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A B S T R A C T

In thermal protection systems (TPS), Darcy’s law or Darcy-Forchheimer’s law is employed to model the
pyrolysis gas flow within the anisotropic porous ablator depending on the flow regime considered. A key
challenge with using these laws is first, the knowledge of the validity domain of each flow regime in terms of a
critical Reynolds number (𝑅𝑒𝑐). Secondly, the lack of data on macroscopic properties, namely, the permeability
and Forchheimer tensors is particularly challenging for the relevance of the models. The objective of this
work is to contribute to overcoming these challenges by performing experimental and X-ray tomographic
image-based characterization of Calcarb, a commercial carbon preform used for manufacturing TPS. For this
purpose, fluid flow within Calcarb was studied experimentally in the Through-Thickness (TT) and the In-Plane
(IP) directions for Reynolds numbers of 0.05 to 10.46 -representative of the TPS application. Tomography
image-based micro-scale simulations, involving the direct resolution of the Navier–Stokes equations under
both flow regimes, were also performed. Experimental results exhibit the anisotropic nature of Calcarb, namely
through 𝑅𝑒𝑐 values, corresponding to the Darcy flow regime limit, slightly different in the two directions (𝑅𝑒𝑐
of 0.31 and 0.43) with measured permeability values of 1.248 × 10−10 m2 and 1.615 × 10−10 m2 for TT and IP
directions respectively. In the Forchheimer regime, experimental Forchheimer coefficients 𝛽 were 2.0010 × 105

m−1 (TT) and 1.4948×105 m−1 (IP). During the simulation process, a numerical strategy was defined to obtain
the permeability tensor yielding values within 8% of the experimental ones. The comparison of experimental
results vs simulation results in the Forchheimer regime was performed through the analysis of the pressure
gradients as functions of 𝑅𝑒 in the 𝑥, 𝑦, and 𝑧 directions. The numerical estimations were compared successfully
with experimental measurements, with a discrepancy of 5.2%, for 𝑅𝑒 values up to 2.4.

1. Introduction

Thermal protection systems (TPS) are essential for maintaining ac-
ceptable temperatures on a spacecraft’s outer surface during all mission
phases, especially during atmospheric re-entry [1–3]. TPS materials can
be classified into two main categories: ablative materials [4], used in
the Apollo missions [5], Stardust (NASA, 2006) [2,6], Mars Science
Laboratory (NASA, 2012) [7,8], and Mars 2020 (NASA, 2021) [9]; and
non-ablative materials, such as the ceramic tiles used on the space
shuttle [10]. Ablative materials can be further subdivided into charring
(pyrolyzing) and non-charring ablators. Pyrolyzing ablators primarily
consist of a resin that fills the pores of a carbon matrix [4,11,12],
such as FiberForm produced by Fiber Materials Inc. [13] and Cal-
carb produced by Mersen. During the pyrolysis process, the polymer
matrix undergoes carbonization, generating pyrolysis gases that are

∗ Corresponding author at: Arts et Métiers Institute of Technology, 33400, Talence, France.
E-mail address: shaolin.liu@u-bordeaux.fr (S. Liu).

transported out of the material through the pore network via diffusion
and convection. Simulating pyrolysis gas flow within the TPS is crucial,
as these gases can significantly impact re-entry modeling.

A steady-state momentum equation for calculating the gas velocity
within an ablator has been proposed [11]:

⟨𝐯𝐠⟩ = − 1
𝜇
1 + 𝛽0∕𝑝
1 + 𝐹𝑜

𝐊 ⋅ ∇⟨𝑝⟩𝑔 (1)

where ⟨𝐯𝐠⟩ is the superficial average velocity, referred to as the filtra-
tion velocity or Darcy velocity [14], and where ⟨𝑝⟩𝑔 is the intrinsic
average pressure. The permeability, 𝐊, is a second-order tensor since
most materials are anisotropic. The Klinkenberg coefficient, 𝛽0, ac-
counts for a slip at the gas-solid interface at the pore scale and is
significant when the Knudsen number is not small [13,15]. The Forch-
heimer number, 𝐹𝑜 (𝛽𝐾𝜌|⟨𝑣𝑔⟩|∕𝜇), accounts for the convective flux
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Nomenclature

𝐀 the cross-section of the sample, m2

𝐴𝑠𝑔 area of the s-g interface contained in the
averaging volume, 𝑉 , m2

𝐂 product tensor, 𝐊 ⋅ 𝜷, m
𝑑𝑐𝑙 fiber cluster diameter, m
𝑑𝑓 fiber diameter, m
𝑑𝑝𝑎𝑟 particle diameter, m
𝐅 Forchheimer correction tensor
𝐹𝑜 Forchheimer number
𝐇 flow-dependent tensor which corresponds

to the apparent permeability
𝐈 Identity tensor
𝐾 scalar permeability, m2

𝐊 permeability tensor, m2

𝐾𝑒𝑓𝑓 scalar effective permeability, m2

𝐿 the length of the sample, m
𝐌 closure variable for 𝐅
𝑛 the exponent in the Forchheimer equation
𝑝 gas pressure, kgm−1 s−2

⟨𝑝⟩𝑔 intrinsic average pressure, kgm−1 s−2

𝐏 change of basis matrix
𝑞𝑚 gas mass-flow rate, kg s−1

𝑞𝑣 gas volume-flow rate, m3 s−1

𝑅𝑒 Reynolds number based on the cluster fiber
diameter

𝐓 tortuosity tensor
⟨𝐯𝐠⟩ Darcy velocity, ms−1

⟨𝑣𝑔⟩ magnitude of the Darcy velocity, ms−1

𝐯𝐠 velocity of the gas phase, ms−1

𝑉 averaging volume, m3

𝑋, 𝑌 variables associated with the Forchheimer
equation

Greek symbols

𝜶 Forchheimer term, 𝐅 ⋅ ⟨𝐯𝐠⟩, ms−1

𝛽 Forchheimer coefficient, m−1

𝜷 Forchheimer coefficient tensor, m−1

𝛽0 Klinkenberg coefficient, kgm−1 s−2

𝜀𝑖 volume fraction of the 𝑖-phase
𝜌 density of gas, kgm−3

𝜇 dynamic viscosity of gas, kgm−1 s−1

Subscripts

dg diagonal
eff effective
g gas
s solid

Acronyms/Abbreviations

CMT Computed Micro-Tomography
IP In Plane
REV Representative Elementary Volume
TPS Thermal Protection Systems
TT Through Thickness

and should be taken into account when gas velocities exceed 50 m/s
(that is, in high-density ablative materials submitted to very high heat
fluxes) [4,15]. Simplifying the momentum equation by neglecting 𝛽0

and 𝐹𝑜 leads to Darcy’s law [16], where gas velocity varies linearly
with the pressure gradient. Neglecting only 𝛽0 results in Forchheimer’s
law [14,17], where gas velocity varies nonlinearly. Numerous studies
have employed Darcy’s law to examine pyrolysis gas behavior [2,8,
12,18,19], as gas velocity remains below 50 m/s during the pyrolysis
process [8]. However, Martin et al. [4] found that using Forchheimer’s
law, while not significantly affecting temperature distribution, could
impact inner pressure variations, potentially causing spallation. A key
challenge with using these laws is first, the knowledge of the validity
domain of each flow regime in terms of a critical Reynolds number
(𝑅𝑒𝑐). Secondly, the lack of data on macroscopic properties, namely,
the permeability and Forchheimer tensors is particularly challenging
for the relevance of the models. In previous work, [20], micro-scale
simulations were performed to solve the Navier–Stokes equations under
the Darcy flow assumption, and the permeability tensor was predicted
based on the results. The permeability was then compared with values
obtained by Borner et al. [21] using direct simulation Monte Carlo
methods, revealing an error of nearly 42%. The objective of this work is
to contribute to overcoming these challenges by performing experimen-
tal and X-ray tomographic image-based characterization of Calcarb, a
commercial carbon preform used for manufacturing TPS.

To provide a detailed overview of the state-of-the-art, let us start
by presenting Darcy’s law and Forchheimer’s law for anisotropic porous
media. The tensorial form of both laws for the case of negligible gravity
is given in Eq. (2) [22,23],

⎧

⎪

⎨

⎪

⎩

⟨𝐯𝐠⟩ = −𝐊
𝜇 ⋅ ∇⟨𝑝⟩𝑔

⟨𝐯𝐠⟩ = −𝐊
𝜇 ⋅ ∇⟨𝑝⟩𝑔 − 𝐅 ⋅ ⟨𝐯𝐠⟩

(2)

where superficial and intrinsic phase averages of any quantity 𝜑𝑖 as-
sociated with the 𝑖-phase are given by ⟨𝜑𝑖⟩ = 1

𝑉 ∫𝑉𝑖 𝜑𝑖𝑑𝑉 and ⟨𝜑𝑖⟩
𝑖 =

𝜀−1𝑖 ⟨𝜑𝑖⟩ = 1
𝑉𝑖

∫𝑉𝑖 𝜑𝑖𝑑𝑉 , respectively. In these relationships, 𝑉𝑖 denotes
the volume of the 𝑖-phase contained within the averaging volume 𝑉 ,
which represents a representative elementary volume of the porous
medium. For the pressure term, ⟨𝑝⟩𝑔 = 1

