amplitude appears very complex, as observed in
Figs. 4a and 12. However, if the motion character-
ized by θ(x, t) is a priori very simple, the geomet-
rical nonlinearities appear strongly in the displacement
fields (u, w) of the points on the centerline of the beam
through the kinematics relations (43) (valid if the beam
is inextensible), written:

w(x, t) =
∫ x

0
sin θ(ξ, t) dξ �

∫ x

0
sin
[
�′

1(ξ) cos
t
]
dξ,

(31a)

u(x, t) =
∫ x

0
(cos θ(ξ, t) − 1) dξ

�
∫ x

0

(
cos
[
�′

1(ξ) cos
t
]− 1

)
dξ, (31b)

or, in other words, knowing θ(x, t), it is possible
to reconstruct the full two-dimensional motion using
Eq. (31).

Then, in order to analyze the effect of the higher har-
monics, Figs. 15 and 16 are traced as surfaces depicting
the evolution of H3 and H5 on the first nonlinear mode
backbone curves in a way analogous to what was done
for H1 in Fig. 14a for α = 0. In Fig. 15, H3 and H5
are normalized by (H3, H5) and by H1 in Fig. 16. Fig-
ure 16 explicitly shows that the amplitudes of H3 and
H5 are small compared to the amplitude of H1 (a result
also visible in Fig. 7), since their amplitudes remain at
10% the amplitude of H1 or below on the entire back-
bone curve. Moreover, Fig. 15 reveals that although
the shapes of harmonics H3 and H5 depend slightly on
the amplitude of the motion, the overall shape is close
to the second mode shape of the beam, leading to an

approximation of θ(x, t) based on Eq. (30b) as:

θ(x, t) � �′
1(x)a

(1)
1 (
) cos
t

+�′
2(x)

(
a(3)
2 (
) cos 3
t + a(5)

2 (
)
)

. (32)

Note that the local discontinuities in the H3 and H5
surfaces in Figs. 15 and 16 are related to some inter-
nal resonance “offshoots,” mentioned in Sect. 4.1. The
results presented in this section enable a more deep
characterization of the motion on the first nonlinear
mode while also laying the groundwork for reduced
order modeling of the beam. From this perspective,
choosing θ(x, t) as the principle variable to investigate
seems an excellent idea, already pursued in a series of
articles [1–3].

Lastly, it is noted that Fig. 14 also demonstrates the
independence of the first harmonic of the deformed
shape of the beam from gravity, since the shape of
Fig. 14a–c remain identical regardless of the value of
α.

6 Analogy with a pendulum system

In order to offer a more physical insight into the effect
of gravity on both the linear and nonlinear frequencies
of the first mode of the cantilever, consider the inverted
pendulum of Fig. 17a. The pendulum is of length l,
with all of its inertia m concentrated at its tip, and is
subjected to a gravitational acceleration g and a linear
torsional spring of stiffness�. The spring is at restwhen
the pendulum is vertical. For this system, the equation
of motion governing the angle θ of the pendulum with



Fig. 15 Surface plots
depicting the (normalized)
amplitude of H3 or H5 of
θ(x, t) as a function of the
position x̄ = x/L and of the
amplitude of H1 of θ(L , t):
a H3, b H5. The linear
mode shape �′

2(x̄)/�
′
2(L)

is shown in orange

(a) (b)

Fig. 16 Surface plots
depicting the amplitude of
H3 or H5 of θ(x, t)
normalized by H1 as a
function of the position
x̄ = x/L and of the
amplitude of H1 of θ(L , t):
a H3, b H5

(a) (b)

Fig. 17 a Pendulum shown in two positions along with restoring force fr , b graph of the natural frequency ωg of the pendulum as a
function of the gravity parameter α̃ (normalized), and c graph of the restoring force fr as a function of angle θ (normalized)

respect to the positive vertical axis can be written:

θ̈ + �

ml2
θ − g

l
sin θ = 0

⇒ θ̈ + ω2
0(1 − α̃)θ + fnl(θ) = 0,

ω0 =
√

�

ml2
, (33)

whereω0 is the natural frequencyof the pendulumwith-
out gravity. In Eq. (33), it is clear that the spring creates

a linear restoring force fs = �
ml2

θ , while gravity cre-
ates a restoring force fr = − g

l sin θ of opposite sign,
whichworks to counteract the restoring force generated
by the spring.

