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Study on the temperature dependence of the bulk modulus of 

polyisoprene by molecular dynamics simulations  

J. DIANI
*
, B. FAYOLLE and P. GILORMINI 

Laboratoire d’Ingénierie des Matériaux, CNRS, ENSAM Paris, 151 bd de l’Hôpital, 75013 Paris, France. 

The temperature dependence of the bulk modulus of polyisoprene has been studied using molecular dynamics 

simulations. Virtual polyisoprenes have been submitted to volume contractions above and below the glass 

transition. Bulk modulus has been observed to be linearly dependent on temperature both above and below the 

glass transition respectively, and it dropped by a factor of about 2 while temperatures was risen above the glass 

transition. By monitoring the energy changes during volume contractions, it was observed that the bulk modulus 

arises mainly from the Van der Waals interactions. Nevertheless, the entropy contribution to the bulk modulus 

becomes significant above the glass transition. At a first order, the entropy part of the bulk modulus can be 

considered as independent on the temperature.  
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1. Introduction 

 

The small-strain elastic mechanical behaviour of isotropic materials is fully characterized by two parameters. One 

can choose for instance, the Young’s modulus and the bulk modulus. Dealing with amorphous polymers, a 

specific dependence of these two parameters vs. temperature is observed. The Young’s modulus is known to drop 

by one to three orders of magnitude while temperature rises above the glass transition temperature [1]. The bulk 

modulus is known to decrease by a factor of only 2 or 3 while temperature rises above the glass transition 

temperature [2]. The temperature dependence of the Young’s modulus has been explained well in the literature
 

[3]: above the glass transition, molecular mobility increases and enables entropic elasticity. However, the 

moderate drop of the bulk modulus is still not fully understood and the question of a possible entropy contribution 

to the bulk deformation is still open [4]. Tabor’s [5] theoretical study of bulk modulus of rubber suggests that it 

arises from the Van der Waals interactions and that it is not related to the tensile modulus. Also, Theodorou and 

Suter’s atomistic modelling [6] shows that entropy contributions to the elastic response to deformation can be 
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neglected in polymer glasses. Conversely, Matheson’s [4,7] reading of various experimental data of the literature 

seems to indicate that the entropy contribution cannot be generally neglected when considering the 

compressibility of polymeric glasses and rubbers. In this paper, we propose to address the question of the physical 

source of the bulk modulus of rubber (polyisoprene cis1-4) using molecular dynamics simulations.  

Recently, the access to reliable affordable computers has contributed to the development of molecular dynamics 

simulations, and fully atomistic studies providing physical understandings on the mechanical behaviour of 

polymers are now possible. A number of studies have shown the ability of molecular dynamics to successfully 

reproduce the glass transition for amorphous polymers [8-11]. It is then reasonable to consider MD simulations to 

provide physical insight into the bulk modulus. This requires applying hydrostatic loadings, which are favourable 

for easy and fast MD simulations [12]. In such loadings, the number of degrees of freedom is reduced in 

comparison to uniaxial tension or shear. Using Materials Studio software [13], we built several virtual 

polyisoprenes and we applied hydrostatic compressions to the materials at various temperatures. During the 

simulations, the cell volume, pressure, and temperature were monitored, as well as the bonded, nonbond and 

kinetic energies. These data were used in a classical thermodynamics analysis to assess the physical source of the 

bulk modulus below and above the glass transition temperature.  

 

2. General theory 

 

We limit ourselves to hydrostatic loadings, which can result from an applied hydrostatic pressure p or from a 

volume contraction. The first law of thermodynamics relates a small change in internal energy U to small changes 

in entropy S and volume V, during quasi-static processes:  

pdVTdSdU  .                     (1) 

Considering the volume temperature T as two independent variables, Equation (1) leads to: 
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The isothermal bulk modulus is defined as: 
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and, by substituting Equation (2) in Equation (3) one gets 
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which allows to define the internal energy contribution and the entropy contribution to the bulk modulus as: 
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In small strain elasticity, the bulk modulus refers to moderate volume contractions and is defined as 
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)())(,( 00 TBTVTB  , where )(0 TV  corresponds to the volume of the material at temperature T and at 

atmospheric pressure. For various temperatures, we applied moderate volume contractions and used Equation (3) 

to obtain the bulk modulus as a function of temperature. During MD simulations, the internal energy of the 

system is computed as the sum of the bonded energy, the nonbond energy and the kinetic energy: 

cNBB KEEU                      (6) 