𝑉𝑔
∫𝑉𝑔 𝑝𝑑𝑉 , while for the

velocity term, ⟨𝐯𝐠⟩ = 1
𝑉 ∫𝑉𝑔 𝐯𝐠𝑑𝑉 . 𝐅 is the Forchheimer correction

tensor and the last term 𝐅 ⋅ ⟨𝐯𝐠⟩ is called the Forchheimer term [24].
There is no assumption on the dependence of 𝐅 on ⟨𝐯𝐠⟩ in this general
formulation. In the work of Wang et al. [23], 𝐅 has been expressed as
follows: 𝐅 = (𝐊 ⋅ 𝜷)|⟨𝐯𝐠⟩|𝜌∕𝜇, where 𝐊 is the permeability tensor, 𝜷
is the Forchheimer coefficient tensor. It should be noted that 𝜷 in this
expression is considered as an independent property dependent only on
the geometry of the microstructure. Therefore the expression presents
a linear dependence of 𝐅 on the velocity magnitude, i.e. quadratic
Forchheimer term. Other parameters are the gas viscosity 𝜇 and density
𝜌. Two main approaches can be utilized to estimate the permeability
and Forchheimer correction tensors numerically: one based on direct
micro-scale simulations using classical Navier–Stokes equations, and
the other on upscaling theories and solving of the associated closure
problems [14,17,20,24,25]. In cases involving periodic media or when
dealing with representative elementary volumes, both methods provide
the same results. However, defining a numerical approach for non-
periodic anisotropic porous media still remains necessary. In the first
method, the permeability tensor, as derived from Darcy’s law, is de-
termined by solving the Navier–Stokes equations to obtain pressure
and velocity terms which are then suitably averaged [20,25]. In the
second method, the permeability tensor and Forchheimer correction
tensor can be numerically estimated by solving a closure problem on
a periodic unit cell representative of the structure, such as arrays of
spheres [14,17] or a digital structure based on tomographic images of
porous media, such as porous rocks [24]. The permeability tensor 𝐊
should be symmetric (and positive definite) and depends solely on the
structure of the porous medium. The Forchheimer correction tensor 𝐅
relies on various parameters, such as structure, Reynolds number, and
pressure gradient direction [14].
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Table 1
Empirical numerical correlations for the Forchheimer coefficient 𝛽.
Investigators Media Method Correlation Remarks

Martin et al. [4] Carbon Experimental 𝐾 =
𝑑𝑝

2𝜀3𝑔
150(1−𝜀𝑔 )2

, 𝛽 = 𝛽𝑘
√

𝐾
= 1

7
1

𝜀3∕2𝑔

1
√

𝐾
, Ergun’s equation

phenolic 𝐹𝑜 = 𝛽𝑘
√

𝐾𝜌|⟨𝑣𝑔 ⟩|
𝜇

for a packed bed

Wang et al. [23] Arrays of Experimental 𝜷 = 10−3.25𝐊−1.023𝝉1.943 𝝉 is tortuosity
spheres 𝑙𝑜𝑔𝐶𝑖𝑖 = −3.25 + 2.006 ⋅ 𝑙𝑜𝑔𝜏𝑖𝑖 tensor, 𝐂 is

𝐂 = 𝐊 ⋅ 𝜷 product tensor

Petrasch et al.[35] Porous Pore-scale numerical 𝐾 =
𝑑2
𝑝

64𝜀3∕2𝑠 (1+56𝜀3𝑠 )
, 𝛽 = 0.550

√

𝐾
𝐾 used the classical

ceramic simulation correction for fibrous media

Ahn et al. [31,36,37] Ceramic Experimental 𝐾 = 9.78 × 10−11𝜀0.381𝑔 𝐾 = 10−10 − 10−15 m−2

ablators 𝛽 = 1.222(1∕
√

𝐾)

Aguilar et al. [24] Porous Pore-scale numerical Forchheimer term ∝ ⟨𝑣𝑔⟩𝑛

rocks simulation exponent 𝑛 are around 1.74–4.18

In terms of experiments, measurements of the Forchheimer coef-
ficient 𝛽 for TPS materials have not been reported in the literature.
However, data is available for various other materials, such as porous
carbon foams [26], porous ceramic foams [27], porous rocky materi-
als [28], and carbon fiber electrode backing layers [29]. During the
experimental process, the volumetric flow rate and pressure drop across
the porous sample are typically measured. Subsequently, the perme-
ability and Forchheimer coefficient can be obtained by fitting either
Darcy’s law or Forchheimer’s law in one dimension to the experimental
data. The concept of effective permeability 𝐾𝑒𝑓𝑓 , proposed by Sobieski
et al. [30], is utilized to analyze the variation between different flow
regimes. In Darcy’s flow, effective permeability is equivalent to perme-
ability, while in Forchheimer’s flow, it represents the combined effect of
permeability and the Forchheimer coefficient. Marschall et al. [31,32]
proposed a method for measuring the permeability of porous refractory
insulators at room temperature, with measurements performed for both
in-plane and transverse sample orientations. This method has been ap-
plied to various materials, such as silica-based tiles, PICA, and ceramics.
Panerai et al. [13] further extended the experimental conditions to
measure the permeability of carbon fibers at high temperatures, up to
1503 K. These experiments [13,31,32] are focused on investigating the
permeability in the slip regime, that is, considering the Klinkenberg
effect.

Both experimental and numerical methods have been employed
to derive numerous correlations for the Forchheimer coefficient 𝜷 or
tensor 𝜷 in various porous materials. A summary of the most widely
used correlations and their validity ranges can be found in Table 1.
One of the simplest forms of the Forchheimer coefficient 𝛽 is presented
by Martin et al. [4], who used Ergun’s equation [33]. It should be
noted that Ergun’s equation is commonly employed to describe gas flow
through packed beds [34]. Aguilar et al. [24] utilized digital images of
porous rocks as microstructures, while Lasseux et al. [14] employed
simple unit 2D cells with ordered and disordered arrangement of solid
squares. Both approaches applied the volume averaging method and
closure problems for solving the permeability and the Forchheimer
coefficient or tensor. Although the correlations in Table 1 can provide
some straightforward reference values, further research through experi-
ments and micro-scale simulations is necessary to accurately determine
the permeability tensor and Forchheimer coefficient tensor.

The objective of this work is to identify the validity domain of
each flow regime in terms of a critical Reynolds number (𝑅𝑒𝑐) and to
determine macroscopic properties, namely, the permeability and Forch-
heimer tensors by performing experimental and X-ray tomographic
image-based characterization of Calcarb. For this purpose, fluid flow
within Calcarb is studied experimentally in the Through-Thickness (TT)
and the In-Plane (IP) directions for Reynolds numbers of 0.05 to 10.46
-representative of the TPS application. The remainder of the article is
organized into four sections. In Section 2, the experimental setup and
the porous sample are presented. In Section 3, the numerical method
employed for micro-scale simulation is described. In Section 4, the

experimental and numerical results of permeability and Forchheimer
coefficients for TT and IP directions are presented and discussed,
followed by a comparison of these two sets of results. Conclusions and
outlook are discussed in Section 5.

2. Experimental method

This section presents the experimental setup, sample characteristics,
and data analysis method. In the first subsection, a detailed description
of the experimental procedures is provided, along with a discussion of
the uncertainties associated with the experimental setup. The second
subsection focuses on the structural properties of the Calcarb sam-
ples. Lastly, the third subsection outlines the process of analyzing the
experimental data.

2.1. Experimental setup and test procedure

A schematic drawing and photograph of the experimental setup
that we have developed to measure the pressure drop in Calcarb are
displayed in Fig. 1. The setup consists of a gas inlet, a mass flow
controller, a pressure transmitter, and a quartz cylindrical tube that
contains the sample. The nature of the gas does not affect the per-
meability that is a geometrical property. Pure nitrogen gas is used in
this work for a better control of gas properties, namely, viscosity and
density. Nitrogen is steadily supplied through a piping system. The
mass-flow rate is controlled and measured by the mass-flow controller
(Bronkhorst) with a range of 0.05 to 10 L/min (𝑞𝑣), that is, a mass flow
rate of Nitrogen, 𝑞𝑚 ranging from 9.6 × 10−7 kg∕s to 1.92 × 10−4 kg∕s
at room temperature. The Darcy velocity ⟨𝑣𝑔⟩ varies from 0.0105 m/s
to 2.1 m/s. The mass-flow controller’s accuracy is ±0.5% of the reading.
The pressure drop is measured using a differential pressure transmitter
(EMERSON FISHER ROSEMOUNT) with an uncertainty of ±0.055% F.S.
(Full Span is 0–620 mbar). The inlet and outlet pressure measurement
points are indicated by red dots in Fig. 1(a). The electrical signal
detected by the transmitter is then relayed to a data acquisition system
for display. The sample of a length of 20 mm and a diameter of 10 mm
is positioned within the test section. To assess the anisotropic properties
of the materials, experiments were conducted on samples oriented
differently relative to the microstructure of the fibrous porous media
(sample 1: Through-Thickness (TT) and sample 2: In-Plane (IP)).

In this study, all experiments were carried out in triplicate. For the
lower nitrogen flow range (0.05 to 3 L/min), pressure differences were
measured at 20 distinct flow rate levels, while for the higher nitrogen
flow range (3 L/min to 10 L/min), pressure differences were measured
at 30 distinct flow rate levels. The ambient temperature was recorded
for each test, with a value of 20 ± 1 oC.
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Fig. 1. Schematic diagram and photograph of the experimental system. (For interpretation of the references to color in this figure legend, the reader is referred to the web version
of this article.)

Fig. 2. Macro and micro-scale structures of Calcarb.

