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Abstract 

In order to simulate the thermoforming of a transparency, constitutive equations are proposed for 

the nonlinear viscoelastic behaviour of poly(methyl methacrylate)  near glass transition temperature, 

which include large deformations. In a first step, they are fitted on a set of uniaxial tension-

relaxation tests at various strain levels and strain rates. In a second step, their implementation in a 

finite element code is performed. Finally, the thermoforming of a transparency at a constant and 

uniform temperature is simulated and compared with experimental results. 
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INTRODUCTION 

 Transparencies are often made of thermoformed organic sheets to reduce the structure 

weight. Crosslinked as-cast poly(methyl methacrylate) (PMMA) is generally used for both its good 

mechanical properties (rigidity, strength to crazing and crack propagation) and its optical properties. 

To limit optical distortions, PMMA is favourably processed slightly above the glass transition 

temperature (Tg), at low strain rates. Industry is interested in cheaper and faster tool design, and the 

technical and economical feasibility of the geometry of transparencies must be validated early in the 

business phase. Therefore, an accurate model is needed to understand the polymer behaviour during 

processing and to predict the thickness distribution reliably. This paper presents such a model for 

the thermoforming of as-cast PMMA transparencies in the above conditions. 

 Finite element simulations of plastic sheet thermoforming have been performed for more 

than 20 years to predict the polymer deformation in complex shapes [1]. Several constitutive laws 

have been used, depending on temperature, polymer state, strain and strain rate. Hyperelastic 

constitutive equations were initially implemented to predict the deformation above Tg at high strain 

rates or Deborah numbers. They were generally based on the Mooney-Rivlin equation [2,3] (for 

plug-assisted thermoforming) or the Ogden model [1,4]. However, the dependence of the stress 

response on strain rate often could not be neglected. Viscosity has been added to a Mooney-Rivlin 

constitutive law by Yang et al. [5] to account for the behavior of rubber deformation at high strain 

rates: the result is in essence similar to a generalized Maxwell model where spring and dashpot have 

a non linear behavior that depends on strain but not on strain rate. This constitutive law has been 

applied by Pham et al. [6] to stretch blown molding of PET (polyethylene terephthalate) and by 

Erchiqui et al. [7] to the thermoforming of PET near glass transition. In these two studies, the 

hyperelastic behavior also tackles the strain-induced crystallization strain-hardening of PET. 

Viscoplastic or viscoelastoplastic phenomenological laws, which rather describe the temperature 

and rate dependences of polymer deformation in the solid state [8,9], have been used to model 
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thermoforming [10,11]. Even if these models are difficult to justify from a physical point of view, 

they can describe the stress response of a viscoelastic material in a simple manner with a few 

adaptive parameters. Moreover, they are easy to compute and lead to stable numerical schemes. K-

BKZ (Kaye, Bernstein, Kearsley, Zapas) viscoelastic models have also been used [12, 13], but they 

fit the polymer deformation behaviour in the flow zone only, and they are not well suited for a 

thermoforming process near glass transition. Buckley and Jones [14] were among the first to 

develop a physically based constitutive law in which the stored strain energy is assumed to be the 

sum of free energies for (a) interatomic (inter- and intramolecular) potentials that refer to “bond 

distortions”, and (b) perturbation of molecular conformations. This glass-rubber model aims at 

simulating the processing of amorphous polymers over large ranges of strain rate and temperature, 

especially near Tg. It has been successfully applied to the creep of PMMA [15] and to the biaxial 

hot-drawing of PET [16] and PMMA from Tg to 180°C [17], by introducing a spectrum of 

relaxation times to describe the observed linear viscoelasticity. Revisiting the Argon model [18], 

Arruda and Boyce [19] keep a nonlinear spring for the deformation of chains network, in parallel 

with a dashpot to model the yield stress, but they describe the nonlinear spring with their famous 

eight-chain model for the large stretch of rubber [20]. Numerous researchers have developed 

variants of this constitutive law, among which Karamanou et al. [21] and Richeton et al. [22]. 

However, these constitutive laws are more suited to model the behaviour of amorphous polymers 

below and near the glass transition. For stress relaxation at higher temperatures, Hernandez et al. 