Separating the linear part of fr and denoting by
fnl(θ) the remaining part, the gravity parameter α̃ and
the natural frequency of the pendulum with gravity



ωg(α̃) can be defined such that:

α̃ = mlg

�
, ωg = ω0

√
1 − α̃. (34)

In tracing ωg(α̃) shown in Fig. 17b, the graph is
found to be very similar to that of ω̄1(α) for the
first mode of the cantilever, shown in Fig. 2b. In the
present case of the pendulum, the critical value for
self-buckling of the pendulum is α̃ = 1. The effect of
gravity on the pendulum’s natural frequency ωg is then
clear:ωg decreases as the gravity parameter α̃ increases
since it creates a restoring force opposed to that of the
spring, thereby decreasing the overall stiffness of the
pendulum. Gravity, thus, has a softening linear effect.

Considering the nonlinear part of the restoring force
fnl = ω2

0α̃(θ − sin θ), it appears to add a positive non-
linear part to the linear restoring force −ω2

0α̃θ , which
explains why gravity has a hardening nonlinear effect;
it is responsible for a nonlinear frequency that increases
with the amplitude of themotion. From a physical point
of view, this can be explained by a projection effect of
the gravity forcemg in the tangent direction (the direc-
tion of the restoring force fs of the spring, see Fig. 17a).
As θ increases, the “full” fr (θ) increases less in abso-
lute value than its “linear part,” thus creating a nonlinear
effect of opposite nature (hardening) with respect to the
linear one (softening). This is illustrated by the graph
of Fig. 17c, where the “full” restoring force curve fr (θ)

is above its “linear part” −ω2
0α̃θ for θ > 0 and below

if θ < 0.
Returning to the case of the cantilever, it can be

imagined that the distributed force due to gravity has the
same projection effect in each infinitesimal part of the
cantilever beam. Since the curvature of the first mode
shape is constant along the beam as evidenced in §5,
the analogy to the pendulum system holds. In the case
of modes 2 and 3 of the cantilever, a double or triple
pendulum would likely lead to analogous results.

7 Conclusion

In this work, the influence of gravity on the dynam-
ics of flexible slender cantilevers is studied. The can-
tilevers are considered to be vertically oriented in either
a standing or hanging configuration and are subjected
to a gravitational acceleration g. It is found that by nor-
malizing the systemby the length of the cantilever, only

two dimensionless parameters, a “slenderness” param-
eter η and a “gravity” parameterα, primarily govern the
dynamics of the beam. In the linear region, shown in
Sect. 3, it is found that, globally, η holds little influence
over the linear natural frequencies ω̄m of the first three
bending modes m = 1, 2, 3, while α holds a much
greater influence, particularly on the first mode. In a
hanging configuration (represented by α < 0), increas-
ing the magnitude of α increases ω̄m , while increasing
the magnitude of α in a standing configuration (α > 0)
decreases ω̄m up to a value of αcrit, at which the stand-
ing cantilever buckles under its own weight.

