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ABSTRACT: The aim of this paper is to give an overview of the theoretical basis of the most significant and 

commonly used localization criteria reformulated into a unified framework, and to apply these criteria to different 

materials in order to determine their formability domains. 

After giving a general material description based on a phenomenological approach, theoretical foundations of 

localization criteria are presented together with their advantages and drawbacks. These criteria rely on diverse theories: 

maximum load principle, bifurcation analysis, Marciniak-Kuczynski analysis, and stability analysis by a linear 

perturbation method. They are then applied to a brass and a Dual Phase steel and the predicted Forming Limit Diagrams 

(FLD) are discussed. 
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1 INTRODUCTION 

During sheet metal forming processes, plastic instability 

phenomena such as diffuse necking or strain localization 

may occur, leading to defective products. The 

development as well as the appropriate use of 

dimensioning methods to detect and avoid such 

phenomena are then of major interest for the sheet 

forming industry. The concept of Forming Limit 

Diagrams (FLDs) has been one of the earliest methods 

coined, and is still widely used nowadays to represent 

the formability of thin metal sheets. The FLDs can be 

obtained by various ways, including experimental 

methods, empirical localization indicators and 

theoretically based localization criteria. However, the 

comparison of FLDs obtained with these different 

methods is scarce, and it is still difficult to point out their 

respective ability to accurately determine the formability 

of a metal sheet. 

The aim of this paper is to give an overview of the 

theoretical basis of the localization criteria based on the 

maximum load principle (Hill [1], Hora et al. [2]), on the 

bifurcation analysis (Drucker [3], Rice [4]), on the 

Marciniak-Kuczynski analysis [5] and on the stability 

analysis by a linear perturbation method (Dudzinski and 

Molinari [6]). The reformulation of these criteria into a 

general and unified framework allows the comparison of 

their theoretical formulation as well as the comparison of 

their numerical predictions in terms of both Forming 

Limit Diagrams.  

 

2 MATERIAL MODELLING 

2.1 CONSTITUTIVE EQUATIONS 

The modelling adopted here is based on a 

phenomenological approach, used to describe the 

behaviour of elasto-plastic materials such as metal 

alloys. Since the material modelling was shown to have 

an influence on the Forming Limit Diagrams, initial and 

induced anisotropy as well as damage are introduced to 

accurately describe the material behaviour. 

A hypo-elastic law is introduced: 
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where σ  is the Cauchy stress rate tensor and D , e
D , 

p
D  are the total strain rate tensor and its elastic and 

plastic parts, respectively. C  is the fourth-order elastic 

modulus tensor. 

A yield function is given by (2): 
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where   is the plastic multiplier. Variables 

1 , ..., , ...,i ny y y  represent the set of internal variables, 

such as isotropic and kinematic hardening variables. The 

evolution of these internal variables is described by 

nonlinear differential laws, written under the following 

compact form: 
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where 
iy

H  is a modulus associated with the considered 

internal variable. The plastic flow rule is considered here 

for associative plasticity: 
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where V  is the flow direction, normal to the yield 

surface defined by potential f . The combination of 

these equations allows the derivation of the tangent 

modulus L  for an undamaged material: 
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For some steel alloys, damage may play a significant 

role. In this work, damage is introduced following the 

isotropic Continuum Damage Mechanics approach: 
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with d  the damage variable, ranging from 0 for safe 

materials to 1 for fully damaged materials. 

 

2.2 MATERIAL PARAMETERS 

Classical quadratic Hill’48 yield surface is used to 

describe the initial anisotropy. For isotropic hardening, 

Swift power law is used for a brass, while Voce 

saturating law is used for a dual phase steel: 
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where   is the cumulative plastic strain and n , k , 
0

 , 

RC  and 
satR  are material parameters. The evolution of 

the damage variable is governed by the law: 
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with 
e

Y  is the strain energy density release rate, 
ei

Y , 
ds , 

dS  and 
d  are material parameters. The parameter 

values of the initial anisotropy, hardening and damage 

for the two materials are given in Tables 1 and 2. 