[23] pointed out that there does not exist a single relaxation time, but rather two distributions of 

relaxation times. Quite recently, Dupaix and Boyce [24] developed a three-dimensional constitutive 

law that is based on two mechanisms: (a) the intermolecular interactions between neighbouring 

chain segments, which are the primary source of the initial stiffness and saturate at a finite stress in 

plastic flow, and (b) the deformation of the molecular network and the orientation of the chains, 

which also contribute to the initial stiffness but, more importantly, induce a stiffening at large 

strains. This constitutive law was used to model the thermoforming of PMMA by Makradi et al. 
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[25]. This is also the type of approach that is adapted to crosslinked PMMA in the present paper. 

However, it cannot model easily the back stress that is observed experimentally after the yield point 

in the glassy state or close to Tg. Hasan and Boyce [26] explained this phenomenon by local 

heterogeneities at nano scale, but this is still not very clear. Anand et al. [27] modified the model to 

account in a phenomenological manner for Bauschinger-like effects, by replacing the viscous part 

of intermolecular interactions by a viscoelastic part, and Ames et al. [28] used this model to 

simulate the hot embossing and the thermoforming of PMMA, polycarbonate, and polycycloolefins. 

 This paper describes the simulation of the thermoforming of a crosslinked as-cast PMMA 

transparency at a constant temperature close to Tg, at moderate strain and strain rate. The paper is 

organized as follows. First, tension-relaxation tests on PMMA are presented, and the identification 

of the three-dimensional constitutive law is deduced. Then, the numerical implementation is 

described, and the simulation of the thermoforming of a transparency is discussed and compared 

with experiments. 

 

MODELING THE PMMA BEHAVIOUR NEAR GLASS TRANSITION TEMPERATURE 

Tension-relaxation tests on PMMA near glass transition temperature 

 In order to perform tension-relaxation tests, specimens were cut off from as-cast PMMA 

sheets of 5 mm thickness. The glass transition temperature measured by differential scanning 

calorimetry at 10 K/min is 118°C and the tests were performed at 120 and 125°C, since the material 

is processed within this temperature range. The tensile tests were performed with a specific strain 

history in order to stay as close as possible to the process conditions.   

 The specimens were 25 mm wide and 150 mm long, with a useful initial length of 100 mm, 

and tensile tests were carried out on a hydraulic testing machine MTS Elastomer Test System 831. 

Thermal regulation was managed by convection in an oven that covered the specimen and the grips. 

Because the PMMA used was not completely relaxed, the specimens were placed in an oven at 

150°C before testing. To stay close to the process conditions, the tension-relaxation tests were 
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divided into 3 steps: first (heating step), the load was regulated to zero and temperature was 

increased from ambient to test temperature; then (tension step), temperature was kept constant and 

the specimen was stretched from 0 to a prescribed ε0 strain at a constant strain rate; finally 

(relaxation step), the strain was kept constant and a decreasing tensile force was recorded. In what 

follows, ε0 is equal to 0.15, and therefore the cross section of the specimen is corrected to obtain the 

true stress values shown in Fig. 1. In this figure, where five strain rate values are applied at 120°C, 

the behaviour is clearly nonlinear: the strain rate is multiplied by 3 between the lowest and the 

second curve, whereas the maximum stress doubles approximately; the same strain rate ratio is 

applied between the two upper curves, and the stress is multiplied by 1.2. 

 The tests have been repeated at least three times to ensure the repeatability of the behaviour, 

and less than 0.5 MPa stress dispersion was observed. Since the plots for the tension steps 

superimpose very well, a single typical curve is chosen and presented in Fig. 1 for each strain rate. 

Three ε0 values have been applied: 0.05, 0.10, and 0.15. A log scale is used along the time axis and 

it can be observed that the relaxation response differs from the decreasing straight line that would 

be given by a simple Maxwell model.  This could be expected by noting that several physical 

mechanisms are involved simultaneously, each with a different characteristic time. One can also 

observe that the stress decreases quickly but does not tend to zero: the persistent stress is due to the 

elasticity of the rubber-like network (recall that strain is maintained to a nonzero value). The 

rheological model needs at least three branches (see Fig. 2a) to represent the experimental 

behaviour of PMMA at 120°C accurately: G0 defines the elastic shear modulus of the rubber-like 

network, and the two other branches account for the viscoelastic behaviour that involves two 

relaxation times, as suggested by Dupaix and Boyce [24]. Assuming the material is incompressible 

leads to the factors of 3 that appear in the tensile test sketched in Fig. 2b.  

