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Abstract. Fatigue resistance is one of the most important design criteria to ensure the safety
of mechanical structures. In this paper, a topology optimization methodology for volume min-
imization under local fatigue constraints based on the augmented Lagrangian method and the
constrained natural element method is proposed. The Sines fatigue criteria is used to define
the equivalent alternating and average stresses to address fatigue resistance of additive man-
ufactured Ti-6Al-4V alloy structure for infinite life. Since the fatigue criteria under consider-
ation is based on stress invariants, the fatigue-driven problem has the same difficulties as the
stress-based topology optimization problem, so that similar strategies can be used to circum-
vent the problem of stress singularity and the need for a large number of evaluation points.
Although a large number of constraints are required to maintain the local nature of stress, the
formulation presented requires only one adjoint vector, which leads to an efficient sensitivity
assessment. Several numerical examples are presented to demonstrate the effectiveness of the
proposed method.
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1 INTRODUCTION

Topology optimization (TO) aims at determining the optimal material distribution within
the design domain for a given set of boundary conditions. On one hand, the physical prob-
lems can be solved by numerical methods like the finite element method (FEM) or meshless
methods. On the other hand, the optimization can be completed by mathematical program-
ming techniques such as the method of moving asymptotes (MMA) or the method based on
the augmented Lagrangian (AL) formula. Several TO approaches have been proposed since the
pioneer work by Bendsøe and Kikuchi in 1988 [1], namely density-based method, level set-
based method, homogenization method and evolutionary structural optimization method. The
comparison and critical review of the above methods have been given in detail by Sigmund and
Maute [2].

Typically, designs generated by TO often include free-form and complex shapes that are
complicated or cannot be manufactured using traditional production methods. However, TO
designs are well suited for additive manufacturing processes that have more relaxed design
rules and can easily replicate complex shapes without additional cost. Additive manufactured
materials and components for critical load-bearing applications are usually subjected to cyclic
loading and fatigue failure is a major consideration in their design. In addition, due to the multi-
axial nature of the loads and complex geometries manufactured by additive manufacturing, it is
necessary to take multi-axial fatigue into account in TO. Fatigue constrained TO aims to reduce
the overall mass by finding the (local) optimal material distribution that satisfies the specific
fatigue criteria for a given set of cyclic loads.

TO was first formulated as minimizing the strain energy, i.e., the compliance that obeys the
volume constraint. The elaboration of this concept led to the application to a variety of static
responses, dynamic responses and even multiphysics system responses. However, these designs
ignore material strength limitations and still require manual adjustments or shape optimization
to enable the structure to withstand the applied loads. In order to produce structural components
that meet specific functional requirements, structural failure must be prevented at every point of
the component, for example, by developing specific topology optimization schemes that allow
the design to meet a given stress-based requirement and even maintain the life of the structure
during a given number of load cycles. The main issues encountered in stress and fatigue based
topology optimization are the singularity phenomenon and the large-scale optimization problem
caused by the local behavior of stresses.

Several static and quasi-static fatigue models have been developed for topology optimization
of linear elastic structures, thereby avoiding the high computational cost when facing a large
number of loading sequences. Sherif et al. [3] addressed the dynamic property of load condi-
tions in TO by applying equivalent static loads. The work by Holmberg et al. [4] introduced
the fatigue constrained TO based on probability, where the critical fatigue state was determined
as the maximum stress level exceeding the allowable cumulative damage. Jeong et al. [5] de-
veloped the TO method with dynamic fatigue and static failure constraints under proportional
loads. Lee et al. [6] assessed a TO method subjected to fatigue failure in the frequency do-
main for random load. Collet et al. [7] proposed an optimization tool for lightweight design
accompanied by compliance and fatigue constraints through a modified Goodman failure crite-
ria based on the Sines theory. Using the Palmgren-Miner’s linear damage rule, S-N curves and
Sines fatigue criteria, Oest and Lund [8] investigated TO under finite-life fatigue constraints.
Zhang et al. [9] performed fatigue-based TO under non-proportional loading. Suresh et al. [10]
proposed a fatigue constrained TO formulation based on continuous-time approach to consider