The nonbond energy consists of the Van der Waals energy, the electrostatic energy and the hydrogen bond terms, 

while the bonded energy accounts for the valence interactions, such as bond stretching, dihedral angle torsion, 

valence angle bending, inversion.... The force-field used in Material Studio is COMPASS [14], which is an ab-

initio-based force-field that has been validated on isolated molecules [15,16].  In COMPASS, the Van der Waals 

interactions are defined by a 9-6 Lennard-Jones potential. Having access to the variation of the internal ernergy U 

as a function of V, we can assess the internal energy contribution ))(,( 0 TVTBU
 through Equation (5) and, 

finally, the entropy contributions to )(0 TB is deduced.  

 

3. Molecular dynamics simulations 

 

3.1. Procedure 

 

Fully atomistic simulations were performed on periodic systems of cis-polyisoprene. The virtual materials were 

built using an amorphous cell generator provided in Materials Studio, with periodic boundary conditions.  Each 

parent cell contains 5 chains of 300 monomers. The cubic parent cells were built at a high temperature (above the 

expected glass transition) of 400 K to ensure a better stability. Each system was then submitted to consecutive, 

energy minimization, 1 ns-NVT MD simulation (number of atoms, volume and temperature remain constant in a 

NVT ensemble), and 1 ns-NPT MD simulations (number of atoms, pressure and temperature remain constant in a 

NPT ensemble). This provided reasonably stable amorphous structures at atmospheric pressure and 400 K. The 

structures were then cooled down to 100 K with a series of 25 K to 50 K jumps with intermediate NPT MD steps 

running for 500 ps with a time step of 1 fs. The duration of the simulations is constrained by the relatively high 

number of atoms (19 510) and by the fact that we use fully atomistic simulations (and not coarse grain 

simulations). Nevertheless, to ensure that 500 ps were long-enough duration, we monitored the cell specific 

volume during 1 ns for NPTs at a low and a high temperature. As shown in Figure 1, the volume has converged 

before 500 ps.  

Six cells were used to calculate the glass transition of the virtual materials. From these six cells, two were 

submitted to volume contractions in order to study the Bulk modulus temperature dependence. For each 

temperature, both cells were submitted to moderate 1.5% and 3%-volume contractions in order to calculate 

)(0 TB  according to Equation (3). Cell 1 simulations were run using Berendsen [17] barostat and thermostat, 

while cell 2 simulations used the Andersen [18] barostat and thermostat. Both methods provided similar results. 
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In addition, larger volume contractions were applied to both cells in order to better analyze the energy variations. 

 

3.2. Results 

 

During 1 bar-isobaric cooling, we observe a linear decrease of the specific volume at both high and low 

temperatures with decreasing temperature. The logarithm of the specific volume of the cells (volume per unit 

mass) is plotted vs. the temperature in Figure 2, so that the slope gives the coefficient of volumic thermal 

expansion directly. The change in the thermal contraction defines a clean glass transition at Tg~250 K, which is 

50 K above experimental values reported in the literature (~203 K at 10 K/min) [19] but is in good accordance 

with former MD studies on cis-polyisoprene [11]. From Figure 2, the expansion coefficients above and below Tg 

can be evaluated as r 5.15 × 10
-4 

K
-1

 and g 2.97 × 10
-4 

K
-1

, respectively, in qualitatively good agreement 

with values reported in the literature [19], r 6.16×10
-4 

K
-1

 and g 2.07×10
-4 

K
-1

. 

 

In order to asses the material compressibility, we first submitted cell 1 to an increasing volume contraction at 

350 K. The resulting pressure is plotted in Figure 3 as a function of the logarithm of the specific volume of the 

cell. We note that the material stiffens as the volume decreases, which indicates that compressibility decreases 

with volume contraction. This result is consistent with rubber behaviour reported in the literature [20]. As 

previously mentioned, the bulk modulus is related to the material response for small volume contractions and is 

defined by the linear approximation of p vs. ))(ln( TV  according to Equation (3). Figure 3 illustrates how 

)350(0B  is estimated to be 1460 MPa. For each temperature, the bulk modulus )(0 TB  is calculated using three 

states: atmospheric pressure and resulting volume )(0 TV , 1.5%-volume contraction, 3%-volume contraction. In 