At larger amplitudes of vibration, the dynamics of
the slender cantilever become nonlinear due to the
influence of the geometrical nonlinearities tied to the
rotation of the cross sections. In particular, the nonlin-
ear modes, visually represented as backbone curves in
a traditional amplitude/frequency plot and as deformed
“snapshots” of the structure at high amplitude, are stud-
ied, the results of which are shown in Sects. 4 and 5.
In the nonlinear region, it is found that, as in the lin-
ear region, η globally holds little influence over the
first three nonlinear modes, so long as η remains small
(η ≤ 10−5 for modes 1 and 2 or η ≤ 10−6 for mode 3).
The backbone curves are also validated by an analytical
backbone computation based on the inextensible beam
model of Crespo da Silva et al., valid up to moderate
amplitudes of vibration. Regarding the influence ofα, it
is found that α has a very large effect on the first nonlin-
earmode in particular,withmuch less effect onmodes 2
and 3. Increasing the magnitude of α in a standing con-
figuration hardens the backbone of the first nonlinear
mode, while increasing the magnitude of α in a hang-
ing configuration softens the backbone. Interestingly,
however, the different values of α do not influence the
deformed shape of the first nonlinearmode. Finally,α is
shown to have very little influence on the higher nonlin-
ear modes 2 and 3. The behavior of the first nonlinear
mode under the influence of gravity is interpreted in
another context through an analogy to a simple pendu-
lum system in Sect. 6. It is noted, however, that signifi-
cant difficulties were encountered during computation
of some of the backbone curves, particularly on the
higher modes, due to the detection of many complex
internal resonances (see Sect. 4.1). Further investiga-
tion of these internal resonances is required to better
understand the nonlinear behavior of the systemat these
locations.



The results of this work highlight the importance
of incorporating gravity in any dynamical simulations,
particularly when investigating the first mode of a can-
tilever beam within a gravitational field. Future stud-
ies will aim to compare numerical simulations includ-
ing consideration of gravity to experimental measure-
ments, in particular of the nonlinear modes, in addition
to studying the effects of gravity on different beam ori-
entations (such as a “horizontal” cantileverwith gravity
perpendicular to the axis of the beam) and types of sys-
tems.
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A. Effect of shear parameter μ

As detailed in Sect. 2, a third dimensionless parame-
ter related to the shear stiffness of the beam (which is
present exclusively in the case of Timoshenko kinemat-
ics), called μ in §2, appears in the equations of motion
Eqs. (7) and (8). Recalling Eq. (6),μ is found to depend
on three parameters: the shear coefficient k, the Pois-
son’s ratio ν and the slenderness parameter η. Con-
sidering only slender beams such that η is very small
(η ≤ 2 · 10−4), it naturally follows that μ is also very

Table 3 Values of μ for different values of k and ν, with η =
1 · 10−7

μ = 2(1+ν)η
k k ν η

2.22 · 10−7 0.9 0.0

2.60 · 10−7 1.0 0.3 1 · 10−7

3.75 · 10−7 0.8 0.5

small, being proportional to η. Recalling Eq. (8), a very
smallμ tends the overall shear stiffness toward infinity,
i.e., to the point of no shearing of the cross section as in
Euler–Bernoulli kinematics. Therefore, for very small
μ, it can be considered that there is very little effect of
shearing of the cross section (even at high amplitudes
of rotation) and little difference between Timoshenko
and Euler–Bernoulli kinematics.

In order to confirm theminor influence of the dimen-
sionless parameter μ, the simulations of Sect. 4 were
performed again with different values of k and ν while
keeping η and α the same. As mentioned in Sect. 2.2,
typical values of k and ν are in the ranges of 0.8 ≤ k ≤
0.9 and 0 ≤ ν ≤ 0.5, respectively. The two extremi-
ties of μ within these ranges for k and ν were selected,
μ = 2.22 · 10−7 and 3.75 · 10−7 for η = 1 · 10−7, in
order to compare with the simulations of Sect. 4, where
k = 1, ν = 0.3. The breakdown of these parameters is
shown in Table 3.

The simulations of Sect. 4.1 and 4.2 (where μ =
2.60 · 10−7 for η = 10−7) are recomputed using these
two additional values of μ. For the latter, α = 5 is cho-
sen. The results of these simulations are summarized in
Fig. 18; the orange curves in both figures are the same
as their counterparts in Sect. 4.

In both conditions, regardless of the presence of
gravity in Fig. 18b, the variation inμ between its mini-
mum and maximum values has next to no effect on the
backbone curve of the first nonlinear mode; the three
curves overlap to the point of being indistinguishable.
These comparisons prove the negligible influence of
shearing on the mechanics of very slender beams and,
therefore, justify the omission of the third dimension-
less parameter μ from the analyses presented in this
work.

