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Topology Optimization Using the Constrained Natural 

Element Method 

Yanda Chen*, Eric Monteiro†, Imade Koutiri‡ and Véronique Favier§  

Arts et Metiers Institute of Technology, CNRS, CNAM, HESAM Universite, Paris, 75013, France 

This paper focuses on a new topology optimization method for structures combining 

the solid isotropic material with penalization method (SIMP) and the constrained natural 

element method (CNEM). Common numerical instabilities such as checkerboard pattern 

and mesh dependency are studied and a new filter based on natural neighbors is 

proposed. Several 2D and 3D numerical examples are presented to demonstrate the 

effectiveness of the proposed method. 

Nomenclature 

uI = Nodal displacement vector 

𝜺I = Voronoi cell strain vector 

σI = Voronoi cell stress vector 

𝑩I = Voronoi cell strain-displacement matrix 

C = Constitutive matrix 

K = Global stiffness matrix 

f = Global force vector 

ζ = Adjoint vector 

E = Young’s modulus 

v = Poisson's ratio 

c = Compliance 

VI = Voronoi cell volume 

ρI = Voronoi cell density  

�̃�I = Voronoi cell physical density 

I. Introduction 

opology optimization (TO) aims at determining the optimal material distribution in the design domain for a

given set of boundary conditions. On one hand, the physical problems can be solved by numerical methods

like finite element method (FEM) or meshless methods. On the other hand, the optimization can be completed by 

mathematical programming techniques such as the optimality criteria algorithm (OC) or the method of moving 

asymptotes (MMA). Several TO approaches have been proposed since the pioneer work by Bendsøe and Kikuchi 

in 19881, namely density-based method, level set-based method, homogenization method and evolutionary 

structural optimization method. The comparison and critical review of the above methods have been given in 

detail by Sigmund and Maute2. 

The FEM has been the most frequently used numerical method and its application based on density method in 

TO is very mature. However, FEM displays the checkerboard pathology and mesh dependency. The former 

consists in alternating void and solid elements while the latter shows lack of convergence to a specific topological 

layout with mesh refinement. To overcome these phenomena, several techniques have been proposed, such as the 

use of filters3 or the substitution of FEM by polygonal finite element method4 or meshless methods. For example, 
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SIMP involving the Meshless Local Petrov-Galerkin (MLPG) mixed collocation method5 has been applied to 

TO of elastic structures while Luo et al.6 replaced MLPG by Element-free Galerkin Method (EFGM). 

Bi-directional evolutionary structural optimization (BESO) method combined with EFGM has also been 

proposed for TO by Shobeiri7. However, the major drawback of these meshless methods is the way to impose 

the essential boundary conditions since the interpolation functions do not satisfy the Kronecker delta property. 

Recently, an alternative employing the natural neighbor radial point interpolation method in tandem with BESO 

was suggested by Gonçalves et al8. 

In this paper, a new approach based on CNEM and SIMP is proposed to carry out TO of continuum structures. 

CNEM is a Galerkin method, based on the constrained Voronoi diagram of given nodes, that uses Laplace or 

Sibson interpolation. Unlike other common meshless techniques, the interpolation functions used in CNEM 

satisfy Kronecker delta property, which enable the imposition of essential boundary conditions as in FEM. 

Furthermore, thanks to the natural neighbor information established in the construction of interpolation 

functions, a new neighbor-based filter is proposed to avoid numerical instabilities.  

II. The Constrained Natural Element Method

Natural element method (NEM) is an efficient numerical method which was proposed by Braun and 

Sambridge9 to solve partial differential equations with highly irregular meshes. Sukumar et al.10 has shown that 

the interpolation between adjacent nodes in NEM along any convex boundary is strictly linear, which facilitates 

the application of essential boundary conditions. However, on non-convex boundaries, they may be affected by 

the nodes located within the domain or over the non-convex boundary far from the node under consideration. In 

order to solve this phenomenon, Cueto et al.11 recovered the linearity of interpolation functions along any 

slightly non-convex boundary by invoking the concept of α-shape, which is called α-NEM. In order to 

accurately describe some geometric details, it is necessary to properly adjust the node density and the value of α. 