 As illustrated in Fig. 2b, G0 can be obtained from the asymptotic stress value at the end of 

the relaxation step (the slope at the end of the tension step could alternatively be used), the sum of 

the two other elastic parameters has been deduced from both the slope (Gtot=G0+G1+G2) at the 
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beginning of the tension step and the slope at the beginning of the relaxation step.  The values of G0 

and Gtot deduced from the tension-relaxation tests did not vary significantly with temperature and 

strain rate. The mean values of Gtot and G0 have been chosen over the set of tests done at 120 and 

125°C; the standard deviations were 23 MPa and 0.2 MPa, respectively. This confirms the 

consistency of the model and allows using constant elastic properties in the simulations below, 

which involve temperatures and strain rates in the same ranges.  

 The sum of the two viscous parameters (ηtot=η1+η2) has been obtained by back 

extrapolating the end of the tension step. In contrast, the viscous parameters were found to depend 

strongly on both strain rate and temperature, and the latter trend is illustrated in Fig. 3. The effect of 

temperature could be accounted for satisfactorily via a William-Landel-Ferry (WLF) model, and the 

influence of strain rate via a Carreau model, as shown in Fig 4. Simply taking η1=η2 lead to a 

partitioning of ηtot that provided a good and easy fit of the model, as shown below. Finally, the 

balance between G1 and G2, which defines the two relaxation times, has been tuned by fitting the 

curvature from the initial elastic part to the final asymptotic part of the relaxation step. 

 

Constitutive equations for PMMA near glass transition temperature 

 A three-dimensional nonlinear viscoelastic behaviour has been written that is suitable for 

PMMA near glass transition and at large deformations. The model generalizes the usual assembly 

of parallel linear Maxwell branches that is used at infinitesimal strains, with two modifications: 

(i) the constant viscosity of the viscous components now depends on the viscous strain rate; 

(ii) small strain elasticity is replaced by a hypoelastic law that relates the stress increment to the 

elastic strain increment. 

 The latter point leads to substantial simplifications when large deformations, including large 

rotations especially, are considered, with negligible differences obtained with respect to 

significantly more complex hyperelastic laws (where an elastic strain energy function is defined) 

when elastic strains keep small, as is the case in the applications considered here. 
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 Therefore, the constitutive equations that are used write as follows, since two viscous 

branches are enough to describe the polymer considered: 
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where the factor 2 is the number of viscous branches considered. The complete set of constitutive 

equations involves 10 materials constants: 0G , 1G , 2G , 0η , 1C , 2C , rT , a , m, and ξ . These 

constants were fitted on the series of uniaxial tension-relaxation tests described above, using a 

Matlab integration of the set of constitutive equations, which was easy since the strain history was 

prescribed in the tests. Following the guidelines given in the preceding section, an identification of 

the model parameters G0, G1, G2 and η0 has been performed, which lead to the numerical values 
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given in Table 1. It may be noted that, due to the values of G1 and G2, two relaxation times are 

obtained with a ratio of about 10, which is consistent with previous results [23] and with very 

different physical mechanisms being involved. 

 

SIMULATION OF THE THERMOFORMING OF A TRANSPARENCY 

Numerical implementation 

 The above constitutive equations have been implemented in the Abaqus (from Dassault 

Systems Simulia) finite element code as a Fortran user material (UMAT) routine. This routine 

updates the total stress and computes the consistent tangent modulus for any strain increment 

defined by three components only, since shell elements are used in the simulations: 11ε∆ ,  22ε∆ , 

and  12ε∆ , with axis 3 being normal to the shell. It can be checked readily that using shell elements 

with a UMAT routine implies that the orthogonal axes 1 and 2 used to define tensor component 

rotate with R . This leads to significant simplifications, since taking a Green-Naghdi derivative 

amounts to taking usual time derivatives of all components in the rotating frame defined locally by 

axes 1 and 2. Similarly, running such examples as simple shear with a single element shows 

immediately that the strain used by the UMAT routine is merely the integral of the strain rate in this 

rotating frame and, therefore, one has tDijij ∆=∆ε  where the components (on the rotating local 

axes 1 and 2) of the average strain rate during the time increment are denoted by ijD . This is the 

key to the analysis that follows. 