2.2. Description of Calcarb

Calcarb is composed of chopped carbon fibers with 1 millimeter
length and approximately 15 micrometers in diameter [38,39]. Dur-
ing the manufacturing process, carbon fibers tend to align along the
compression plane, resulting in anisotropic properties. The direction
perpendicular to this plane is referred to as ‘‘Through-Thickness’’ (TT),
while the parallel direction is called ‘‘In-Plane’’ (IP). Fig. 2 displays the
macro and micro-scale structures of the Calcarb sample examined in
this study. Fig. 2(a) presents a macroscopic image of the sample in the
IP and TT plane, demonstrating its anisotropy. Fig. 2(b) is a microscopic
image captured using a scanning electron microscope (SEM), which

reveals that the diameter of individual carbon fibers is around 15 μm.
The porosity of Calcarb, denoted as 𝜀𝑔 , is 0.9.

The microstructure of Calcarb was acquired at the Advanced Light
Source at Lawrence Berkeley National Laboratory by Borner et al. [21].
Each scan involved capturing 1024 radiographs over a 180◦ rotation,
utilizing X-ray energy of 14 keV. They used the computed micro-
tomography image displayed in Fig. 3 to investigate the flow of
rarefied gas in Calcarb. In this work, we used the same image to
study inertial effects. The micro-structure is characterized by fibers
preferentially aligned at about ±15◦ with one of the planes (that per-
pendicular to the direction of compression during manufacturing) [21].
Fig. 4 shows the relationship between cube dimension and porosity,
showcasing four 3D models that represent the structures of samples
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Fig. 3. Volume rendering of the computed micro-tomography of Calcarb.

Fig. 4. Relationship between cube dimension and porosity for Calcarb samples.

at dimensions of 50, 100, 150, and 200 μm, respectively. Beyond a
cube dimension of 100 μm, the porosity tends to stabilize around 0.93,
with fluctuations limited to within 3%. This observation supports the
conclusion that the specific geometry studied, namely the 200 μm
sample, can be considered representative of the overall structure of
Calcarb.

2.3. Data analysis

The one-dimensional flow of compressible fluid through a sample
based on Darcy’s law is given by the following equation:

−
𝛥⟨𝑝⟩𝑔

𝐿
=

𝜇
𝐾

⋅
𝑞𝑣
𝐴

=
𝜇2

𝐾𝜌𝑑𝑐𝑙
𝑅𝑒 (3)

where 𝛥⟨𝑝⟩𝑔 is the pressure drop measured by the differential pressure
transmitter, 𝐿 is the length of the sample, 𝜇 is the gas viscosity at
room temperature, 𝑞𝑣 is the volumetric flow rate set by the mass
flow controller, and 𝐴 is the cross-section of the sample. Eq. (3) is
applicable when the Reynolds number (𝑅𝑒 = 𝜌(𝑞𝑣∕𝐴)𝑑𝑐𝑙∕𝜇) is smaller
than 0.5, where 𝑑𝑐𝑙 is fiber cluster diameter. Due to the manufacturing
process, there are clusters of fibers made of five to ten fibers. The
mean diameter of the fiber clusters has been shown to be the most
relevant characteristic length to compute the Reynolds number [20].
The components of 𝐊 in the IP and TT directions were determined using
Eq. (3). For higher Reynolds number, the one-dimensional flow based
on the Forchheimer equation is expressed as follows:
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Fig. 5. Three-dimensional numerical model used in micro-scale simulation.

−
𝛥⟨𝑝⟩𝑔

𝐿
=

𝜇
𝐾

⋅
𝑞𝑣
𝐴

+ 𝜌𝛽(
𝑞𝑣
𝐴
)𝑛 =

𝜇2

𝐾𝜌𝑑𝑐𝑙
𝑅𝑒 +

𝛽𝜇2

𝜌𝑑𝑐𝑙2
𝑅𝑒𝑛 (4)

where 𝛽 is the Forchheimer coefficient. The value of the exponent 𝑛 is
typically 2. At a low Reynolds number, the last term disappears, and the
Forchheimer equation reduces to Darcy’s law. The data analysis method
involves initially defining an effective permeability 𝐾𝑒𝑓𝑓 , as specified
in Eq. (5). It is crucial to note that within the range of Darcy’s Law, the
effective permeability remains constant, representing the permeability
𝐾 we aim to find. Conversely, within the Forchheimer regime, the
effective permeability encompasses both the permeability 𝐾 and a term
involving the Forchheimer coefficient 𝛽. This allows us to achieve two
objectives: first, determine the critical Reynolds number separating
the two flow regimes, and second, obtain the permeability 𝐾 within
the Darcy regime by fitting the data to Eq. (3), while acquiring the
Forchheimer coefficient 𝛽 within the Forchheimer regime by fitting the
data to Eq. (4).

𝐾𝑒𝑓𝑓 = −
𝑞𝑣
𝐴

⋅ 𝜇 ⋅
𝐿

𝛥⟨𝑝⟩𝑔
= −

𝜇2

𝜌𝑑𝑐𝑙
𝐿

𝛥⟨𝑝⟩𝑔
𝑅𝑒 (5)

The values of 𝛽 and the exponent 𝑛 can be computed using the least-
squares approximation method.

3. Numerical method

In this section, tomographic image-based micro-scale simulations
are employed to investigate the incompressible flow of gas within the
anisotropic Calcarb sample. The isothermal condition and the variation
in pressure in the domain justify the assumption of incompressible flow.
The structure of the Calcarb under investigation is obtained through
tomography scanning. Classical Navier–Stokes equations are solved at
the pore scale, and the pressure drop is investigated under steady-state
conditions across the sample. Ultimately, the permeability tensor and
the Forchheimer correction tensor are analyzed.

3.1. Numerical model

To determine the permeability and Forchheimer correction tensor,
micro-scale simulations must be conducted through a three-dimensional
digitized microstructure (Fig. 5). Detailed information regarding the
sample can be found in Section 2.2.

Table 2
Boundary conditions for the micro-scale simulation.

Fluid Inlet Outlet Lateral boundaries Fiber-fluid interface

𝐯𝐠 𝑓𝑖𝑥𝑒𝑑 𝑣𝑎𝑙𝑢𝑒 𝑧𝑒𝑟𝑜 𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡 𝑠𝑙𝑖𝑝 𝑛𝑜𝑠𝑙𝑖𝑝
𝑝 𝑧𝑒𝑟𝑜 𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡 𝑓 𝑖𝑥𝑒𝑑 𝑣𝑎𝑙𝑢𝑒 𝑧𝑒𝑟𝑜 𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡 𝑧𝑒𝑟𝑜 𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡

3.1.1. Mathematical model and numerical implementation
The fluid region is modeled using the transient laminar Navier–

Stokes equations (conservation of mass and momentum) at the pore
scale, as presented in Eq. (6).

⎧

⎪

⎨

⎪

⎩

∇ ⋅ 𝐯𝐠 = 0

𝜌(
𝜕𝐯𝐠
𝜕𝑡 + 𝐯𝐠 ⋅ ∇𝐯𝐠) = −∇𝑝 + 𝜇∇2𝐯𝐠

𝐯𝐠 = 0 at 𝐴𝑔𝑠

(6)

where 𝐯𝐠 and 𝑝 are, respectively, the velocity and pressure of the gas
phase; 𝐴𝑔𝑠 represents the interface area between the gas phase and the
solid phase contained within the considered region.

Detailed descriptions of the boundary conditions for the system
in Eq. (6) are provided in Table 2. These boundary conditions have
been demonstrated to be the most suitable for non-periodic porous
materials and have been employed in previous studies for permeability
calculations [20]. In this work, it is assumed that these boundary
conditions are also suitable for the determination of the Forchheimer
correction tensor. Regarding velocity, the 𝑠𝑙𝑖𝑝 condition maintains the
tangential velocity at the lateral boundaries while setting the normal
component to zero. For pressure, the 𝑧𝑒𝑟𝑜 𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡 condition ensures
that the pressure gradient normal to the lateral boundaries is zero.
On the fiber-fluid interface, the 𝑛𝑜𝑠𝑙𝑖𝑝 condition is applied to the fluid
motion.

The numerical model was implemented in finite volumes in the
Porous material Analysis Toolbox based on OpenFOAM (PATO) [15].
Fluid flow was solved with the pimpleFoam solver, which combines
the pressure-implicit split-operator (PISO) and semi-implicit method
for pressure-linked equations (SIMPLE) algorithms [40]. Second-order
schemes, with flux limiters, were used for spatial discretization.
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Fig. 6. Mesh convergence analysis results.

3.1.2. Mesh convergence analysis
The OpenFOAM automatic mesher, snappyHexMesh, [41] was uti-

lized to mesh the fluid domain between the fibers. This tool is a mesh
manipulation software that allows users to refine a given background
mesh into a desired configuration. The meshing algorithm functions
through three primary steps. First, a background mesh is created. Then,
the carbon fibers’ surface is overlaid onto the background mesh. The
algorithm identifies cells that are intersected by the carbon fibers’
surface and subsequently subdivides them into four parts, generating
mesh refinement near the body surface. Following this, the mesh points
in close proximity to the body surface are moved to align with the
surface, ensuring that the boundary surfaces of the mesh adhere closely
to the prescribed geometry. The quality of the final mesh is highly
dependent on the settings of various parameters.