Moreover, the generalization of α-NEM in three-dimensional non-convex domains has not been proposed. In the 

case of strongly non-convex domains, Yvonnet et al.12 put forward the CNEM, which introduced the visibility 

criteria in NEM to restrict the selection of natural neighbor relationship of node pairs to construct the 

interpolation functions and established the constrained Voronoi diagram in 2D. On this basis, Illoul and 

Lorong13 extended its application to 3D. Once the constrained Voronoi diagram is constructed, the similar 

algorithm for constructing interpolation functions and calculating integration can be directly applied in CNEM 

as in NEM. At present, there is no research work exploring structural TO using NEM or CNEM.  

A. Constrained Voronoi Diagram 

Figure 1. Voronoi diagram of a cloud of N nodes in 2D (left) and 3D (right) 

In NEM, the Voronoi diagram of a cloud of N nodes, shown in Fig. 1, divides the bounded domain ΩD in 

D-dimensions into a group of Voronoi cells 𝒱I, such that any point x within the Voronoi cell 𝒱I is closer to 

node I than any other node J (J≠I): 

𝒱𝐼 = {𝒙 ∈ 𝛺𝐷 ∶  𝑑(𝒙, 𝒙𝐼) ≤ 𝑑(𝒙, 𝒙𝐽) ∀𝐽 ≠ 𝐼} (1) 

where xI represents the coordinates of node I and d(xI,xJ) the Euclidean distance between node I and node J. 

With this definition, if a segment connecting two neighbors crosses the domain boundary Γ, then node I 

influences node J, which is incorrect, see Fig. 2. To overcome this issue, a visibility criterion is introduced in the 

definition of Voronoi diagram to give rise to the constrained Voronoi diagram: 

𝒱𝐼
𝐶 = {𝒙 ∈ 𝛺𝐷 ∶  𝑑(𝒙, 𝒙𝐼) ≤ 𝑑(𝒙, 𝒙𝐽) ∀𝐽 ≠ 𝐼 ∩  𝑥 𝑖𝑠 𝑣𝑖𝑠𝑖𝑏𝑙𝑒 𝑓𝑟𝑜𝑚 𝐼 𝑎𝑛𝑑 𝐽} (2) 



Figure 2. visibility criterion (left) and constrained Voronoi cell of node c (right) 

B. Construction of interpolation functions 

There exist different interpolation procedures that are based upon natural neighborhood. The Sibson 

interpolant14 is one of the most widely used and its construction in 2D is shown in Fig. 3. First, the constrained 

Voronoi diagram of N nodes is modified locally by introducing a new Voronoi cell attached to point x (blue 

area). Then, the interpolation function is computed from geometrical considerations:  

𝜙𝐼
𝑆𝑖𝑏(𝒙) =

𝐿𝐼(𝒙)

𝐿(𝒙)
 𝑤𝑖𝑡ℎ   𝐿(𝒙) = ∑ 𝐿𝐽(𝒙)

𝑛
𝐽=1 (3) 

where LI(x) is the Lebesgue measure of the intersection (green area) of the initial Voronoi cell of node I (yellow 

area) and the new Voronoi cell of point x (blue area), L(x) represents the Lebesgue measure of the new Voronoi 

cell of point x and n is the number of natural neighbors of point x. Unlike the FEM and other meshless methods, 

the construction of interpolation functions in CNEM is purely geometric, which does not involve user-defined 

parameters.   

Figure 3. Process to compute Sibson interpolant in 2D 

It has been proved that Sibson interpolant satisfies the Kronecker delta property, the partition of unity 

property and the linear consistency10: 

 𝜙𝐼(𝒙𝐽) = 𝛿𝐼𝐽 ,     ∑ 𝜙𝐼(𝒙) = 1,
𝑛
𝐼=1   𝒖(𝒙) = ∑ 𝝓𝐼(𝒙)𝒖𝐼

𝑛
𝐼=1    (4) 

C. CNEM discrete weak form 

The governing equation of equilibrium of a linear elastic body Ω can be expressed as: 

𝜵𝑻𝝈 + 𝒃 = 𝟎 (5) 

subjected to the boundary conditions: 

𝝈𝒏 = 𝒕 (6) 

𝒖 = 𝒖 (7) 

where σ and b are the stress tensor and body force vector respectively, 𝒕 stands for the prescribed traction 

vector on the Von Neumann boundary Γt and 𝒖 represents the prescribed displacement vector over the 

Dirichlet boundary Γu, n is the outer normal unit vector to the boundary 𝛤 = 𝛤𝑡 ∪ 𝛤𝑢.