general load histories including non-proportional loads. Chen et al. [11] considered the fatigue
constrained TO with cumulative fatigue damage and discussed the influence of damage penal-
ization parameters and load parameters on the final design. In addition to the SIMP method used
in the above studies, the fatigue-constrained TO problem has also been solved by the evolution-
ary structural optimization method (Nabaki et al. [12]). The similarities of the above studies
lie in the use of FEM to solve the equilibrium equation and employ aggregation technology or
active set strategy to reduce the number of constraints.

The most widely employed Lagrangian-type finite elements suffer from numerical instabil-
ities, such as checkerboard pathology and single-node connections (Diaz and Sigmund [13]).
A feasible alternative is to use polygonal finite elements to suppress checkerboard patterns and
reduce mesh dependence (Talischi et al. [14]- [16]). However, due to technical difficulties, there
are no reliable processors available to create high-quality polytopal meshes for 3D complex ge-
ometries, which limits their application to TO over complex design domains. To overcome the
mesh dependency, several meshless methods have been applied in conventional compliance-
based TO problems (Li and Atluri [17]; Luo et al. [18]; Shobeiri [19]) and they have recently
started to be applied to TO problems based on stress constraints (Ullah et al. [20]). The ma-
jor drawback of the commonly used meshless method, such as Element-free Galerkin Method,
is the way to impose the essential boundary conditions since the interpolation function does
not satisfy the Kronecker delta property. To address this problem, Chen et al. [21] applied the
constrained natural element method (CNEM) in tandem with solid isotropic material with pe-
nalization method (SIMP) to TO problems. In addition, aggregation technology reduces the
computational cost at the expense of losing control over the local behavior and lead to highly
nonlinear which makes the solution become unstable and parameter dependent. The disadvan-
tage of the active set approach lie in the active set may still become relatively large during
optimization, since the stresses in the optimized design are usually uniformly distributed, lead-
ing to a large number of elements approaching the stress limit.

In this paper, the method based on CNEM and SIMP is applied to deal with a class of
TO problems with fatigue constraints under sinusoidal cyclic loading. Furthermore, a scheme
based on the AL method is adopted, which deals with the TO problem according to the local
definition of stress without using the constraint aggregation technique. Since the given formula
requires only one adjoint vector, this leads to an efficient sensitivity analysis. Several TO results
with Sines fatigue criteria constraints are provided. The reminder of the paper is organized as
follows. Section 2 introduces the construction of interpolation function and the calculation
of numerical integration of CNEM. Section 3 presents the fatigue constrained TO formula of
continuum structures and the implementation of AL. Then, several numerical examples are
shown in Section 4. Finally, section 5 gives the concluding comments of this paper.

2 The Constrained Natural Element Method

The natural element method (NEM) is an efficient numerical method which was proposed
by Braun and Sambridge [22] to solve partial differential equations along with highly irregular
meshes. Sukumar et al. [23] has shown that the interpolation between adjacent nodes along
any convex boundary in NEM is strictly linear, which facilitates the application of essential
boundary conditions. However, on non-convex boundaries, they may be influenced by the nodes
located in the domain or over the non-convex boundary far from the node under consideration.
To address this phenomenon, Yvonnet et al. [24] proposed the CNEM, which introduced the
visibility criteria in NEM to restrict the natural neighborhood relations of the selected node pairs
to construct the interpolation function in 2D. On this basis, Illoul and Lorong [25] extended its



application to 3D.