Once the parameter configuration process is determined, the next
step involves performing a mesh independence verification to ensure
that the final mesh does not influence the simulation results. Micro-
scale simulations are conducted with varying mesh refinement levels,
with changes in specific physical quantities being monitored. In this
case, the pressure difference between the inlet and outlet is chosen as
an appropriate criterion for evaluating mesh convergence. Two distinct
inlet velocities, corresponding to two different Reynolds numbers (𝑅𝑒 =
𝜌|⟨𝑣𝑔⟩|𝑑𝑐𝑙∕𝜇), were selected to incorporate the Forchheimer flow regime
into the mesh analysis. A mesh convergence study was carried out,
ensuring that the pressure residuals remained below 10−6 and the
velocity residuals below 10−8. Fig. 6 shows the mesh convergence
analysis results. Fig. 6(a) presents the convergence of the pressure drop
as the mesh is refined. Starting from a small value (e.g., 30 Pa when
the inlet velocity is 1 m/s) for a coarse mesh, the pressure drop rapidly
converges towards a stabilized value (e.g., 55 Pa). Fig. 6(b) plots the
numerical error between two consecutive simulations, which is defined
as:

𝐸𝑅𝑅𝑂𝑅 =
𝛥⟨𝑝⟩𝑔𝑛+1 − 𝛥⟨𝑝⟩𝑔𝑛

𝛥⟨𝑝⟩𝑔𝑛+1
(7)

where the index 𝑛 represents the simulation with the mesh before
refinement. The blue dotted line corresponds to the first-order slopes.
The numerical method is then first order with respect to the discretiza-
tion. The results suggest that when the number of cells surpasses 20
million, the error gradually decreases until it reaches a steady state

around 1 × 10−2 for |⟨𝑣𝑔⟩| = 1 m∕s and 1 × 10−3 for |⟨𝑣𝑔⟩| =
10 m∕s. Fig. 7 provides some details of the meshed geometry. To meet
the computational demands, a portion of the MCIA - (Calculer au
Mésocentre regional (curta)) cluster from the University of Bordeaux
was utilized, consisting of 6 nodes with 32 cores each (Intel Xeon
Gold SKL-6130 @2.1 GHz) and 92 GB of RAM per node. The mesh
generation process was completed in 3 h. Additionally, solving the
transient laminar Navier–Stokes equations, as referenced in Eq. (6),
required 8 h of computational time on the cluster for one case.

3.2. Mathematical description of the Forchheimer term

3.2.1. Description of the Forchheimer correction tensor
For the scales of flow in porous media, upscaling of micro-scale

problems has been proposed using either homogenization theory [42]
or the volume-averaging technique [43]. The macroscopic model is
given by Eq. (8) [14,17,20]. When the Reynolds number is small,
the second term 𝐅 ⋅ ⟨𝐯𝐠⟩ in Eq. (8) is negligible, validating Darcy’s
law. In a previous work [20], the case with this term neglected was
discussed, and the permeability tensor 𝐊 was obtained. In this study,
we specifically examine the case where this term is present.
{

∇ ⋅ ⟨𝐯𝐠⟩ = 0

⟨𝐯𝐠⟩ = −𝐊
𝜇 ⋅ ∇⟨𝑝⟩𝑔 − 𝐅 ⋅ ⟨𝐯𝐠⟩

(8)

The velocity 𝐯𝐠 and pressure 𝑝 fields at the pore scale are obtained
from the resolution of Eq. (6). Then pressure gradients and velocity
components are averaged at the macroscopic scale and substituted
into Forchheimer’s law as shown in Eq. (8). The latter is conveniently
expressed as the following system:

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

⟨𝑣𝑔⟩𝑥 = − 1
𝜇

(

𝐾𝑥𝑥∇⟨𝑝⟩
𝑔
𝑥 +𝐾𝑥𝑦∇⟨𝑝⟩

𝑔
𝑦 +𝐾𝑥𝑧∇⟨𝑝⟩

𝑔
𝑧

)

−(𝐹𝑥𝑥⟨𝑣𝑔⟩𝑥 + 𝐹𝑥𝑦⟨𝑣𝑔⟩𝑦 + 𝐹𝑥𝑧⟨𝑣𝑔⟩𝑧)

⟨𝑣𝑔⟩𝑦 = − 1
𝜇

(

𝐾𝑦𝑥∇⟨𝑝⟩
𝑔
𝑥 +𝐾𝑦𝑦∇⟨𝑝⟩

𝑔
𝑦 +𝐾𝑦𝑧∇⟨𝑝⟩

𝑔
𝑧

)

−(𝐹𝑦𝑥⟨𝑣𝑔⟩𝑥 + 𝐹𝑦𝑦⟨𝑣𝑔⟩𝑦 + 𝐹𝑦𝑧⟨𝑣𝑔⟩𝑧)

⟨𝑣𝑔⟩𝑧 = − 1
𝜇

(

𝐾𝑧𝑥∇⟨𝑝⟩
𝑔
𝑥 +𝐾𝑧𝑦∇⟨𝑝⟩

𝑔
𝑦 +𝐾𝑧𝑧∇⟨𝑝⟩

𝑔
𝑧

)

−(𝐹𝑧𝑥⟨𝑣𝑔⟩𝑥 + 𝐹𝑧𝑦⟨𝑣𝑔⟩𝑦 + 𝐹𝑧𝑧⟨𝑣𝑔⟩𝑧)

(9)

Upon completing the micro-scale simulations, the macroscopic velocity
components ⟨𝑣𝑔⟩𝑥, ⟨𝑣𝑔⟩𝑦, and ⟨𝑣𝑔⟩𝑧 are determined as average values in
the domain. The pressure gradient components throughout the sample,
∇⟨𝑝⟩𝑔𝑥, ∇⟨𝑝⟩𝑔𝑦 , and ∇⟨𝑝⟩𝑔𝑧 are determined from the mean pressure values
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Fig. 7. Details of the meshed geometry.

at the boundaries and the dimensions of the domain in the 𝑥, 𝑦, and 𝑧
directions. Since 𝐊 is already determined from a simulation at low 𝑅𝑒,
the remaining unknowns in the system comprise the nine correction
tensor components: 𝐹𝑥𝑥, 𝐹𝑥𝑦, . . . , 𝐹𝑧𝑧.

Although the tensorial form of the macroscopic inertial resistance
has been pointed out clearly [14], the computation of the Forchheimer
correction tensor 𝐅 (Eq. (8)) is very costly in terms of computation time
and resources. Indeed, 𝐅 can be computed on a periodic unit cell by
solving a tensorial closure problem with a Navier–Stokes structure. The
procedure used for the computation of the permeability tensor [20],
i.e. imposing a velocity (or pressure gradient) successively along the
three directions of the unit cell to obtain the full permeability tensor,
is no longer valid here due to the non-linear dependence of 𝐅 on ⟨𝐯𝐠⟩.
First of all, for a given direction of the flow, only three components of
the 𝐅 tensor can be computed. For example, when the inlet velocity
is set as (1, 0, 0), indicating the flow direction is along the 𝑥-axis,
the resulting velocity fields are ⟨𝑣𝑔⟩𝑥 = 1.094 m/s, ⟨𝑣𝑔⟩𝑦 = 0.022 m/s,
and ⟨𝑣𝑔⟩𝑧 = 0.011 m/s. Similarly, the corresponding pressure values
are ⟨𝑝⟩𝑔𝑥 = −50.873 Pa, ⟨𝑝⟩𝑔𝑦 = −4.001 Pa, and ⟨𝑝⟩𝑔𝑧 = −3.122 Pa.
Given that the magnitude of ⟨𝑣𝑔⟩𝑥 is 49.7 and 99.5 times greater than
⟨𝑣𝑔⟩𝑦 and ⟨𝑣𝑔⟩𝑧 respectively, we simplify the problem by neglecting
terms related to ⟨𝑣𝑔⟩𝑦 and ⟨𝑣𝑔⟩𝑧 in Eq. (8), therefore 𝐹𝑥𝑦⟨𝑣𝑔⟩𝑦, 𝐹𝑥𝑧⟨𝑣𝑔⟩𝑧,
𝐹𝑦𝑦⟨𝑣𝑔⟩𝑦, 𝐹𝑦𝑧⟨𝑣𝑔⟩𝑧, 𝐹𝑧𝑦⟨𝑣𝑔⟩𝑦, and 𝐹𝑧𝑧⟨𝑣𝑔⟩𝑧 are 0. By substituting the
known quantities into Eq. (9), we can calculate the values of 𝐹𝑥𝑥, 𝐹𝑦𝑥,
and 𝐹𝑧𝑥. In a similar way, when the flow direction is along the 𝑦-axis,
we can only derive the values of 𝐹𝑥𝑦, 𝐹𝑦𝑦, and 𝐹𝑧𝑦. Lastly, for flow along
the 𝑧-axis, we can ascertain the values of 𝐹𝑥𝑧, 𝐹𝑦𝑧, and 𝐹𝑧𝑧. Detailed
information about 𝐅 will be explained in the following Section 4.2.1.

3.2.2. Description of the Forchheimer coefficient tensor

As outlined in Section 1, Wang et al. [23] represented 𝐅 as 𝐅 =

𝜌∕𝜇|⟨𝑣𝑔⟩|(𝐊 ⋅ 𝜷), assuming 𝜷 to be independent of the gas velocity
direction. Thus, 𝜷 is calculated following the same procedure used
for the computation of the permeability tensor: applying a velocity
successively along the three image directions to derive the full 𝜷 tensor.
Tensor 𝐅 in Eq. (9) is then transformed into a form involving 𝜷.