Introducing any arbitrary function 𝜹𝒖, the associated weak form yields to: 



∫
𝛺
𝜹𝜺𝑻𝝈𝑑𝛺 − ∫

𝛺
𝜹𝒖𝑻𝒃𝑑𝛺 − ∫

𝛤𝑑
𝜹𝒖𝑻𝒕𝑑𝛤 = 0 (8) 

In order to obtain the CNEM discrete weak form, the design domain Ω is represented by appropriately 

distributed nodes and the corresponding constrained Voronoi diagram. Then, using Eq. (3), the displacement at 

any point x can be expressed by: 

𝒖ℎ(𝒙) = ∑ 𝝓𝐼(𝒙)𝒖𝐼
𝑛
𝐼=1                                  (9)

where ϕI and uI are the interpolation function matrix and displacement vector of node I respectively. The strain 

vector ε at point x reads: 

𝜺(𝒙) = 𝑳𝒖ℎ(𝒙) = ∑ 𝑩𝐼(𝒙)𝒖𝐼
𝑛
𝐼=1 (10) 

where L is the differential operator matrix and BI represents the strain-displacement matrix of node I. Finally, 

using the constitutive equation, the stress vector can be obtained by: 

𝝈(𝒙) = ∑ 𝑪𝑩𝐼(𝒙)𝒖𝐼
𝑛
𝐼=1 (11) 

where C is the material constitutive matrix. For linear isotropic elastic materials in 2D under the assumption of 

plane strain, it can be defined as: 

𝑪 =
𝐸

(1+𝑣)(1−2𝑣)
[
1 − 𝑣 𝑣 0
𝑣 1 − 𝑣 0
0 0 (1 − 2𝑣)/2

] (12) 

where E and v are Young's modulus and poisson's ratio respectively. 

Substituting Eqs. (9), (10) and (11) into Eq. (8), the discrete weak form reads: 

∑ ∑ 𝜹𝒖𝐽
𝑇(∫

𝛺
𝑩𝐽
𝑇𝑪𝑩𝐼𝒅𝛺)𝒖𝐼

𝑁
𝐼=1

𝑁
𝐽=1 = ∑ 𝜹𝒖𝐽

𝑇𝒇𝐽
𝑁
𝐽=1 (13) 

where N is the number of constrained Voronoi cells. Using the arbitrariness of 𝜹𝒖, Eq. (13) yields to the 

following matrix system: 

𝑲𝒖 = 𝒇 (14) 

where K is the global stiffness matrix and f the force vector. 

The non-polynomial nature of CNEM interpolation functions leads to the use of a large number of Gauss 

integration points to accurately compute Eq.(13). To overcome this, the stabilized conforming nodal integration 

scheme (SCNI) proposed by Chen et al.15 is applied in this study. Yvonnet et al.12 showed that the SCNI scheme 

applied in 2D non-convex domains improve the efficiency and accuracy compared to standard gauss quadrature. 

In 3D case, Illoul and Lorong13 found that SCNI has the same convergence speed as linear finite element based 

on Gaussian quadrature, but the total error is 1/3 of the latter. In SCNI, the strain smoothing stabilization is 

performed to stabilize the nodal integration:  

𝜺𝐼(𝒙) =
1

𝐿𝐼(𝒙)
∫
𝛺𝐼
𝑩𝐼(𝒙)𝒖𝐼𝑑𝛺 (15) 

By applying the divergence theorem, Eq. (15) can be rewritten as: 

𝜺𝐼(𝒙) =
1

𝐿𝐼(𝒙)
∮
𝛤𝐼
𝝓𝐼(𝒙)𝒖𝐼 ∙ 𝒏𝑑𝛤 (16) 

III. Formulation of Topology Optimization Problem

The aim of TO is to obtain an optimized structure made of a mix of soft (void) and stiff (solid) materials. 