2.1 Constrained Voronoi Diagram

In the NEM, the Voronoi diagram of a cloud of nodes, shown in Fig. 1, divides the bounded
domain ΩD in D-dimensions into a group of Voronoi cells Vi, such that any point M within Vi

is closer to node i than any other node j(j ̸= i):

Vi =
{
M ∈ ΩD : d (x,xi) ≤ d (x,xj)∀j ̸= i

}
(1)

where x and xi represent the coordinates of point M and node i respectively while d (x,xj)
is the Euclidean distance between point M and node j. According to this definition, if a line
segment connecting two neighbors crosses the domain boundary Γ, then node i influences node
j, which is incorrect, see Fig. 2. To overcome this issue, a visibility criteria is introduced in the
definition of Voronoi diagram to give rise to the constrained Voronoi diagram:

VC
i =

{
M ∈ ΩD : d (x,xi) ≤ d (x,xj)∀j ̸= i ∩ x is visible from i and j

}
(2)

Figure 1: Voronoi diagram of a cloud of N nodes in 2D (left) and 3D (right)

Figure 2: Visibility criterion (left) and constrained Voronoi cell of node c (right)



2.2 Construction of the Interpolation Function

There exist different interpolation procedures based upon natural neighborhoods for CNEM.
The Sibson interpolant [26] is one of the most widely used and its construction in 2D is shown
in Fig. 3. First, the original constrained Voronoi diagram is modified locally by introducing a
new Voronoi cell attached to point x (blue area). Then, the interpolation function is computed
based on the geometrical considerations:

ϕi(x) =
Vi(x)

V (x)
with V (x) =

n∑
j=1

Vj(x) (3)

where Vi(x) is the Lebesgue measure of the intersection (green area) of Voronoi cell VC
i (yellow

area) and the new Voronoi cell VC
x (blue area), V (x) represents the Lebesgue measure of the

new Voronoi cell VC
x and n is the number of natural neighbors of point x. Unlike the FEM

and other meshless methods, the construction of interpolation functions in CNEM is purely
geometric, which does not involve user-defined parameters. Sibson interpolant satisfies the
Kronecker delta property, the partition of unity property and the linear consistency [23]:

ϕi (xj) = δij,
n∑

i=1

ϕi(x) = 1, u(x) =
n∑

i=1

ϕi(x)ui (4)

Figure 3: Process to compute Sibson interpolant in 2D

2.3 Discrete Weak Form

The governing equation of equilibrium of a linear elastic body Ω can be expressed as:

∇Tσ + b = 0 (5)

subjected to the boundary conditions:

σn = t
u = u

(6)

where σ and b are the stress tensor and body force vector respectively, t stands for the prescribed
traction vector on the Von Neumann boundary Γt and u represents the prescribed displacement
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vector over the Dirichlet boundary Γu, n is the outer normal unit vector to the boundary Γ =
Γt ∪ Γu. Introducing any arbitrary function δu, the associated weak form yields to:

∫
Ω

δεTσdΩ−
∫
Ω

δuTbdΩ−
∫
Γt

δuT t̄ dΓ = 0 (7)

In order to obtain the CNEM discrete weak form, the design domain Ω is represented by appro-
priately distributed nodes and the corresponding constrained Voronoi diagram. Then, using Eq.
3, the displacement at any position x can be expressed by:

uh(x) =
n∑

i=1

Φi(x)ui (8)

where Φi and ui are the interpolation function matrix and displacement vector of node i respec-
tively. The strain vector εh at position x reads:

εh(x) = Luh(x) =
n∑

i=1

Bi(x)ui (9)

where L is the differential operator matrix and Bi represents the strain-displacement matrix of
node i. Finally, using the constitutive equation, the stress tensor σh can be obtained by:

σh(x) =
n∑

i=1

CBi(x)ui (10)

where C is the material constitutive matrix. Substituting Eqs. 8, 9 and 10 into Eq. 7, the
discrete weak form reads:

N∑
j=1

N∑
i=1

δuT
j

(∫
Ω

BT
j CBidΩ

)
ui =

N∑
j=1

δuT
j

(∫
Γt

ΦT
j t̄ dΓ

)
(11)

where N is the number of nodes. Using the arbitrariness of δu, Eq. 11 yields to the following
matrix system:

Ku = f (12)

where K is the global stiffness matrix while u and f are the displacement and the force vectors
respectively.