Figure 4, the values of the bulk modulus are plotted vs. temperature for cells 1 and 2, and a linear relation can be 

considered both above and below the glass transition temperature. Below Tg, a rise in temperature produces a 

decrease of the bulk modulus twice as important as above Tg. We obtained a value of 2100 MPa for )300(0B , 

which is in good agreement with the value of 2020 MPa reported in the literature [21]. Around the glass 

transition, )(0 TB  varies more significantly, and the ratio of the bulk modulus at 200 K (50 K below Tg) over the 

bulk modulus at 300 K (50 K above Tg) is close to 2. A change of such a magnitude through the glass transition is 

consistent with the experimental behaviour reported in amorphous polymers [2]. Therefore, the bulk modulus 

temperature dependence presented by our virtual materials is representative of the behaviour of a real 

polyisoprene. Consequently, in an attempt to provide some physical understandings of the material 

compressibility, the system energy changes have been monitored during volume contractions at fixed temperature 

and during temperature changes at fixed volume.  

 

Cell 1 was submitted to several volume contractions at three fixed temperatures 350 K, 250 K and 150 K and 

stabilized by NVT simulations. During these simulations, we have collected the changes of the three component 
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of the internal energy (Equation (6)): the bonded energy, the nonbonded energy and the kinetic energy. 

Considering the latter, only a change of temperature affects Kc since by definition 2/3 TNkK Bc  , where Bk  is 

the Boltzmann’s constant, N is the number of atoms and T the temperature. Consequently, the kinetic energy 

remains constant during volume contractions at constant temperature. In Figure 5, the bonded energy is plotted 

vs. the cell specific volume for the three temperatures. In order to provide a simple read of the data in a single 

Figure for all temperatures, the bonded energy was normalized for each temperature by its maximum value, 

which was obtained for the highest contraction (or equivalently smallest volume). At 350 K, above Tg, the bonded 

energy remains constant through volume contractions. At 150 K, the bonded energy fluctuates around a plateau 

value for moderate contractions, including those applied to determine the bulk modulus. Then, for severe volume 

contractions, the bonded energy increases drastically. At 250 K, the same trend for the bonded energy as at 150 K 

is recognized, though it is subtler: the bonded energy does not vary for moderate volume contractions and it 

increases evidently for high contractions. Therefore, it can be concluded that, at both high and low temperatures, 

the bonded energy does not vary significantly when volume contraction keeps within the range used to compute 

the bulk modulus.  

As mentioned previously, three sources may contribute to the nonbonded energy: the Van der Waals 

interactions, the electrostatic forces and the hydrogen bonds. Since polyisoprene has no hydrogen bond and 

electrostatic forces are found constant under the applied loadings, the computed nonbond energy changes amount 

to Van der Waals energy changes only. The latter are shown in Figure 6 vs. the cell specific volume. For each 

temperature, the curve shape is reminiscent of a Lennard-Jones potential. The Van der Waals energy per unit 

mass varies with temperature, but Figure 7 shows that the three curves coincide reasonably if a suitable vertical 

translation is applied. This result allows the Van der Waals energy per unit mass to be written as: 

)(),(),( 00 TTVTEVTE VdWVdW   ,                  (7) 

with 356 J.kg
-1

.K
-1

 if 0T  is taken as 350 K. From Figures 5 and 6, we conclude that when the virtual 

polyisoprenes are submitted to moderate volume contractions (which are the contractions that define the bulk 

modulus), only the Van der Waals energy varies significantly among the various terms contributing to the internal 

energy. Cell 2 was submitted to volume contractions at 400 K, 350 K and 150 K and lead to similar results than 

those presented above; they will be used to strengthen the analysis in the next section. The data obtained from the 

volume contractions at constant temperature will be useful to determine ))(,( 0 TVTBU
 and, by subtracting to 

)(0 TB , to estimate the contribution of entropy to the bulk modulus.  

 

4. Van der Waals contribution to the bulk modulus 

Since the Van der Waals energy changes, in the range of volume contractions considered to compute the bulk 

modulus, leads the internal energy changes, Equation (5) gives  
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Figure 7 suggests that a simple equation should be able to approach the Van der Waals energy per unit mass. 