Density-based methods are the most popular TO approaches due to their simplicity and ease of implementation. 

In such approach, the design domain ΩD is discretized and a design variable named density ρ, is assigned to each 



subdomain. Since discrete values usually lead to ill-conditioned problem, this density takes continuous values 

from 0 to 1. To limit intermediate values, the density can be penalized.  

A. Problem Statement 

The main objective of structural optimization problems is to minimize the deformation of structures 

constrained by volume. This can be achieved by minimizing strain energy stored in the structure, which is 

equivalent to minimizing compliance. The mathematical form of such a problem is written as: 

{
 
 

 
 
𝑚𝑖𝑛
𝝆∈𝑆

 𝑐(𝝆) = 𝒇𝑇𝒖(𝝆) 

𝑠. 𝑡. {

∑ 𝑉𝐼𝜌𝐼
𝑁
𝐼=1

𝑉
− 1 ≤ 0 

𝝆𝑚𝑖𝑛 ≤ 𝝆 ≤ 𝝆𝑚𝑎𝑥
𝒇 = 𝑲(𝝆)𝒖(𝝆)     

(17) 

where 𝑉 is the overall volume constraint, c is the compliance value, ρmin and ρmax are the lower and upper 

bounds of the design variables, f = Ku is the equilibrium equation from Eq. (14). 

In the modified SIMP, it is necessary to artificially set the functional relationship between the density of 

constrained Voronoi cells and the physical properties of material. Considering linear isotropic materials, the 

Young's modulus can be calculated as: 

𝐸(𝝆) = [𝜖 + (1 − 𝜖)𝝆𝑝]𝐸0 (18) 

where E0 is the Young's modulus for ρ = 1, є is a small value to prevent singularity, e.g. є = 10-4, p is a penalty 

factor whose value is 3.5 in this paper. 

B. Filter Operator 

Filter operator is one of the techniques to avoid numerical instabilities in TO. The commonly used parameter 

of the density filter, the weight factor, is defined as: 

𝐻𝐽
𝑑𝑒𝑛𝑠 = 𝑚𝑎𝑥〈0, 𝑅 − 𝑑(𝒙𝐽, 𝒙𝐼)〉 (19) 

where R is the radius of the filter. All nodes whose distance to the current node is lower than radius R will 

contribute. Fig. 4 (left) shows an example in 2D where the radius defines a circular neighborhood. For 3D 

problems, the filtering area forms a sphere. The filtered density of node I is determined by the following 

formula: 

�̃�𝐼 = (∑ 𝐻𝐽𝜌𝐽
𝑛𝑓
𝐽=1 )/(∑ 𝐻𝐽

𝑛𝑓
𝐽=1 ) (20) 

where nf is the number of nodes within the filtering domain. 

The disadvantage of the density filter is that when the design domain or the distribution of nodes is irregular, 

the filtering effect may be poor, because there are not enough nodes captured within filtering domains or the 

results are biased to the side where the nodes are more densely distributed. For example, the density of node I in 

Fig. 4 (left) is mainly contributed by the nodes on the left and the bottom, while the node on the right side does 

not even contribute to it. 

In this paper, a new filter, based on natural neighbors and shown in Fig. 4 (right), is proposed. This filter can 

more reasonably consider the contribution of the neighbor nodes in all directions under irregular conditions, and 

the only parameter that needs to be defined is the number of layers. The weight factor for neighbor-based filter 

of node I is expressed as:  

𝐻𝐽
𝑛𝑒𝑖𝑔

= {
𝑑𝑚𝑎𝑥 − 𝑑(𝒙𝐽, 𝒙𝐼)   𝑖𝑓 𝐽 𝑖𝑠 𝑎 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟

0  𝑒𝑙𝑠𝑒
(21) 
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Figure 4. standard density filter (left) and neighbor-based filter (right) 

where dmax represents the maximum distance between the target node and the neighbor node within the filtering 

domain. Then, the filtered density can be calculated by Eq. (20). 