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

⟨𝑣𝑔⟩𝑥 = − 1
𝜇

(

𝐾𝑥𝑥∇⟨𝑝⟩
𝑔
𝑥 +𝐾𝑥𝑦∇⟨𝑝⟩

𝑔
𝑦 +𝐾𝑥𝑧∇⟨𝑝⟩

𝑔
𝑧

)

−𝜌∕𝜇|⟨𝑣𝑔⟩|((𝐾𝑥𝑥𝛽𝑥𝑥 +𝐾𝑥𝑦𝛽𝑦𝑥 +𝐾𝑥𝑧𝛽𝑧𝑥)⟨𝑣𝑔⟩𝑥
+(𝐾𝑥𝑥𝛽𝑥𝑦 +𝐾𝑥𝑦𝛽𝑦𝑦 +𝐾𝑥𝑧𝛽𝑧𝑦)⟨𝑣𝑔⟩𝑦
+(𝐾𝑥𝑥𝛽𝑥𝑧 +𝐾𝑥𝑦𝛽𝑦𝑧 +𝐾𝑥𝑧𝛽𝑧𝑧)⟨𝑣𝑔⟩𝑧)

⟨𝑣𝑔⟩𝑦 = − 1
𝜇

(

𝐾𝑦𝑥∇⟨𝑝⟩
𝑔
𝑥 +𝐾𝑦𝑦∇⟨𝑝⟩

𝑔
𝑦 +𝐾𝑦𝑧∇⟨𝑝⟩

𝑔
𝑧

)

−𝜌∕𝜇|⟨𝑣𝑔⟩|((𝐾𝑦𝑥𝛽𝑥𝑥 +𝐾𝑦𝑦𝛽𝑦𝑥 +𝐾𝑦𝑧𝛽𝑧𝑥)⟨𝑣𝑔⟩𝑥
+(𝐾𝑦𝑥𝛽𝑥𝑦 +𝐾𝑦𝑦𝛽𝑦𝑦 +𝐾𝑦𝑧𝛽𝑧𝑦)⟨𝑣𝑔⟩𝑦
+(𝐾𝑦𝑥𝛽𝑥𝑧 +𝐾𝑦𝑦𝛽𝑦𝑧 +𝐾𝑦𝑧𝛽𝑧𝑧)⟨𝑣𝑔⟩𝑧)

⟨𝑣𝑔⟩𝑧 = − 1
𝜇

(

𝐾𝑧𝑥∇⟨𝑝⟩
𝑔
𝑥 +𝐾𝑧𝑦∇⟨𝑝⟩

𝑔
𝑦 +𝐾𝑧𝑧∇⟨𝑝⟩

𝑔
𝑧

)

−𝜌∕𝜇|⟨𝑣𝑔⟩|((𝐾𝑧𝑥𝛽𝑥𝑥 +𝐾𝑧𝑦𝛽𝑦𝑥 +𝐾𝑧𝑧𝛽𝑧𝑥)⟨𝑣𝑔⟩𝑥
+(𝐾𝑧𝑥𝛽𝑥𝑦 +𝐾𝑧𝑦𝛽𝑦𝑦 +𝐾𝑧𝑧𝛽𝑧𝑦)⟨𝑣𝑔⟩𝑦
+(𝐾𝑧𝑥𝛽𝑥𝑧 +𝐾𝑧𝑦𝛽𝑦𝑧 +𝐾𝑧𝑧𝛽𝑧𝑧)⟨𝑣𝑔⟩𝑧)

(10)

To establish a closed system, it is essential to perform three simu-
lations, taking into account three distinct flow directions. This method
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allows for the creation of a global system of nine equations, as depicted
in Eq. (11).
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𝐾𝑥𝑥𝛽𝑥𝑥 +𝐾𝑥𝑦𝛽𝑦𝑥 +𝐾𝑥𝑧𝛽𝑧𝑥

𝐾𝑥𝑥𝛽𝑥𝑦 +𝐾𝑥𝑦𝛽𝑦𝑦 +𝐾𝑥𝑧𝛽𝑧𝑦

𝐾𝑥𝑥𝛽𝑥𝑧 +𝐾𝑥𝑦𝛽𝑦𝑧 +𝐾𝑥𝑧𝛽𝑧𝑧
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𝐾𝑦𝑥𝛽𝑥𝑦 +𝐾𝑦𝑦𝛽𝑦𝑦 +𝐾𝑦𝑧𝛽𝑧𝑦

𝐾𝑦𝑥𝛽𝑥𝑧 +𝐾𝑦𝑦𝛽𝑦𝑧 +𝐾𝑦𝑧𝛽𝑧𝑧

𝐾𝑧𝑥𝛽𝑥𝑥 +𝐾𝑧𝑦𝛽𝑦𝑥 +𝐾𝑧𝑧𝛽𝑧𝑥

𝐾𝑧𝑥𝛽𝑥𝑦 +𝐾𝑧𝑦𝛽𝑦𝑦 +𝐾𝑧𝑧𝛽𝑧𝑦

𝐾𝑧𝑥𝛽𝑥𝑧 +𝐾𝑧𝑦𝛽𝑦𝑧 +𝐾𝑧𝑧𝛽𝑧𝑧

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(11)

By solving Eq. (11), the product tensor (𝐊 ⋅ 𝜷) is obtained. The values
of 𝜷 are then computed by applying an inverse operation, i.e., (𝐊−1 ⋅
(𝐊 ⋅𝜷)). Detailed information about 𝜷 will be explained in the following
Section 4.2.1.

4. Results and discussions

This section presents a comprehensive analysis of both experimental
and simulation results. The experimental results show the pressure
drop as a function of gas velocity and utilizing the aforementioned
data analysis method, the permeability 𝐾 and Forchheimer coefficient
𝛽 are calculated for both IP and TT directions. The simulation re-
sults illustrate the relationship between the simulated pressure drop
and gas velocity. Based on the simulation methodology, the values
of permeability and Forchheimer term are obtained. Furthermore, the
gas flow distribution within the sample is discussed in this section.
finally, a comparison between the experimental and simulation results
is conducted.

4.1. Experimental results

The experimental results are summarized in the Appendix, where 𝑞𝑣
represents the gas volume-flow rate, ⟨𝑣𝑔⟩ is the magnitude of the Darcy
velocity, and 𝛥⟨𝑝⟩𝑔 denotes the pressure drop between the inlet and
outlet. The experimental parameters are as follows: room temperature
at 293 K, gas density 𝜌 of 1.17 kg∕m3, gas dynamic viscosity 𝜇 of

Table 3
Permeability 𝐾 in IP and TT direction.
Flow direction Permeability, 𝐾 (m2) Limit of 𝑅𝑒

IP 1.615 × 10−10 0.43
TT 1.248 × 10−10 0.31

Table 4
Forchheimer coefficient 𝛽 (1/m) and exponent 𝑛 in the IP and TT direction.

Flow direction 𝛽 and 𝑛 (𝑛 = 2) 𝛽 and 𝑛 (𝑛 ≠ 2)

IP 1.4948 × 105, 2 (𝑅2 = 0.9973) 2.7015 × 105, 1.73 (𝑅2 = 0.9999)
TT 2.0010 × 105, 2 (𝑅2 = 0.9993) 2.7782 × 105, 1.84 (𝑅2 = 0.9999)

1.93 × 10−5 kg∕(m s), sample cross-sectional area 𝐴 of 7.854 × 10−5 m2,
and fiber cluster diameter 𝑑𝑐𝑙 of 80 μm. Based on the data in Table 6,
the experimental results are illustrated in Fig. 8. Fig. 8(a) and (b)
display the variations of pressure gradient and effective permeability
as a function of the Reynolds number, respectively. The error bars
shown in Fig. 8(a) were calculated based on the uncertainties in the
experimental process. The effective permeability is calculated using
Eq. (5). As demonstrated in Fig. 8(a), the pressure gradient exhibits a
non-linear relationship, and the experimental region covers both Darcy
and Forchheimer flow regimes. This observation is further supported
by Fig. 8(b), where the constant 𝐾𝑒𝑓𝑓 corresponds to the Darcy flow
regime. As expected, the obtained permeability in the IP direction is
higher than the one in the TT direction.

Fig. 9 provides a detailed view of the Darcy flow region depicted in
Fig. 8. The effective permeability is calculated using Eq. (5), represent-
ing permeability within the Darcy regime. The obtained permeability
values are then used to describe the variation of the pressure gradient
shown in Fig. 9(a). The pressure gradient demonstrates a linear rela-
tionship in the IP direction when the Reynolds number is less than 0.43
and in the TT direction when the Reynolds number is below 0.31. The
permeability, 𝐾, values for both IP and TT directions are presented in
Table 3.

Within the Forchheimer regime, 𝐾 values obtained from Table 3 are
substituted into Eq. (4), yielding the first coefficient of the polynomial,
𝜇2

𝐾𝜌𝑑𝑐𝑙
. Fitting experimental data then enables the ascertainment of the

Forchheimer coefficient and the exponent 𝑛. This method facilitates
describing the intricate relationship between pressure gradient and
Reynolds number within the Forchheimer regime. Fig. 10 presents the
variation of pressure gradient with respect to Reynolds number in both
the IP and TT directions, along with the curves obtained through data
fitting. The values of the Forchheimer coefficient 𝛽 and exponent 𝑛 are
calculated using the least-squares approximation method and presented
in Table 4. The classic Forchheimer equation with a fixed exponent of
2 is used to determine the Forchheimer coefficient, as shown in the
second column of Table 4, where 𝑅2 represents the model’s fit level to
the data. The fit is then enhanced by adjusting both the Forchheimer
coefficient and the exponent 𝑛, with results presented in the third
column of the same table. Rather than typically being set as 2, the
exponent exhibits minor differences, like Aguilar et al. [24] found in
their work with porous rocks. Moreover, the values of 𝛽 and 𝑛 are not
the same in the IP and TT directions. These disparities arise due to the
anisotropy inherent in the sample.