Table 1: Brass material parameters 

n k 0  r0 r45 r90 

0.118 618.3 0.014 1.8 1.3 2 

Table 2: DP steel material parameters 

Rsat  Cr r0 r45 r90 βd Sd sd Yei 

551.4 9.3 1 1.5 2 5 20 0.01 0 

3 LOCALIZATION CRITERIA 

Various necking and strain localization criteria are used 

to characterise the formability of sheets metal. The aim 

of this section is to present the principles and the 

theoretical basis of the most commonly used localization 

criteria. Attention is given to their respective ability to 

predict diffuse or localized modes as well as the 

orientation of a localization band. 

 

3.1 MAXIMUM FORCE CRITERIA 

These criteria are based on the empirical observation that 

necking occurs when the load reaches its maximum 

during a tensile test. Necking is then predicted if the load 

F  becomes stationary: 0dF  . Extension of this 

diffuse necking criterion to 2D loading conditions was 

proposed by Swift. Using the previous condition in the 

two principal loading directions and combining it with 

the equilibrium and constitutive equations, Swift 

“Maximum Force Criterion” (MFC) can be obtained [1]: 
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  is the equivalent stress, 
1  and 

2 are the major and 

minor principal stresses and 
1  the major principal 

strain. Extension of this principle to localized necking is 

given by taking into account the evolution of the strain-

path change measure  , leading to the “Modified 

Maximum Force Criterion” (MMFC) [2]: 
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Hill’52 criterion [1] is based on the same principle, but is 

written with an additional more restrictive condition: 

localization is supposed to occur in a band with 

stationary extension, restraining the criterion to the 

domain of negative minor strain. Two conditions are 

then obtained: one on the maximum loading and one on 

the orientation   of the localization band: 
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3.2 MARCINIAK-KUCZYNSKI ANALYSIS 

In this criterion [5], the strain localization is expected to 

occur at a defect of the structure. An initial defect (weak 

zone B) is introduced into a metal sheet (safe zone A). 

This defect is usually introduced as a band of reduced 

thickness, defined with the initial defect size 
0f : 
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0t  is the initial thickness in zones A and B. This initial 

defect is not only a geometrical defect, but it can be seen 

as an equivalent defect taking into account geometrical 

and material heterogeneity. This parameter is a user-

postulated parameter. 

After loading of the sheet, mechanical properties of 

zones A and B are computed thanks to equations (1)-(8). 

Localization is predicted if the ratio of mechanical 

properties in zones A and B, for example the cumulated 

plastic strain rates, exceeds a threshold S : 
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This 2D formulation of the criterion allows the 

prediction of localized strain modes in the plane of the 

sheet and the determination of the orientation of the 

localization band. This criterion is easy to implement 

and to adapt to new material modelling; however, two 

non physical user-defined parameters are required. 

 

3.3 BIFURCATION ANALYSIS 

Another approach to predict localization phenomena is 

the bifurcation analysis. In this analysis, localization is 

seen as a bifurcation from a quasi homogeneous strain 

mode into a localized one. 

Drucker introduced the general bifurcation criterion as a 

necessary condition for the loss of uniqueness of the 

solution to the boundary value problem for rate 

independent materials, excluding any elastic unloading 

[3]. This criterion of non-bifurcation corresponds to the 

positivity of the second order work: 
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For associative plasticity in small deformations, this 

criterion may be achieved with null or negative 

hardening. This criterion is a lower bound of 

localization, predicting the possible occurrence of the 

first diffuse mode. It seems to be too conservative. 

Classical discontinuous bifurcation, introduced by Rice 

[4], is a special case of the general bifurcation, 

associated with kinematically admissible discontinuous 

modes. After introducing a discontinuity into the 

velocity gradient, the localization criterion takes the 

form: 
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In the case of associative plasticity, this criterion 

requires negative hardening to be activated. This effect is 

introduced by the use of damage. This criterion always 

occurs after general bifurcation and predicts 3D 

localization modes as well as the band orientation. 