C. Sensitivity analysis 

Sensitivity analysis is an effective method to determine whether and how much the density of a specific 

constrained Voronoi cell should be increased or decreased. The adjoint method is adopted here to calculate the 

gradient information of design variables. Thus, the objective function is modified by adding a zero part from the 

equilibrium equation: 

𝑐(�̃�) = 𝒇𝑻𝒖(�̃�) + 𝜻𝑻(𝑲(�̃�)𝒖(�̃�) − 𝒇) (22) 

where ζ is an adjoint vector which can take arbitrary values. Then the partial derivative of the objective function 

c to design variable ρI of constrained Voronoi cell I can be obtained as: 

𝜕𝑐(�̃�)

𝜕𝜌𝐼
= [𝜻𝑻

𝝏𝑲(�̃�)

𝜕�̃�𝐼
𝒖(�̃�) + (𝒇𝑻 + 𝜻𝑻𝑲(�̃�))

𝜕𝒖(�̃�)

𝜕�̃�𝐼
]
𝜕�̃�𝐼

𝜕𝜌𝐼
(23) 

In order to get rid of the derivation of the displacement to the design variable, it is necessary that the term in 

brackets (adjoint equation) is equal to zero, which means: 

𝜻𝑻 = 𝒇𝑻𝑲(�̃�)−𝟏 = −𝒖(�̃�)𝑻 (24) 

Thus, the derivative of the objective function becomes: 

𝜕𝑐(�̃�)

𝜕𝜌𝐼
= (𝜻𝑻

𝝏𝑲(�̃�)

𝜕�̃�𝐼
𝒖(�̃�))

𝜕�̃�𝐼

𝜕𝜌𝐼
(25)   

Based on the SIMP form in Eq. (18), Eq. (25) can be expressed in the following discrete form: 

𝜕𝑐(�̃�)

𝜕𝜌𝐼
= [𝜻𝑻𝑩𝐼

𝑇
((1 − 𝜖)𝑝�̃�𝐼

𝑝−1𝑳(𝒙𝐼)) 𝑪𝑩𝐼𝒖(�̃�)]
𝜕�̃�𝐼

𝜕𝜌𝐼
(26) 

The gradient of the constraint function VI to design variable ρI of constrained Voronoi cell I is: 

𝜕𝑉𝐼(�̃�)

𝜕𝜌𝐼
= 𝑉𝐼

𝜕�̃�𝐼

𝜕𝜌𝐼
(27) 

where 𝜕�̃�𝐼/𝜕𝜌𝐼 = 𝐻𝐽/(∑ 𝐻𝐽)
𝑛𝑓
𝐽=1 in all the above formulas. 

D. Optimizers 

The performance of topology optimization in terms of convergence and efficiency is highly dependent on the 

choice of the optimizer. The optimization problem expressed in Eq. (17) can be solved by OC, MMA or its 

globally convergent version GCMMA. The application of each needs the first derivative information of the 

objective function and of the constraint to design variables. In order to compare the influence of different 

optimizers on the results, the above three optimizers are all implemented in this study. For the selection of the 

parameters in OC, MMA or GCMMA, we refer to Andreassen et al.19 and Liu et al.20 respectively. 

In this research, the update scheme for the density in OC can be expressed by16: 



𝜌𝐼
𝑘+1 {

𝑚𝑎𝑥(𝜌𝑚𝑖𝑛 , 𝜌𝐼
𝑘 −𝑚) 𝜌𝐼

𝑘𝐵𝐼
𝜂
≤ 𝑚𝑎𝑥(𝜌𝑚𝑖𝑛 , 𝜌𝐼

𝑘 −𝑚)

𝜌𝐼
𝑘𝐵𝐼

𝜂
𝑚𝑎𝑥(𝜌𝑚𝑖𝑛 , 𝜌𝐼

𝑘 −𝑚) < 𝜌𝐼
𝑘𝐵𝐼

𝜂
< 𝑚𝑖𝑛(𝜌𝑚𝑎𝑥 , 𝜌𝐼

𝑘 +𝑚)