In conclusion, a simple comparison is made between the permeabil-
ity 𝐾, the Forchheimer coefficient 𝛽 obtained in this study, and the
data presented in Table 1. To control for variables, the fit results where
the exponent is 2 are selected. The comparison results are displayed in
Table 5, where the values of 𝐾, taken directly from the experimental
results, are specifically 𝐾 = 1.615 × 10−10 m2 in the IP direction and
1.248 × 10−10 m2 in the TT direction, and 𝛽 was calculated based on
the corresponding relationship in Table 1.

The key difference observed is when using the packed bed formula
for Calcarb, with results differing by tenfold. In contrast, when using
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Fig. 8. Experimental results measured in IP and TT directions.

Fig. 9. Pressure gradient and effective permeability in Darcy’s regime.

Fig. 10. Relationship between pressure gradient and Reynolds number in both the IP and TT directions.

Table 5
Comparison of the Forchheimer Coefficient 𝛽 in the IP and TT direction.

Investigators 𝛽 (m−1) Remarks

Martin et al. [4] 1.3165 × 104 in IP, 1.4977 × 104 in TT For packed bed
Petrasch et al. [35] 4.3278 × 104 in IP, 4.9232 × 104 in TT For porous ceramic
Ahn et al. [37] 9.6157 × 104 in IP, 1.0939 × 105 in TT For ceramic ablators
Current work 1.4948 × 105 in IP, 2.0010 × 105 in TT

the formula for ceramic ablators, the closest material to Calcarb, the
difference in results is reduced to a twofold difference. However, in
the case of ceramic ablators, both calculations remain within the same
order of magnitude.

4.2. Numerical results

The relationship between the pressure gradient and flow rate within
the Darcy regime was numerically investigated in a previous study by
Scandelli et al. [20]. As a crucial material property, the permeability
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Fig. 11. Orientation of the original coordinate axes (𝑥, 𝑦, 𝑧) and principal axes (𝑥′,
𝑦′, 𝑧′).

tensor of Calcarb, denoted as 𝐊, was calculated. For flows in the Darcy
regime (Reynolds number less than 0.5), the value of 𝐊 was determined
accordingly,

𝐊 =

⎡

⎢

⎢

⎢

⎣

𝐾𝑥𝑥 𝐾𝑥𝑦 𝐾𝑥𝑧

𝐾𝑦𝑥 𝐾𝑦𝑦 𝐾𝑦𝑧

𝐾𝑧𝑥 𝐾𝑧𝑦 𝐾𝑧𝑧

⎤

⎥

⎥

⎥

⎦𝑥,𝑦,𝑧

𝑚2

=

⎡

⎢

⎢

⎢

⎣

1.561 × 10−10 1.391 × 10−11 1.021 × 10−11

1.391 × 10−11 1.631 × 10−10 −5.41 × 10−12

1.021 × 10−11 −5.41 × 10−12 1.151 × 10−10

⎤

⎥

⎥

⎥

⎦

𝑚2

(12)

A diagonalization procedure is employed to rewrite the permeability
tensor 𝐾 in alignment with the principal axes of rotation. The diagonal
matrix 𝐊𝐝𝐠 is obtained using the relation 𝐊𝐝𝐠 = 𝐏−1𝐊𝐏, where 𝐏 is
change of basis matrix. The values of 𝐊𝐝𝐠 and 𝐏 are presented in
Eq. (13), with 𝑥′, 𝑦′, 𝑧′ oriented relative to IP, IP, and TT. Fig. 11
presents the direction of the original coordinates axes 𝑥, 𝑦, 𝑧 and the
principal axes 𝑥′, 𝑦′, and 𝑧′ (in blue).

𝐊𝐝𝐠 =

⎡

⎢

⎢

⎢

⎣

𝐾𝑥′𝑥′ 0 0

0 𝐾𝑦′𝑦′ 0

0 0 𝐾𝑧′𝑧′

⎤

⎥

⎥

⎥

⎦𝑥′ ,𝑦′ ,𝑧′

𝑚2

=

⎡

⎢

⎢

⎢

⎣

1.741 × 10−10 0 0

0 1.491 × 10−10 0

0 0 1.111 × 10−10

⎤

⎥

⎥

⎥

⎦

𝑚2,

𝐏 =

⎡

⎢

⎢

⎢

⎣

−0.6258 −0.7322 −0.2686

−0.7790 0.6031 0.1709

−0.0369 −0.3163 0.9479

⎤

⎥

⎥

⎥

⎦

(13)

In Eq. (13), both 𝐾𝑥′𝑥′ and 𝐾𝑦′𝑦′ values correspond to the permeability
in the IP direction. However, due to micro-structural factors, these two
values are not identical.

In this subsection, a case involving flow within the Forchheimer
regime is discussed, highlighting the simulation results and the method
used to process the data. The numerical results obtained at various
flow velocities are then analyzed to further clarify the behavior of the
system.

4.2.1. Velocity fields and Forchheimer correction tensor
In this particular case, an inlet velocity of 1 m/s is chosen, which

corresponds to a Reynolds number of 4.85, indicating that the flow lies
within the Forchheimer regime. As discussed in Section 3.2, the flow
velocities for these simulations are set as (1,0,0), (0,1,0), and (0,0,1).
Fig. 12 presents the streamlines within the computational domain,
where (a), (b), and (c) respectively correspond to the inlet flow direc-
tions along the 𝑥, 𝑦, and 𝑧 axes. The streamlines are color-coded based

on the velocity magnitude. Fig. 12 reveals that the maximum gas flow
velocity inside the fluid domain can reach values as high as 4.2 m/s,
highlighting the complex flow behavior within the porous medium. In
each simulation, the pressure gradients ∇⟨𝑝⟩𝑔𝑥, ∇⟨𝑝⟩𝑔𝑦 , and ∇⟨𝑝⟩𝑔𝑧 are
determined by calculating the average pressure at the interface be-
tween the flow and the sample. Simultaneously, the three macroscopic
flow velocities, ⟨𝑣𝑔⟩𝑥, ⟨𝑣𝑔⟩𝑦, and ⟨𝑣𝑔⟩𝑧, are obtained by averaging the
velocities within the sample. After completing the three simulations,
the nine components of the pressure gradients and macroscopic flow
velocities can be derived. The next step involves substituting all known
values into Eq. (9) to determine the unknown Forchheimer correction
tensor 𝐅. In this specific case, the computable terms of the Forchheimer
correction tensor 𝐅 for the inlet velocities of (1,0,0), (0,1,0) and (0,0,1)
are respectively computed as follows:

𝐅 =

⎡

⎢

⎢

⎢

⎣

𝐹𝑥𝑥

𝐹𝑦𝑥

𝐹𝑧𝑥

⎤

⎥

⎥

⎥

⎦𝑥,𝑦,𝑧

=

⎡

⎢

⎢

⎢

⎣

0.901

0.318

0.202

⎤

⎥

⎥

⎥

⎦

, 𝐅 =

⎡

⎢

⎢

⎢

⎣

𝐹𝑥𝑦

𝐹𝑦𝑦

𝐹𝑧𝑦

⎤

⎥

⎥

⎥

⎦𝑥,𝑦,𝑧

=

⎡

⎢

⎢

⎢

⎣

0.308

0.898

0.019

⎤

⎥

⎥

⎥

⎦

,

𝐅 =

⎡

⎢

⎢

⎢

⎣

𝐹𝑥𝑧

𝐹𝑦𝑧

𝐹𝑧𝑧

⎤

⎥

⎥

⎥

⎦𝑥,𝑦,𝑧

=

⎡

⎢

⎢

⎢

⎣

0.413

0.096

0.843

⎤

⎥

⎥

⎥

⎦

(14)

For each boundary condition, nine components of the tensor 𝐅 cannot
be obtained. Instead, for a specific flow direction, only three compo-
nents of the 𝐅 tensor can be computed. This restriction results from
the non-linear dependency of 𝐅 on ⟨𝐯𝐠⟩. Despite the significant off-
diagonal elements, as suggested by the data from Eq. (14), we still
provide reference values for 𝛽 calculated by the formula 𝛽𝑖𝑖 =

𝐹𝑖𝑖𝜇
𝐾𝑖𝑖𝜌|⟨𝑣𝑔⟩|

,
where 𝑖𝑖 = 𝑥𝑥 or 𝑦𝑦 or 𝑧𝑧. The values in the 𝑥𝑥, 𝑦𝑦 and 𝑧𝑧 directions are
0.8452 × 105 m−1, 0.9837 × 105 m−1, and 1.2392 × 105 m−1, respectively.
These values, although simplistic, are of the same order of magnitude as
the experimental values and thus serve as a rough reference. However,
it is worth noting that a more comprehensive approach considering
the off-diagonal elements would be necessary for a more accurate
comparison.

Now, let us adopt the method proposed by Wang et al. [23], as
described in Section 3.2.2, to directly compute the Forchheimer coeffi-
cient tensor using Eq. (11). The same cases are employed, wherein the
inlet gas velocities are respectively set as (1,0,0), (0,1,0), and (0,0,1).
The computed value of 𝜷 is found to be.