 With the above considerations, one has immediately 

 ijijijijij Gtsststts ε∆+=∆+=∆+ 0

)0()0()0()0( 2)()()(    ij=11, 22, 12  (3) 

for the elastic branch, since the strain increment is purely elastic in this branch, but applying (1) to a 

viscous branch is less trivial because the strain increment splits into elastic and viscous parts with a 

priori unknown weights. Consider branch 1, for instance. Since the main unknown is the increment 
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of deviatoric stress in the branch, the viscosity is rewritten in terms of stress rather than viscous 

strain rate. This can be obtained by using the basic relation )1()1()1( ),(2 es && Teη=  that leads to 

)1()1()1( ),(3 eTes &&η= , where 2/:3 )1()1()1(
ss=s  denotes the equivalent stress in the branch, and 

combining with (2) this allows defining ),( )1( Tsη  for any positive value of )1(
s  through a numerical 

procedure (a simple fixed-point method proves very efficient in the present case). Therefore, (1) can 

be rewritten as 
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for branch 1, which can be discretized with a centered-difference scheme to obtain eventually 
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where )1(~s  denotes the equivalent stress in the branch at tt ∆+  and, consequently, depends on the 

unknown )1(

ijs∆ . The nonlinear system (5) of three equations with respect to the three unknowns 

)1(

11s∆ , )1(

22s∆ , and )1(

12s∆  can be combined into a single nonlinear equation with respect to the 

unknown )1(~s . It is easily solved with a fixed-point method, and this finally leads to the updated 

deviatoric stress in branch 1. A similar system is solved for branch 2, and finally the updated 

deviatoric stress at the integration point is obtained as 

 )2()1()0()()( ijijijijij ssststts ∆+∆+∆+=∆+     ij=11, 22, 12.  (6) 

 The above procedure implies that the deviatoric stress in each viscous branch is stored, in 

order to be available at the beginning of the next increment, and this is performed by defining 6 

internal variables (3 components per branch) in the UMAT routine, at each integration point. It may 

also be noted that computing the equivalent stress implies knowing all the 5 independent 

components of the deviatoric stress in each branch, and the free surface conditions 02313 == σσ  
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are used in branch k to prescribe 0)(

23

)(

13 == kk
ss . The last free surface condition 033 =σ  gives the 

hydrostatic pressure 2211 ssp −−= , which leads to the following expressions for the updated 

nonzero total stress components: 221111 2 ss +=σ , 221122 2ss +=σ , and 1212 s=σ . 

 Finally, the consistent tangent modulus must be computed in the UMAT routine, in order to 

allow an efficient iterative procedure over the whole mesh, and this has been performed very simply 

by running the core of the routine three times, with a single component of the strain increment 

slightly modified in each case. This numerical evaluation of the Jacobian matrix proved very 

efficient, since convergence was obtained rapidly in the applications described in the next section. 

 It may be noted that the model, as well as its numerical implementation, is modular and can 

include as many viscous branches as wished.  Moreover, the approach is quite flexible, since 

modifying the nonlinear behaviour in the viscous branches amounts merely to adapting the 

subroutine where ),( )( Ts kη  is computed by a fixed-point method. Prior to the simulations described 

below, the UMAT routine has been tested in two ways, successfully: on a single element by 

simulating the uniaxial relaxation tests used above to identify the material behaviour, and on more 

complex structures, by choosing the material parameters so as to get a linear viscoelastic behaviour 

in order to compare with using the standard viscoelastic routine of the finite element code. 

 

Simulation of thermoforming and discussion 

 Before thermoforming is performed, the as-received flat PMMA sheet, which is 8.5 mm 

thick, is rolled to get the shape of an elliptical cylinder. Since the latter is a developable surface, this 

preliminary forming process does not induce any significant thickness change and is assumed to 

have no influence on the properties of the material, consequently. The rolled PMMA piece used to 

form the transparency is 1.6 m long, 0.8 m wide, and 0.6 m high. The mold and the rolled PMMA 

piece were slowly heated in an oven; temperature was measured and remained constant during the 

process. Therefore, the problems usually induced by a fast heating of the part with the subsequent 

need to know an initial nonuniform temperature field [29] are not relevant here. For symmetry 
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reasons, one quarter of the transparency and the die is considered in the simulations, as shown in 

Fig. 5.  The mesh uses 361 quadrilateral shell elements with reduced integration for the sheet, with a 

uniform initial thickness of 8.5 mm, and 208 quadrilateral rigid elements for the die surface. Since 

the die was lubricated, frictionless contact conditions are applied in the simulations. The 

Abaqus/Standard finite element code is used, which solves an implicit set of equations iteratively in 

order to ensure mechanical equilibrium at the end of each time increment. This iterative procedure 

uses a global stiffness matrix that is formed in part from the consistent tangent modulus defined in 

the UMAT routine.  The code has elaborate internal procedures to optimize the time increment and 

to tackle large deformation, shell element formulation, and part-mold contact, so that the user can 

concentrate on constitutive equations.  