The non-polynomial nature of the CNEM interpolation function leads to the use of a large
number of Gauss integration points for the accurate computation of Eq. 12. To overcome
this, the stabilized conforming nodal integration scheme (SCNI) proposed by Chen et al. [27]
is applied in this study. In SCNI, the strain smoothing is performed to stabilize the nodal
integration:

εi(x) =
1

Vi(x)

∫
Ωi

Bi(x)uidΩ =
1

Vi(x)

∮
Γi

Φi(x)ui · ndΓ (13)



3 Formulation of Fatigue Constrained Topology Optimization Problem

This section is devoted to the development of a TO formulation which considers cyclic fa-
tigue failure within the framework of the SIMP method. In industry, fatigue life is usually
expressed in terms of service time, and specific parts are designed for a predetermined period
of use. Therefore, there is no need to design parts for infinite life. However, the mechanical
parts are designed using the so-called safe life approach such that fatigue failure will not occur
during a specific finite life, or before predetermined service intervals. To perform fatigue life
prediction for a given design, the high cycle fatigue life is modeled and assume that only elastic
deformation occurs during cyclic loading. Inertial effects are also neglected, so that the stress
state at each moment in the loading history is obtained by static linear elasticity analysis. The
general optimization statement can be expressed mathematically as follows:

inff(ρ) =
N∑
i=1

ρiVi

s.t.

{
gi(ρ,u) ≤ 0, i = 1, . . .m

0 ≤ ρj ≤ 1, j = 1, . . . N
(14)

with: K(ρ)u = f

where f(ρ) is the objective function, ρ is the vector of design variables, gi is i-th fatigue con-
straint, which depends not only on the design variables, but also on the displacement, m repre-
sents the number of constraints.

3.1 Density Based Method

The direct use of design variable ρ to solve Eq. 14 does not make it a well-posed problem. In
this study, the polynomial filter used by Zegard and Paulino [28] is adopted, such that ρ̃ = Fρ.
The (i, j)th component of filter matrix F is calculated as:

Fij =
Hijρj∑N
k=1Hikρk

, with Hij = max

[
0, 1− d (xi,xj)

R

]s
(15)

where R is the radius of the filter and exponent s ≥ 1 is the index of the filter.
The polynomial filter reduces to a conventional linear filter when s = 1. The advantage of

using a polynomial instead of a linear function is that it reduces the influence of more distant
elements and facilitates more abrupt changes in density, thereby better defining the material
boundaries.

To obtain a black-and-white design without numerical instability, the so-called three field
approach (Sigmund and Maute [2]) is adopted, which operates with the design variable ρ, the
filtered field ρ̃ and the projected field ρ̄. The Heaviside projection function used in this study is
expressed as follows (Wang et al. [29]):

ρ̄i =
tanh(βη) + tanh [β (ρ̃i − η)]

tanh(βη) + tanh[β(1− η)]
(16)

where β controls the slope of the function near the projection threshold parameter η.



Finally, the stiffness matrix K in Eq. 14 is calculated through a typical assembly process:

K(ρ) = AN
i=1Ki, with Ki = [ϵ+ (1− ϵ)ρ̄pi ]Ki0 (17)

where Ki is the stiffness matrix of VC
i , A is an assembly operator, ϵ is the Ersatz parameter to

prevent singularity, p is the penalty factor, Ki0 is the stiffness matrix of VC
i when ρ̄i = 1.