𝜷 =

⎡

⎢

⎢

⎢

⎣

𝛽𝑥𝑥 𝛽𝑥𝑦 𝛽𝑥𝑧
𝛽𝑦𝑥 𝛽𝑦𝑦 𝛽𝑦𝑧
𝛽𝑧𝑥 𝛽𝑧𝑦 𝛽𝑧𝑧

⎤

⎥

⎥

⎥

⎦

𝑥,𝑦,𝑧

𝑚−1 =

⎡

⎢

⎢

⎢

⎣

0.915 × 105 0.243 × 105 0.350 × 105

0.250 × 105 0.889 × 105 0.107 × 105

0.221 × 105 0.049 × 105 1.183 × 105

⎤

⎥

⎥

⎥

⎦

𝑚−1

(15)

In the experiment, the value of 𝜷 was obtained as [1.4948 × 105, 0, 0, 0,
1.4948 × 105, 0, 0, 0, 2.0010 × 105] m−1 (Table 4), while in Eq. (15), the
full components of tensor 𝜷 were acquired. To compare results with
Eq. (15), a diagonalization procedure is necessary to align the tensor
with the principal axes of rotation.

𝜷𝒅𝒈 =

⎡

⎢

⎢

⎢

⎣

𝛽𝑥′𝑥′ 0 0

0 𝛽𝑦′𝑦′ 0

0 0 𝛽𝑧′𝑧′

⎤

⎥

⎥

⎥

⎦𝑥′ ,𝑦′ ,𝑧′

𝑚−1

=

⎡

⎢

⎢

⎢

⎣

1.432 × 105 0 0

0 0.612 × 105 0

0 0 0.942 × 105

⎤

⎥

⎥

⎥

⎦

𝑚−1

(16)

Fig. 13 presents the direction of the original coordinates axes 𝑥, 𝑦, 𝑧
and the principal axes 𝑥′, 𝑦′, and 𝑧′ (in blue). It should be noted that
the value of 𝜷𝒅𝒈 we obtained is in the principal axes (𝑥′, 𝑦′, 𝑧′), whereas
the 𝜷 value obtained experimentally is in the original coordinate axes
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Fig. 12. Streamlines visualization in the domain.

Fig. 13. Orientation of the original coordinate axes (𝑥, 𝑦, 𝑧) and principal axes (𝑥′,
𝑦′, 𝑧′).

(𝑥, 𝑦, 𝑧). Although they have the same order, a direct comparison is not
feasible.

4.2.2. Analysis of the pressure gradient and Forchheimer term
In order to extend the numerical computation of the pressure gra-

dient to encompass various fluid velocities ⟨𝐯𝐠⟩, the Reynolds number
is incorporated into the analysis. Fig. 14 presents the relationship
between the pressure gradient components and the Reynolds number
for inlet velocities spanning from 0.1 m/s to 10 m/s, corresponding to a
Reynolds number range of 0.48 to 48.50, The pressure values obtained
from each simulation are depicted using a consistent color scheme.
The components ∇⟨𝑝⟩𝑔𝑥

1, ∇⟨𝑝⟩𝑔𝑦2, and ∇⟨𝑝⟩𝑔𝑧
3 signify the pressure gra-

dient when the inlet flow is aligned with the 𝑥, 𝑦, and 𝑧 directions,
respectively. The pressure gradient values were acquired from micro-
scale simulations for nine values of 𝑅𝑒. Within this velocity range,
the gas flow exhibits Forchheimer regime behavior. Observations from
Fig. 14 highlight several key points. The pressure gradient components
∇⟨𝑝⟩𝑔𝑥

1, ∇⟨𝑝⟩𝑔𝑦2, and ∇⟨𝑝⟩𝑔𝑧
3 display a nonlinear behavior as the Reynolds

number increases, which can be related to the Forchheimer equation
as represented by the fitted curves in Eqs. (17) and (18). It should be

noted that the differing methodologies in these equations. Eq. (17) fits
only the quadratic coefficient and exponent, keeping the linear term
constant, whereas Eq. (18) fits all terms. Additionally, the pressure
gradient component ∇⟨𝑝⟩𝑔𝑧

3 is notably larger than ∇⟨𝑝⟩𝑔𝑥
1 and ∇⟨𝑝⟩𝑔𝑦

2

at the same Reynolds number, indicating the anisotropy of the sample.
To further explore the relationship between pressure gradient and
Reynolds number quantitatively, the concept of the Forchheimer term
(𝜶 = 𝐅 ⋅ ⟨𝑣𝑔⟩) is introduced, providing valuable insights into the flow
behavior.

⎧

⎪

⎪

⎨

⎪

⎪

⎩

∇⟨𝑝⟩𝑔1𝑥 = 𝜇2

𝐾𝑥𝑥𝜌𝑑𝑐𝑙
𝑅𝑒 + 𝛽𝜇2

𝜌𝑑𝑐𝑙2
𝑅𝑒𝑛 = 25493.8758𝑅𝑒 + 9088.99𝑅𝑒1.47

∇⟨𝑝⟩𝑔2𝑦 =
𝜇2

𝐾𝑦𝑦𝜌𝑑𝑐𝑙
𝑅𝑒 + 𝛽𝜇2

𝜌𝑑𝑐𝑙2
𝑅𝑒𝑛 = 24399.7180𝑅𝑒 + 9643.5539𝑅𝑒1.43

∇⟨𝑝⟩𝑔3𝑧 =
𝜇2

𝐾𝑧𝑧𝜌𝑑𝑐𝑙
𝑅𝑒 + 𝛽𝜇2

𝜌𝑑𝑐𝑙2
𝑅𝑒𝑛 = 34575.1001𝑅𝑒 + 10849.9677𝑅𝑒1.49

(17)

⎧

⎪

⎨

⎪

⎩

∇⟨𝑝⟩𝑔1𝑥 = 47800.6792𝑅𝑒 + 740.9160𝑅𝑒1.98

∇⟨𝑝⟩𝑔2𝑦 = 46096.1828𝑅𝑒 + 772.4158𝑅𝑒1.94

∇⟨𝑝⟩𝑔3𝑧 = 67022.1892𝑅𝑒 + 418.0495𝑅𝑒2.15
(18)

The Forchheimer term, 𝜶, is the product of the Forchheimer correc-
tion tensor 𝐅 and Darcy velocity ⟨𝐯𝐠⟩. As can be derived from Eq. (2),
this term can also be computed using the following expression:

𝛼 = −⟨𝐯𝐠⟩ −
𝐊
𝜇

⋅ ∇⟨𝑝⟩𝑔 (19)

In one-dimensional Forchheimer flow, the Forchheimer term is
expected to be proportional to the square of the Darcy velocity. To
analyze the impact of anisotropy on this term, the Forchheimer term is
calculated using the micro-scale simulation results. Fig. 15(a) illustrates
all components of the vector 𝜶, exhibiting an increasing tendency.
The different colors of the dots in Fig. 15(a) represent the results
of simulations with varying Reynolds numbers, with red, blue, and
black dots corresponding to the first, second, and third simulations,
respectively. The components 𝛼1𝑥, 𝛼2𝑦 , and 𝛼3𝑧 denote the Forchheimer
term when the inlet flow is aligned with the 𝑥, 𝑦, and 𝑧 directions,
respectively. Although the values of these three components are higher
than the other six, the other components should not be disregarded. For
example, the value of 𝛼3𝑥 is approximately 25% of the value of 𝛼3𝑧 . The
value of 𝛼1𝑥, 𝛼2𝑦 , and 𝛼3𝑧 is directly proportional to 𝑅𝑒𝑛, where 𝑛 is not
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Fig. 14. Pressure gradient components of the digitalized Calcarb domain by varying the 𝑅𝑒.

Fig. 15. Forchheimer terms estimated from the numerical solution as a function of Reynolds number. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)

simply equal to 2 (𝑛 = 1.62, 1.59 and 1.65 in 𝑥, 𝑦 and 𝑧 directions),
suggesting a more complex relationship between the Forchheimer term
and the Reynolds number.

4.3. Comparison with experiment

The strategy for comparing experimental and simulation results fo-
cuses on the pressure gradient. In the experiments, the permeability, the
Forchheimer coefficient, and the exponent in the IP and TT directions
are determined by fitting the experimental data using one-dimensional
Darcy and Forchheimer equations. In the simulations, the permeabil-
ity tensor in the Darcy flow regime is extracted. Then, through a
transformation of the principal axes, the diagonal permeability tensor
components 𝐾𝑑𝑔𝑥′𝑥′ , 𝐾𝑑𝑔𝑦′𝑦′ and 𝐾𝑑𝑔𝑧′𝑧′ are derived, corresponding
to the IP, IP and TT directions in the experimental process. In the
Forchheimer flow regime, pressure gradients are obtained.

Fig. 16 presents a typical comparison of experimental and simula-
tion results within the Darcy flow regime, where the range of Reynolds
number in the experiments ranges from 0.05 to 0.50. In this figure, the

experimental data in the IP and TT directions are represented by solid
blue and dashed black lines, respectively, while the simulation results
in the x, y, and z directions, labeled as ∇⟨𝑝⟩𝑔1𝑥, ∇⟨𝑝⟩𝑔2𝑦, and ∇⟨𝑝⟩𝑔3𝑧,
are represented by circular, triangular, and square markers. It can be
observed that the boundary of the Darcy flow regime for Calcarb, based
on numerical results, is around 0.24, with a minor difference between
the IP and TT directions. Both simulation and experimental results
demonstrate that pressure increases linearly with the Reynolds number
when it is below 0.24. Fig. 16(b) shows the permeability 𝐾 remains
constant in the Darcy flow regime. The experimental results indicate
that the values of 𝐾 are 1.615×10−10 m2 and 1.248× 10−10 m2 in the IP
and TT directions, respectively. In the simulations, the corresponding
values in the 𝑥′ or 𝑦′ (IP) and 𝑧′ (TT) directions are 1.741 × 10−10 or
1.491 × 10−10 m2 and 1.111 × 10−10 m2. The results exhibit a relative
difference of around 8% within the Darcy flow regime.