 As shown in Fig. 5a, the sheet edges are clamped to the die and everywhere else there is a 

gap through which the applied pressure will move the sheet towards the die during the 

thermoforming process. The pressure is increased linearly from zero during the first 5 seconds of 

the process, and then it is maintained constant at its nominal value of 0.5 bar. Fig. 6  illustrates  the 

history  of  a  typical  point, namely  point B shown in Fig. 5.   It may be noted that point B moves 

downwards (negative displacement), i.e. the gap between the sheet and the die increases, during the 

first 10 seconds of the process. This is due to the clamping of the sheet,  which induces a rotation of 

the sheet elements near the edges. In a second stage, point B follows the same trend as all points, 

with an almost linearly decreasing gap between sheet and die, coming along with a less linearly 

decreasing thickness. In this simulation, point B contacts the die after 490 s, and this also 

corresponds to the stabilization of thickness. The thickness variations over the whole sheet are 

illustrated in Fig. 7 after 5 minutes and 10 minutes forming times, where lighter shades of grey 

correspond to smaller thicknesses. Of course, smaller thicknesses are obtained when the forming 

process is closer to its end, and thickness heterogeneities can be observed, with a thinner area 

covering the central part of the transparency. 
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 The thickness of the transparency is an important quality parameter, and it has been 

measured along the two symmetry lines AB and BC shown in Fig. 5a, on several transparencies 

where the thermoforming process either was interrupted after 10 minutes of applied pressure, or 

was complete. The measures were performed at places that corresponded to the AB and CD rows of 

19 elements used in the simulations, in order to make comparisons easier. As can be observed in 

Fig. 8a, for incomplete forming, the measured values differ somewhat when two series of results, 

obtained on different transparencies, are compared. This discrepancy compares well with the 

differences between experiments and simulations, as can be observed in Figs 8a and 8b. Of course, 

the natural trend of lower thicknesses for longer forming times is obtained when comparing Figs 8a 

and 8b. Therefore, the general agreement obtained allows concluding that the predictions are quite 

satisfactory as far as the transparency thickness is concerned. 

 Residual stresses have not been mentioned by our industry partners as a key problem for this 

type of thermoforming, probably because of the low rubbery modulus and of the slow cooling in the 

oven that allows stress relaxation. Therefore, the shape stability of the transparencies is ensured as 

long as the in-use temperature remains significantly below Tg. 

 

CONCLUDING REMARKS 

 The thermoforming simulation of an as-cast PMMA transparency slightly above glass 

transition temperature was conducted using the finite element method. The mechanical behaviour of 

the material was described by a nonlinear viscoelastic constitutive law by generalizing the usual 

assembly of parallel “spring-dashpot” branches with a viscosity that depends on strain rate and 

temperature. The procedure used to identify the parameters showed that two viscoelastic branches 

and one elastic branch, to account for the rubbery behavior of the crosslinked polymer, are 

sufficient to get a good fit of the uniaxial tension-relaxation tests except for the back stress after the 

yield point, which would need additional developments. The general agreement between measured 

and predicted thicknesses allows beginning to use this thermoforming simulation as a predictive 
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tool for industrial applications. Since the polymer sheet may slip on the die surface, which is likely 

to affect the local deformation and thickness, the very simple frictionless contact law used here 

should be improved if necessary. The whole methodology can be extended to the simulation of most 

amorphous polymer forming processes near glass transition and at low strains rates. 