Actually, the 9-6 Lennard-Jones potential used at the local scale to define the Van der Waals interactions suggests 

trying to apply the same function to the overall Van der Waals energy of the cell, and the Equation (7) would 

write: 

)(),( 023
TT

V

c

V

a
VTEVdW   .                                 (9) 

As shown Figure 8, Equation (9) does fit the Van der Walls energies for cells 1 and 2 relatively well when a=1.90 

10
-3

 J.m
9
. kg

-4
, c=2.81 J.m

6
.kg

-3
 are used for cell 1 and a=2.0 10

-3
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-4
 c=2.96 J.m

6
.kg

-3
 for cell2.  

 By substitution of Equation (9) in Equation (8), the following simple form is obtained for )(0 TBU
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For any temperature T, )(0 TV  can be evaluated from the two-part linear fit shown in Figure 2, and thus )(0 TBU
 

can be computed from Equation (10) and compared to )(0 TB . This comparison is presented in Figure 9 for cells 

1 and 2. For temperatures below the glass transition, it can be observed that the bulk modulus )(0 TB  is close 

to )(0 TBU
, though the values of )(0 TB  are slightly underestimated in cell 2. Since the latter is computed from 

the Van der Waals energy only, which dominates the internal energy, no significant entropy contribution is 

noticed in the glassy state. In contrast, )(0 TBU
 overestimates the bulk modulus above the glass transition. This 

overestimation indicates that entropy does contribute to the bulk modulus above the glass transition. We note that 

the entropy affects the bulk modulus by reducing it (in the sense that )(0 TB  is lower than )(0 TBU
). In Figure 9, 

plotting the parallel to the values of )(0 TBU
 passing through the values of )(0 TB  shows that the entropy 

contribution )(0 TB S
 to )(0 TB  may be considered as independent of temperature to the first order, with an 

average value of -400 MPa for cell 1 and -300 MPa for cell 2.  

 

5. Conclusion 

 

Molecular dynamics simulations were performed on virtual polyisoprenes in order to investigate the physical 

source of the bulk modulus above and below the glass transition. The materials were submitted to moderate 

volume contractions at fixed temperature through NVT simulations, in order to estimate the bulk modulus 

dependence on temperature. The bulk modulus values thus obtained were shown to be in qualitative and 

quantitative good agreements with data reported in the literature. In particular, the bulk modulus showed a drop 

by a factor of about 2 at the glass transition. Investigating the internal energy change during volume contractions 

at constant temperature, we observed that for moderate contractions, sufficient to estimate the bulk modulus, the 

internal energy change arises from the Van der Waals energy only. Hence, by approaching the overall Van der 

Waals energy by a 9-6 Lennard-Jones potential, and by applying a classical thermodynamic analysis, the internal 
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energy contribution to the bulk modulus was estimated below and above the glass transition. This contribution 

was shown to reproduce fairly well the bulk modulus below the glass transition but to overestimate it above. In 

the latter temperature range, entropy changes lessen the bulk modulus by an amount that can be considered as 

temperature independent to first order.  
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Figure 1. Convergence of the specific volume of the virtual material vs. simulation duration during NPT 

ensemble. 
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Figure 2. Estimate of virtual materials glass transitions and expansion coefficients through the plot of the 

logarithm of the cell specific volume vs. temperature. 



 

11 

 

Figure 3. Resulting hydrostatic pressure vs. logarithm of the cell specific volume during volume contractions 

through NVT ensemble at 350 K. 
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Figure 4. Cells 1 and 2 bulk modulus vs. temperature. 
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Figure 5. Normalized bonded energy of cell vs. specific volume resulting from NVT simulations at constant 

temperatures 350 K, 250 K and 150 K. 
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Figure 6. Van der Waals energy per unit mass of the cell vs. specific volume resulting from NVT simulations at 

constant temperatures 350 K, 250 K and 150 K. 
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Figure 7. Superposition of the data plotted in Figure 6 showing the independence on temperature of the changes 

of the Van der Waals energy vs. volume changes.  

 

Figure 8. Fit of the cell Van der Waals energy variations with volume by a 9-6 Lennard-Jones potential: a)cell 1, 

b)cell 2. 
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Figure 9. Comparison of the Van der Waals energy contribution to the bulk modulus with the material bulk 

modulus: a)cell 1, b)cell 2. 

 