However, it requires damage and cannot be used with 

rate sensitive materials. 

 

3.4 STABILITY ANALYSIS BY LINEAR 

PERTURBATION METHOD 

Localization can be seen as the development of unstable 

deformation modes with high growing rates. The linear 

perturbation method [6] can be used to check the 

stability of the equilibrium equations. The equilibrium 

problem can take the form of a set of equations written 

under the form: 

  A U 0  (16) 

with U  a vector containing the strain rate tensor, the 

equivalent plastic strain rate, the stress tensor and the 

equivalent stress. The solution 
0U  of the system is 

perturbed by small perturbations of assumed form: 
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where 
0 U  is the amplitude and   the growing rate of 

the perturbation. Perturbed system takes the form: 
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Solution of this eigenvalue problem leads to the 

resolution of a third order polynomial in  .  

Eigenvalues with negative real parts correspond to stable 

modes. Eigenvalues with positive real parts and low 

growing rates correspond to diffuse necking while those 

with growing rate superior to the equivalent plastic strain 

rate are assumed to be localized. 

This method allows the determination of diffuse and 

localized modes as well as the orientation of localization 

band and is also suitable for rate sensitive materials. In 

this paper, a 2D formulation of this criterion is 

implanted, allowing the determination of modes in the 

plane of the metal sheet. 

 

4 FORMABILITY OF METAL SHEETS 

The FLDs predicted with Swift, Hill, Hora, M-K and 

Molinari localization criteria for a brass without damage 

and with M-K and Rice for a DP steel with damage are 

compared respectively in Figure 1 and in Figure 2. 

In Figure 1, prediction of diffuse necking modes by the 

Swift and Molinari criteria gives close results. In the 

case of localized modes, the results are more dispersed. 

The M-K model seems to lower the formability in plane 

tension and to overestimate it in equibiaxial tension. This 

general trend can be adjusted by the user imposed 

parameters. Within the stability analysis, modes found in 

the plane of the sheet overestimate the formability. They 

can be interpreted as an upper localization bound. A 3D 

formulation of this criterion would allow the search of 

modes out of the plane of the sheet and would be more 

suitable for this application. 

 



 

Figure 1: FLDs of a brass 

Figure 2 shows the FLD predicted by the M-K and the 

Rice models for a DP steel. Within associative plasticity, 

Rice criterion requires softening, which is introduced 

here by damage. Trends mentioned above with M-K 

criterion are still recovered. Parametric analysis is 

carried out on the size of the initial defect 
0f . Prediction 

of M-K criterion with small initial defect  0 1f   tends 

to reproduce the FLD obtained with Rice criterion. With 

large initial defect  0 0.95f  , formability is lowered 

and the FLD could be closer to a diffuse mode.  

 

Figure 2: FLDs of a DP steel 

 

5 CONCLUSIONS 

In this paper, theoretical formulations of commonly used 

localization criteria are reviewed. Applicability domains 

of the criteria are reviewed, along with their advantages 

and drawbacks.  

Coupling with a general class of material modelling 

allows the simulation of forming limit diagrams. 

Comparison of numerical FLD allows the verification of 

theoretical discussion and reveals some trends. Diffuse 

modes can be predicted with Swift Maximum Force and 

Molinari stability analysis criteria; predictions obtained 

with these criteria are in good accordance. Localized 

modes are predicted by Hill, Hora, Rice, M-K and 

Molinari criteria. Results are more dispersed. Stability 

analysis with localized mode, M-K with small initial 

defect and Rice criteria seem indicate an upper bound of 

formability, while M-K with large initial defect and Hora 

criteria seem give intermediate modes. 

Further developments are concerned with the coupling of 

the localization criteria with physically based 

constitutive laws in order to improve the FLD simulation 

and to compare experimental and numerical results. 
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