𝑚𝑖𝑛(𝜌𝑚𝑎𝑥 , 𝜌𝐼
𝑘 +𝑚) 𝑚𝑖𝑛(𝜌𝑚𝑎𝑥 , 𝜌𝐼

𝑘 +𝑚)  ≤ 𝜌𝐼
𝑘𝐵𝐼

𝜂

(28) 

where k indicates the current iteration number, m is the positive moving limit, η is a numerical damping 

coefficient which is used to ensure the stability of the convergence, BI is derived from the optimality condition 

and can be expressed as follows: 

𝐵𝐼
𝑘 = −

𝜕𝑐(�̃�)

𝜕𝜌𝐼
(𝜆

𝜕𝐿(�̃�𝐼) 

𝜕𝜌𝐼
)
−1

(29) 

where λ is a Lagrange multiplier which can be determined by a bi-sectioning algorithm16. 

The MMA approach proposed by Svanberg18 is based on the first order Taylor expansion of the objective 

and constraint functions, in which a general form of the TO problem can be rewritten as:   

{
  
 

  
 𝑚𝑖𝑛 𝑓0(�̃�) +𝑎0𝑧 + ∑ (𝑐𝑗𝑦𝑗 +

1

2
𝑑𝑗𝑦𝑗

2)𝑚
𝑗=1

𝑠. 𝑡.

{
 
 

 
 
𝑓𝑗(�̃�) − 𝑎𝑗𝑧 − 𝑦𝑗 ≤ 0  𝑗 =  1, . . . , 𝑚

𝑦𝑗 ≥ 0         𝑗 =  1, . . . , 𝑚

𝑧 ≥ 0       
𝝆𝒎𝒊𝒏 ≤ 𝝆 ≤ 𝝆𝒎𝒂𝒙        

𝒇 = 𝑲(�̃�)𝒖(�̃�)       

(30) 

where a0, aj, cj, and dj are positive real numbers, y and z are artificially added design variables. 

In MMA, the objective and constraint functions are linearly expanded to construct a convex sub-problem, 

then, the sub-problem is solved to approximate the initial problem. The sub-problem can be expressed as: 

{
 
 
 

 
 
 𝑚𝑖𝑛 𝑓0

(𝑘)
(�̃�) +𝑎0𝑧 + ∑ (𝑐𝑗𝑦𝑗 +

1

2
𝑑𝑗𝑦𝑗

2)𝑚
𝑗=1

𝑠. 𝑡.

{
 
 

 
 𝑓𝑗

(𝑘)
(�̃�) − 𝑎𝑗𝑧 − 𝑦𝑗 ≤ 0      𝑗 =  1, . . . , 𝑚

𝑦𝑗 ≥ 0  𝑗 =  1, . . . , 𝑚

𝑧 ≥ 0       
𝝆𝒎𝒊𝒏 ≤ 𝝆 ≤ 𝝆𝒎𝒂𝒙 

𝒇 = 𝑲(�̃�)𝒖(�̃�)       

(31) 

where 

𝑓
𝑗

(𝑘)
(�̃�) = 𝑓𝑗(�̃�

(𝑘)) + ∑ (
𝑃𝑖𝑗
(𝑘)

𝑈𝑖
(𝑘)
−�̃�𝑗

+
𝑄𝑖𝑗
(𝑘)

�̃�𝑖−𝐿𝑖
(𝑘))

𝑛
𝑖=1 (32) 

The generation of the convex sub-problems are not only based on the gradient information of the current 

iteration point (contained in Pij and Qij), but also based on the moving asymptotes Li and Ui, which are updated 

in each iteration based on the information from the previous iteration point. 

The GCMMA differs from MMA in that it attempts to achieve global convergence by controlling a non- 

monotonous parameter (which is a fixed small value in MMA) and invokes the internal iterations in the convex 

approximation. The construction of convex sub-problem and the update schemes of parameters have been given 

in detail by Svanberg18,19. Finally, the sub-problems in MMA and GCMMA are solved by using a primal-dual 

interior point algorithm18,19. 