B. Tangent stiffness computation

According to Eq. (24), the tangent stiffness Kt is
defined as the first derivative of the internal force



Fig. 18 Effect of
dimensionless parameters
on the first nonlinear mode,
isolation of the effect of μ:
a amplitude of the first
harmonic H1 of θ at the free
end of the beam for different
values of μ, no-gravity
condition (α = 0), b the
same as a but with gravity
condition (α = 5)

(a) (b)

vector fint with respect to the vector of degrees of
freedom:

Kt = ∂fint
∂q

. (35)

In practice, it can be computed at the elementary
level and then assembled according to standard finite
element procedures.

All details having been explained in previous work
[4,44], we recall here only the main parts of the reason-
ing. First, the strains ofEq. (2) are discretized according
to Eq. (12), yielding the elementary strain expressions:

ee =
(

1 + u2 − u1
Le

)

cos θe +
(

w2 − w1

Le

)

sin θe − 1,

(36a)

γ e =
(

w2 − w1

Le

)

cos θe −
(

1 + u2 − u1
Le

)

sin θe, (36b)

κe = θ2 − θ1

Le
. (36c)

Then, the elementary discretized gradient matrix is
defined as:

δεe = Beδqe

⇒ Be = 1

Le

⎡

⎣
− cos θe − sin θe N1(x)Leγ e cos θe sin θe N2(x)Leγ e

sin θe − cos θe −N1(x)Le(1 + ee) − sin θe cos θe −N2(x)Le(1 + ee)
0 0 −1 0 0 1

⎤

⎦ , (37)

with εe = [ee γ e κe]T. Considering the internal virtual
work (see [4,44]), the elementary internal force vector
is written:

feint(q
e) =

∫ Le

0
(Be)TCεe dx, (38)

with:

C =
⎡

⎣
E A 0 0

kGA 0
E I

⎤

⎦ . (39)

Recalling Eqs. (35) and (36), the first variation of
Eq. (38) can be written:

δfeint(q
e) =

{∫ Le

0
(Be)TCBe dx

+
∫ Le

0

(
∂Be

∂qe

)T

Cεe dx

}

δqe = Ke
t δqe, (40)

where Ke
t is the elementary tangent stiffness matrix.

Finally, Ke
t is computed Ke

t = Ke
e + Ke

γ + Ke
κ , with



Ke
e = E A

Le

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

K1 K3 K4 −K1 −K3 K4

K2 K5 −K3 −K2 K5

K6 −K4 −K5 K6

K1 K3 −K4

K2 −K5

K6

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (41a)

Ke
γ = kGA

Le

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

K2 −K3 K7 −K2 K3 K7

K1 K8 K3 −K1 K8

K9 −K7 −K8 K9

K2 −K3 −K7

K1 −K8

K9

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

(41b)

Ke
κ = E I

Le

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0 0 0
0 0 0 0 0
1 0 0 −1
0 0 0
0 0

1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (41c)

and with:

K1 = cos2 θ̄ , K2 = sin2 θ̄ , K3 = cos θ̄ sin θ̄ ,

K4 = Le

2
(ēe sin θ̄ − γ̄ e cos θ̄ ),

K5 = − Le

2
(ēe cos θ̄ + γ̄ e sin θ̄ ),

K6 = (Le)2

4

[
(γ̄ e)2 − ēe(ēe + 1)

]
,

K7 = Le

2
[γ̄ e cos θ̄ − sin θ̄ (ēe + 1)],

K8 = Le

2
[γ̄ e sin θ̄ + cos θ̄ (ēe + 1)],

K9 = (Le)2

4

[(
ēe + 1

)2 − (γ̄ e)2
]
.