Fig. 17 presents the comparison of experimental and simulation re-
sults within the Forchheimer flow regime, where the Reynolds number
in the experiments ranges from 0.50 to 9.8. In this figure, the same
symbols mentioned earlier are used to represent the respective data
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Fig. 16. The comparison between numerical and experimental results in the Darcy flow regime.

Fig. 17. The comparison of numerical and experiment results in the Forchheimer flow regime.

points. The data representing the experimental correlations are sourced
from Table 4 (𝑛 = 2). When comparing values within the Forchheimer
flow regime, one can notice that the maximal differences in pressure
gradient between simulation and experiment reach up to 64.5% and
68.2% in the IP and TT directions respectively. Given the assumption
of one-dimensional flow in the experiments, only the pressure drop in
the direction of flow was taken into account. However, in the three-
dimensional simulation, the dispersion of flow due to pressure drop
in other directions was also considered. This dispersion, occurring in
directions other than the main flow, leads to a decrease in pressure
drop along the main flow direction, which could result in simulation
values being lower than experimental values. Furthermore, as displayed
in Fig. 17, when the Reynolds number is less than 2.4, the difference be-
tween the simulation and experimental values is 4.5% and 5.2% in the
IP and TT directions, respectively. As the Reynolds number increases,
the pressure gradient components in non-main flow directions become
more significant, causing the simulated pressure drop along the main
flow direction to diverge increasingly from the experimental value.

5. Conclusion

The objective of this work was to identify the validity domain
of Darcy or Darcy-Forchheimer flow regime in terms of a critical
Reynolds (𝑅𝑒𝑐) and to determine macroscopic properties, namely, the
permeability and Forchheimer tensors by performing experimental and

X-ray tomographic image-based characterization of Calcarb. For this
purpose, an experimental facility was designed to measure the pressure
gradient across Calcarb samples in these two regimes. Experiments
were conducted using nitrogen as the working fluid, for Reynolds
numbers ranging from 0.05 to 10.46, and in both in-plane (IP) and
through-thickness (TT) orientations. Based on the experimental results,
the permeability 𝐾, the Forchheimer coefficient 𝛽 were calculated by
fitting the experimental data using one-dimensional Darcy or Forch-
heimer equations. Concurrently, permeability and pressure gradients
were computed from micro-scale numerical solutions, using 3D digital
images of Calcarb samples. The numerical model was implemented
with finite volumes in PATO. Following permeability calculations, the
Forchheimer correction tensor 𝐅 was computed and analyzed in terms
of fluid velocity.

Experimental results exhibit the anisotropic nature of Calcarb, namely
through 𝑅𝑒𝑐 values, corresponding to the Darcy flow regime limit,
slightly different in the two directions (𝑅𝑒𝑐 of 0.31 and 0.43) with
measured permeability values of 1.248 × 10−10 m2 and 1.615 × 10−10

m2 for TT and IP directions respectively. In the simulations, the
corresponding values in the principal axes 𝑧′ (TT), and 𝑥′ or 𝑦′ (IP)
directions, are 1.111 × 10−10 m2 and 1.741 × 10−10 or 1.491 × 10−10 m2.
The results exhibit a relative difference of around 8% within the Darcy
flow regime.

In the Forchheimer regime, experimental Forchheimer coefficients 𝛽
were 2.0010×105 m−1 (TT) and 1.4948×105 m−1 (IP). In the simulation
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Table 6
Results of measurements in IP and TT directions.

IP TT

𝑞𝑣 ⟨𝑣𝑔⟩ 𝛥⟨𝑝⟩𝑔 𝑅𝑒 𝑞𝑣 ⟨𝑣𝑔⟩ 𝛥⟨𝑝⟩𝑔 𝑅𝑒
(×10−5 , m3∕s) ( 𝑞𝑣

𝐴
, m/s) (Pa) ( 𝜌⟨𝑣𝑔 ⟩𝑑𝑐𝑙

𝜇
) (×10−5 , m3∕s) ( 𝑞𝑣

𝐴
, m/s) (Pa) ( 𝜌⟨𝑣𝑔 ⟩𝑑𝑐𝑙

𝜇
)

0.083 0.011 25.36 0.053 0.083 0.011 32.82 0.053
0.167 0.021 50.73 0.106 0.167 0.021 65.65 0.106
0.333 0.042 101.45 0.214 0.333 0.042 131.29 0.214
0.500 0.064 152.18 0.309 0.500 0.064 211.53 0.309
0.667 0.085 208.55 0.409 0.667 0.085 306.35 0.409
0.833 0.106 276.18 0.513 0.833 0.106 393.88 0.513
1.000 0.127 349.45 0.615 1.000 0.127 488.71 0.615
1.167 0.149 428.36 0.719 1.167 0.149 583.53 0.719
1.333 0.170 490.36 0.822 1.333 0.170 685.65 0.822
1.500 0.191 569.27 0.925 1.500 0.191 787.76 0.925
1.667 0.212 670.73 1.028 1.667 0.212 919.06 1.028
2.000 0.255 851.09 1.233 2.000 0.255 1152.47 1.233
2.500 0.318 1172.36 1.541 2.500 0.318 1575.53 1.541
2.833 0.361 1409.09 1.744 2.833 0.361 1881.88 1.744
3.333 0.424 1792.36 2.051 3.333 0.424 2348.71 2.051
4.167 0.531 2519.45 2.565 4.167 0.531 3209.41 2.565
4.500 0.573 2840.73 2.770 4.500 0.573 3596.00 2.770
5.000 0.637 3348.00 3.077 5.000 0.637 4194.12 3.077
5.167 0.658 3517.09 3.176 5.333 0.679 4624.47 3.261
6.000 0.764 4447.09 3.694 5.833 0.743 5280.94 3.590
6.333 0.806 4830.36 3.893 6.167 0.785 5762.35 3.787
6.667 0.849 5213.64 4.102 6.514 0.829 6119.76 4.003
7.000 0.891 5675.82 4.309 6.667 0.849 6499.06 4.102
7.132 0.908 5816.73 4.392 7.599 0.968 7760.94 4.676
7.748 0.987 6363.45 4.758 7.661 0.975 7848.47 4.804
7.982 1.016 6634.00 4.915 8.671 1.104 9526.12 5.327
8.183 1.042 7282.18 5.023 8.702 1.108 9577.18 5.353
9.250 1.178 8268.55 5.681 9.283 1.182 10 547.29 5.715
9.350 1.191 8398.18 5.757 9.344 1.190 10 707.76 5.723
9.685 1.233 8882.91 5.946 10.263 1.307 12 341.65 6.306
10.452 1.331 9942.55 6.421 10.232 1.303 12 305.18 6.281
11.120 1.416 10 866.91 6.832 11.060 1.408 13 880.71 6.780
11.187 1.424 10 990.91 6.870 11.304 1.439 14 376.71 6.994
11.620 1.480 11 633.45 7.133 11.457 1.459 14 690.35 7.130
12.188 1.552 12 501.45 7.485 11.641 1.482 15 025.88 7.161
12.588 1.603 13 144.00 7.728 11.856 1.510 15 463.53 7.301
13.457 1.713 14 558.73 8.259 12.193 1.552 16 149.18 7.509
13.590 1.730 14 772.91 8.342 12.346 1.572 16 535.76 7.602
14.190 1.807 15 838.18 8.708 12.682 1.615 17 250.59 7.921
14.357 1.828 16 091.82 8.813 12.988 1.654 17 950.82 8.133
14.858 1.892 16 971.09 9.123 13.479 1.716 19 081.41 8.276
15.625 1.989 18 318.18 9.597 13.662 1.740 19 438.82 8.417
15.693 1.998 18 430.91 9.641 13.968 1.779 20 190.12 8.597
15.893 2.024 18 831.09 9.759 14.612 1.860 21 700.00 8.960
16.460 2.096 19 896.36 10.110 14.795 1.884 22 188.71 9.084
16.527 2.104 20 003.45 10.149 15.070 1.919 22 816.00 9.290
16.862 2.147 20 561.45 10.355 15.654 1.993 24 325.88 9.643
17.062 2.172 20 944.73 10.464 15.989 2.036 25 120.94 9.745

process, the values of all the components of the Forchheimer correction
tensor 𝐅 were not yielded. This is attributed to the fact that the
computation method for the permeability tensor 𝐊, which involves suc-
cessively imposing a velocity (or pressure gradient) along the three unit
cell directions, becomes inapplicable due to the non-linear dependence
of 𝐅 on ⟨𝐯𝐠⟩. Instead, we investigated the relationship between pressure
gradient ∇⟨𝑝⟩𝑔 and Reynolds numbers 𝑅𝑒. ∇⟨𝑝⟩𝑔 was presented as a
function of 𝑅𝑒 in the three main directions: 𝑥, 𝑦, and 𝑧. The maximal
differences in pressure gradient between simulation and experiment
reach up to 64.5% and 68.2% in the IP and TT directions, respectively.
This difference could be attributed to several factors. which are: (1) The
boundary conditions used to solve permeability may require adjustment
due to the influence of inertial flow. (2) The chosen 3D images may not
be sufficient to ensure the domain’s representativeness. (3) The pressure
values obtained in the simulation are oriented along the original x, y,
and z axes, which differ from the principal axes. These aspects will be
examined in our ongoing work.
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