The convergence criteria considered in this study is the absolute value of the maximum density change in 

two continuous topologies. Based on this definition, the convergence criteria is defined as: 

𝑚𝑎𝑥|𝝆𝑘+1 − 𝝆𝑘| ≤ 𝛿                                (33)

where δ is the allowable tolerance. 



Table 1. Topology optimization results for 2D and 3D structures 

TO case FEM result17,20 CNEM result 

1 

2 

3 

4 

5 

6 



IV. Numerical Examples

In this section, several 2D and 3D examples are presented to illustrate the effectiveness of the proposed 

method. Results are listed in Table 1. All tests are considered dimensionless: E0 = 1, v= 0.3, and f = 1. The 

optimization algorithm adopted here is OC and the plane strain assumption is made in 2D cases. The number of 

neighbor-based filter layer is 3. The optimized results obtained by FEM using density filter in references17,22 are 

also listed in the second column for comparison. Good agreement is observed in all cases. 

The optimized results obtained using three different optimizers for a cantilever beam are shown in Table 2 

and the corresponding evolution history of the objective function over the first 50 iterations is shown in Fig. 5. 

In this study, the length and width of cantilever beam are 120 and 40 respectively. In these calculations, the 

same moving limit m = 0.5 is adopted for all optimizers. It can be seen that OC method is able to achieve faster 

convergence at the beginning, but the final objective function value is also the largest. The iterative process of 

MMA is close to GCMMA, and their final objective function values are slightly smaller than that of OC. We 

also compare the optimized results in Table 2 quantitatively by measuring three angles of the optimized results. 

The results obtained by OC and GCMMA are consistent, the third angle in MMA is slightly larger than the other 

two, as shown in Fig. 6. 

In order to further verify the mesh insensitivity of our proposed method, we select two discretization 

schemes, regular and irregular, respectively. Each scheme uses four different number of Voronoi cells in turn: 

2821, 3434, 4107 and 4961. Similarly, using the three angles in Fig. 6 as the benchmark, the comparison results 

of eight different discretization schemes is shown in Fig. 7. It can be seen that the histogram of each angle is 

relatively stable, and the fluctuation does not exceed 4 degrees. These results prove that the method proposed in 

this paper is not affected by the discretization scheme. 

Finally, the effect of different filters on the optimized results when the discretization is highly irregular is 

shown in Fig. 8 and Fig. 9, where s is the length of the structure. When the design domain and the discretization 

scheme are both regular or slightly irregular, the numerical instabilities can be avoided by using the density 

filter as well as the neighbors-based filter. However, when the situation becomes highly irregular, the numerical 

instabilities may still exist if the radius used in the density filter is too small, as shown in Fig. 8. This means that 

the filter radius which performs well in regular discretization may not be applicable in irregular case. 

Furthermore, the relationship between filter radius and design domain size and discretization scheme is usually 

determined by trial and error or experience since there is no established relationship between them. Fig. 9 shows 

the optimized results by neighbor-based filter with different number of layers for the same discretization. There 

are no numerical instabilities even when the number of filter layer is equal to 1.  

V. Conclusion 

In this paper, an effective method for TO of structures is developed by combining CNEM with SIMP. In 

CNEM, the Sibson interpolation and SCNI are used to improve the stability and accuracy. A new 

neighbor-based filter is also proposed to face highly irregular discretization. Numerical examples in 2D and 3D 

involving different optimizers and discretization schemes (regular and irregular) have shown the robustness of 

the method.  



Figure 5. Evolution history of the objective function over iterations with different optimizers 

Figure 6. Comparison of angles in optimized results obtained by different optimizers 

Table 2. Topology optimization results with OC, MMA and GCMMA 

optimizer OC MMA GCMMA 

CNEM 

result 



Figure 7. Comparison of angles in optimized results obtained by different discretization 

R = 0.03*s R = 0.04*s R = 0.05*s 

Figure 8. Optimized results using density filter for different filter radius 

Layer = 1 Layer = 2 Layer = 3 

Figure 9. Optimized results using neighbor-based filter for different filter layers 
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