3.2 Multi-axial High Cycle Fatigue Criteria

Due to different dominant mechanisms, fatigue is usually heuristically classified into low
cycle fatigue and high cycle fatigue. Low-cycle fatigue analysis involves loads in the range of
1− 104 cycles, while high-cycle fatigue is typically in the range of 104 − 108 cycles. For high
cycle fatigue, the stress-based fatigue criteria are widely used. Among the current stress-based
multiaxial fatigue criteria, the Sines (Sines, [30]) criteria is attractive for the engineering design
of high-performance fatigue components due to its ease of use. The Sines criteria is expressed
as follows: √

J i
2,a + αs σ

i
H,mean ≤ βs (18)

where the parameters αs and βs are material parameters given by:

αs = 6t−1/f0 −
√
3 and βs = t−1 (19)

where t−1 represents fully reversed torsion fatigue limit, f−1 and f0 are the fatigue limits under
fully reversed bending and repeated bending, respectively. J i

2,a and σi
H, mean represent, respec-

tively, the amplitude of the second deviatoric stress tensor invariant over one cycle and the mean
value of hydrostatic stress for node i:

{
J i
2,a = σT

i,aMσi,a

σi
H, mean =

σi
xx, mean +σi

yy, mean
3

(20)

where σi,a is the amplitude of Cauchy stress tensor of node i during cyclic loading time T and
σi
∗∗, mean is the mean value of Cauchy stress component. The matrix M stands for the so-called

second deviatoric stress tensor invariant matrix whose definition in 2D plane stress states:

M =

 1/3 −1/6 0
−1/6 1/3 0

0 0 1

 (21)

3.3 Augmented Lagrangian Method

Instead of the popular MMA technique in the literature for fatigue constrained TO problems,
an attractive approach to solve the optimization statement in Eq. 14 while satisfying the local
fatigue constraint is the AL method. AL deals with local constraints by adding them to the
objective function in the form of a penalty term. The solution to the constrained optimization
problem is then obtained by solving a series of unconstrained optimization problems, each of
which aims at minimizing the AL function J(ρ,λ, µ). The unconstrained optimization problem
in each AL iteration is expressed as follows:



inf J (k)(ρ) = f(ρ) +
1

N
P (k)(ρ) (22)

where the penalization term is

P (k)(ρ,u) =
N∑
j=1

[
λ
(k)
j hj(ρ,u) +

µ(k)

2
hj(ρ,u)

2

]
(23)

involving equality constraints

hj(ρ,u) = max

[
gj(ρ,u),−

λ
(k)
j

µ(k)

]
(24)

where λ
(k)
j is the Lagrange multiplier estimator at the k-th iteration and µ(k) > 0 a penalty

coefficient. Both unknowns are updated at each iteration as follows (Senhora et al. [31]):

µ(k+1) = min
[
γµ(k), µmax

]
and λ

(k+1)
j = λ

(k)
j + µ(k)hj

(
ρ(k),u

)
(25)

where γ > 1 is a constant parameter and µmax is the upper limit which is used to prevent
numerical instabilities. Iterations stop when both following criteria are satisfied

1

N

∣∣ρ(k+1) − ρ(k)
∣∣ ≤ δ and max

(√
J2,a + αs σH,mean

)
− βs ≤ δs (26)

where δ and δs are the prescribed tolerance values for design variables and fatigue constraints,
respectively. If both criteria are not satisfied, optimization terminates after a given number of
iterations.

4 Numerical Results

Several numerical results are given in this section to demonstrate the performance of the
proposed method. Table 1 shows the AL parameters used in this study. The mechanical and
fatigue parameters of the additive manufactured Ti-6Al-4V alloy, coming from Mower and
Long, [32] and Fatemi et al. [33], are listed in Table 2.

4.1 2D L-bracket

The L-bracket TO problem is one of the most widely studied problem in literature. The
design domain and boundary conditions are shown in Fig. 4. The model is fully constrained
at the top left edge, and a sinusoidal distributed load with an amplitude of 850N and a mean
value of 0 is applied to the upper right free end along the distance d = 6mm. The length and
thickness of this model are L = 100mm and t = 1mm respectively while the radius of the filter
is R = 5mm.