In the above expressions for Ki , i = 1, . . . 9, θ̄ =
(θ1 + θ2)/2, ē = e(θ̄), and γ̄ = γ (θ̄) since the inter-
nal force vector integration is evaluated using a single-
point Gaussian quadrature at x = Le/2 to avoid shear
locking (see [4,44,49]). Then, Ke

t is assembly accord-
ing to standard finite element procedures in order to
obtain the full tangent stiffness matrix Kt.

Notice that Ke
t = Ke

t (q
e) and, by extension, Kt =

Kt(q) depend on the degrees of freedom ui , wi and θi
through their presence in θ̄ , ē and γ̄ (see Eq. (36)); in
other words, due to the presence of geometrical nonlin-
earities, the tangent stiffness of the structure is a func-
tion of its deformed state. This serves to explain the

dependence of the natural frequencies of the cantilever
on the gravitational field, as seen in Eq. (26) and Sect. 3.

As explained inSect. 2.4, the tangent stiffnessmatrix
is also used in computing the equilibrium solution qs of
the cantilever subjected to the gravitational field. In this
case, the tangent stiffness is evaluated at q = 0, such
that the elementary tangent stiffness prior to assembly
takes the form of Eq. (41) with qe = 0 ⇒ u1 = u2 =
w1 = w2 = θ1 = θ2 = 0 ⇒ θ̄ = ee = γ e = 0,
which is with K1 = 1, K2 = K3 = K4 = K5 = K6 =
K7 = 0, K8 = Le/2 and K9 = (Le)2/4.

C. Analytical backbone computation with the third-
order inextensible beam model

In this appendix, additional details are provided regard-
ing the approximate inextensible cantilever beammodel
first introduced by Crespo da Silva et al. in [26,27],
serving in Sect. 4 (represented as the black dashed lines
in Figs. 5 and 9) as a comparison to the geometrically
exact finite element model. This model is very interest-
ing as it is both analytical and valid up to a moderate
(but not inconsiderable) amplitude of vibration and has
thus been used widely in the literature on nonlinear
beam dynamics [54,63]. In our case, it is advantageous
to use this model for comparison since, when restrict-
ing the modal projection to a single mode and solving
via a first-order harmonic balance, the computation of
the backbone curve itself becomes analytical.

The derivation of the full inextensible beam model
is shown in detail in Section 3.2 of [44], which we use
as the starting point for our development. We begin
with the strong form of the geometrically exact model,
Eq. (3), to which four assumptions are added:

1. The condition of inextensibility;
2. Euler–Bernoulli kinematics along with elimination

of the rotatory inertia;
3. Truncation of the geometrical nonlinearities up to

order 3 in w;
4. A free end boundary condition.

Based on assumptions 1 and 2, e = γ = 0, so that
Eq. (3c), taking into account the constitutive Eqs. (4),
simplifies to T = −M ′ − q = −E Iθ ′′ − q. Then,
eliminating N in Eq. (3b) using (3a) and assumption 4



(N (L , t) = T (L , t) = 0 ∀t), the following partial
differential equation is obtained:

ρAẅ +
(
E Iθ ′′ + q

cos θ

)′
−
[

tan θ

∫ x

L
(ρAü − n) dx

]′
= p.

(42)

To recover the model of Crespo da Silva et al., we
first assume no external axial load (n = 0) or moment
(q = 0). Then, the inextensibility condition, written
explicitly as

√
(1 + u′)2 + w′2 − 1 = 0 [44], is used

in order to rewrite the axial displacement as a function
of w in Eq. (42) according to u′ = √

1 − w′2 − 1.
In addition, the geometrically exact kinematics of the
beamwith the inclusion of the inextensibility condition
simplify to:

sin θ = w′, cos θ = 1 + u′ =
√
1 − w′2. (43)

Finally, performing a Taylor expansion up to order
three in w leads to:

ρAẅ + E I
(
w′′′ + w′w′′2 + w′′′w′2)′

+ρA

2

[

w′
∫ x

L

∂2

∂t2

(∫ x

0
w′2dx

)

dx

]′
= p. (44)