First, six models involving 26001, 58201 and 103201 regular or irregular Voronoi cells,
depicted in Fig. 5, are used here to check mesh sensitivity. The optimized geometries obtained
by the proposed method are plotted in Fig. 5 as well as the normalized Sines fatigue constraint
maps. The results are very close for the different discretization schemes: it seems that there is
no mesh sensitivity. Moreover, the fatigue constraints are always locally satisfied and the von
Mises stress, plotted in Fig. 6, is lower than the Yield stress everywhere.



Parameter Description Value
ρ(0) Initial density vector 0.5
β Initial Heaviside projection penalization factor 1

βmax Maximum Heaviside projection penalty factor 10
η Heaviside projection threshold 0.5

λ(0) Initial Lagrange multiplier vector 0
µ(0) Initial penalty coefficient 10
γ Penalty factor updating parameter 1.1
q Nonlinear filter index 3.5
δ Convergence tolerance of design variables for AL 0.002
δs Convergence tolerance of stress constraints for AL 0.003

MaxIter Maximum number of external loops 150

Table 1: Input parameters used in this study.

Parameter Description Value
E0 Young’s modulus 108.8 GPa
µ Poisson’s ratio 0.29
σ̄ Yield stress 972 MPa
f−1 Fully reversed bending fatigue limit 454 MPa
t−1 Fully reversed torsional fatigue limit 300 MPa
f0 Fully repeated bending fatigue limit 315 MPa

Table 2: Mechanical and fatigue parameters for Ti-6Al-4V alloy.

Figure 4: Design domain and boundary conditions of 2D L-bracket problem



Figure 5: Sines fatigue criteria constrained TO results and normalized constraint maps under (a) regular mesh and
(b) irregular mesh

4.2 2D Portal Frame

The second optimization problem is a portal frame whose geometry and boundary conditions
are presented in Fig. 7. Geometrical parameters are listed in Table 3. The non convex domain
is discretized using three different numbers of Voronoi cells. In order to obtain symmetric solu-
tions, the design variables on the left and right sides are symmetrized during the optimization.
Optimal geometries and normalized fatigue constraint maps depicted in Fig. 8 are obtained by
using a filter radius R = 6mm. One can observe that there is no mesh sensitivity for the number
of Voronoi cells used and that the fatigue constraints are locally satisfied. Moreover, the von
Mises stress, shown in Fig. 9, is lower than the Yield stress of the material everywhere: Sines
fatigue criteria seems to be more conservative than von Mises stress constraint.



Figure 6: Von Mises stress map for 2D L-bracket problem, unit: MPa

Figure 7: Design domain and boundary conditions of 2D portal frame

Parameter Description Value
L Length 120 mm
H Height 60 mm
h Concave height 35 mm
b Bearing length 5.5 mm
t Thickness 1 mm
d Load distribution distance 10 mm
f Load amplitude 1400 N

Table 3: Parameters for the 2D portal frame problem.



Figure 8: TO results and normalized constraint maps based on Sines fatigue constraints

Figure 9: Von Mises stress map for 2D portal frame problem, unit: MPa

5 CONCLUSIONS

In this paper, a framework for TO considering Sines fatigue constraints is proposed. It com-
bines the CNEM to solve the mechanical equilibrium and AL approach to solve the local min-
imum volume problem. Due to the nature of CNEM, the construction of the neighbor-based
interpolation function is purely geometric and does not involve any artificially defined parame-
ters. The AL method is able to significantly reduce the cost associated with a large number of
constraints while providing a more consistent model than aggregation techniques. The stress-
based Sines fatigue criteria is more conservative than the von Mises stress constraint. However,
the fatigue criteria adopted in this paper cannot predict the direction of potential fatigue cracks,
which will be the next step of this study.
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