The same normalization as that of Sect. 2 (Eq. (6))
is carried out, so that Eq. (44) becomes:

¨̄w + w̄′′′′ +
(
w̄′w̄′′2 + w̄′′′w̄′2)′

+1

2

[

w̄′
∫ x̄

1

∂2

∂ t̄2

(∫ x̄

0
w̄′2dx̄

)

dx̄

]′
= p̄, (45)

where all terms are now dimensionless.
Next, the model is discretized via a projection of

the transverse displacementw onto a single eigenmode
�k(x), for a given k ∈ N:

w̄(x̄, t) = �k(x̄)qk(t), (46)

where qk(t) are the modal coordinates and the trans-
verse mode shapes �k represent those of a cantilever
beam, solutions of the linear part of the equations of
motion, i.e., �′′′′ + β4� = 0 with boundary condi-
tions �(0) = �′(0) = �′′(1) = �′′′(1) = 0. Written
explicitly:

�k(x̄) = cosβk x̄−cosh βk x̄−ak (sin βk x̄ − sinh βk x̄) .

(47)

In Eq. (47), the coefficients βk are related to the
dimensionless natural frequencies, such that ω̄k = β2

k
[50], and the coefficientak can be calculated by normal-
izing the mode shapes �k such that

∫ 1
0 �2

kdx̄ = 1. The
values of βk and ak for the first three bending modes
are shown in Table 4.

In a standard procedure, the modal projection (46)
is injected into Eq. (45), and the result is multiplied
by �k(x̄) and integrated over the length of the beam.
Additionally, as we are here deriving an expression for
the nonlinear modes/backbone curve (i.e., the free and
undamped solution), the damping terms and external
forcing are removed, so that Eq. (45) after the modal
projection becomes:

q̈k + ω̄2
kqk + �kq

3
k + �k

(
q̈kqk + q̇2k

)
qk = 0, (48)

with:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

�k =
∫ 1

0

(
�′

k�
′′
k�

′′
k + �′′′

k �′
k�

′
k

)′
�kdx̄,

�k =
∫ 1

0

[

�′
k

∫ x̄

1

∫ x̄

0
�′

k�
′
kdx̄dx̄

]′
�kdx̄,

(49a)

(49b)

where the expressions for �k and �k have been eval-
uated for the first three bending modes based on Eq.
(47) and are shown in Table 4.

Next, we seek to solve Eq. (48) using a harmonic
balance (HBM) expansion truncated to a single har-
monic: qk(t) = Qk cos
t with Qk the amplitude of
the oscillation. Injecting this expression for qk(t) into
Eq. (48) and keeping only terms in cos
t lead to the
analytical expression for the amplitude Qk as a func-
tion of the frequency
 and thus of the backbone curve:

Qk = 2

√


2 − ω2
k

3�k − 2
2�k
. (50)

Finally, the dimensionless transverse displacement
is recovered according to Eq. (46) restricted to one
mode as w̄(x̄, t) = �k(x̄)Qk cos
t . The black dashed
backbone curve in Fig. 5b is traced by sweeping its
amplitude �k(1)Qk(
) as a function of 
. Then,
w̄ is used to compute the amplitudes of the cross-
section rotation according to Eq. (43): θ(x̄, t) =
sin−1[w̄′(x̄, t)]. To trace the analytical black dashed



Table 4 Bending parameters of the k-th bending mode for the first three bending modes of a cantilever beam

k-the bending mode βk ak �k �k

1 1.875 0.7341 40.441 4.597

2 4.694 1.0185 13418 144.726

3 7.855 0.9992 269710 1006.43

curves in Figs. 5a and 6 in θ , the first harmonic of
θ(1, t) is computed as the amplitude of the first Fourier
coefficient of sin−1[�k(1)Qk(
) cos
t]. It is noted
that this Fourier coefficient necessarily has an ampli-
tude less than � 0.4π rad due to the limitations of the
inverse sine function itself, limiting in turn the maxi-
mum amplitude of θ(L , t) plotted in Figs. 5a and 6.
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