 

NOMENCLATURE 

a  first exponent of the Carreau model 

C1 , C2  coefficients of WLF model 

D , Dij  Eulerian strain-rate tensor and its components 

)(k
e& , )(k

e&   deviatoric viscous strain rate tensor and equivalent viscous strain rate in branch k 

F  deformation gradient tensor 

Gk  , Gtot shear modulus of branch k, total shear modulus 

m  second exponent of the Carreau model 

p  hydrostatic pressure 

R  rigid body rotation tensor 

)(~ k
s    equivalent stress in branch k at tt ∆+  

s , sij  total deviatoric stress tensor and its components 

)(k
s , )(k

s   deviatoric stress tensor and equivalent stress in branch k 

)(k
ijs , )(k

ijs∆  components of the deviatoric stress tensor in branch k and their increments 

∇
)(k

s , )(k
s&  Green-Naghdi derivative and material time derivative of tensor )(k

s  

t , ∆t  time and time increment 

T , Tg , Tr temperature, glass transition temperature, reference temperature 

U  right stretch tensor 

 

Greek symbols 
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∆εij , ε0  components of the increment of total strain, prescribed uniaxial strain   

η , ηk  , ηtot viscosity, viscosity in branch k, total viscosity 

ηWLF , η0 viscosity and reference viscosity in the WLF model 

σij  components of the total stress 

ξ  parameter of the WLF mode 

ΩΩΩΩ  spin tensor 
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 Figure Captions 

 

Figure 1: Stress history measured during tension-relaxation tests at different strain rates, for ε0=0.15 

at 120°C. 

 

Figure 2: Rheological model for the viscoelastic behaviour of PMMA near glass transition. Three 

branches are needed for an accurate account of the nonlinear strain rate effects. Here, ηtot=η1+η2 

and Gtot=G0+G1+G2. 

 

Figure 3: Stress history measured during tension-relaxation tests at different temperatures and at the 

same strain rate. 

 

Figure 4: Experimental values of the viscosity (ηtot=η1+η2) obtained from tension-relaxation tests at 

120°C and 125°C (symbols), which are fitted to a Carreau model (curves) coupled to a WLF model 

for temperature effects. 

 

Figure 5: Initial configuration of the sheet and die (a), only one quarter is shown and symmetry 

planes are indicated. Meshes used in the finite element simulations for the sheet (b) and die (c). 

 

Figure 6: History of the vertical displacement (unbroken line) and sheet thickness (broken line) at 

point B. 

 

Figure 7: Sheet thickness computed after 5 min (a) and 10 min (b) forming times. 

 

Figure 8: Thickness variations measured (symbols) and calculated (lines) along the AB and BC 

symmetry lines, after (a) 10 min thermoforming (two transparencies) and (b) complete 

thermoforming. Points A, B, and C refer to Fig. 5a. 
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Parameter G0 G1 G2 η0 C1 C2 Tr a m ξ 

Value 1.3 207 23 0.33 10
6
 13.62 10.25 115 0.7 0.2 6.4 

Unit MPa MPa MPa MPa.s  °C °C    

 

Table 1: Values of the 10 parameters involved in the model. 
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Figure 1: Stress history measured during tension-relaxation 

tests at different strain rates, for ε0=0.15 at 120°C. 
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Figure 2: Rheological model for the viscoelastic behaviour of PMMA 

near glass transition. Three branches are needed for an accurate account of 

the nonlinear strain rate effects. Here, ηtot=η1+η2 and Gtot=G0+G1+G2. 

 



 22 

 

 

 

 

0

2

4

6

8

10

12

14

16

0.1 1 10 100 1000

tr
u

e
 s

tr
e

ss
 (

M
P

a
)

time (s)

120°C

125°C

ε   = 0.15
0

ε = 1.7 x10   s
-2 -1.

 

 

 

 

Figure 3: Stress history measured during tension-relaxation tests at 

different temperatures and at the same strain rate.  
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Figure 4: Experimental values of the viscosity (ηtot=η1+η2) obtained from  

tension-relaxation tests at 120°C and 125°C (symbols), which are fitted to  

a Carreau model (curves) coupled to a WLF model for temperature effects. 
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Figure 5: Initial configuration of the sheet and die (a), only one 

quarter is shown and symmetry planes are indicated. Meshes used in 

the finite element simulations for the sheet (b) and die (c). 
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Figure 6: History of the vertical displacement (unbroken line)  

and sheet thickness (broken line) at point B. 

 



 26 

 

 

 

 

 

5 min

10 min

7.5

7.7

7.9

8.1

8.3

8.5

thickness (mm)

(a)

(b)

 

 

 

Figure 7: Sheet thickness computed after 5 min (a) and 10 min (b) forming times. 
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Figure 8: Thickness variations measured (symbols) and calculated (lines) along the AB and BC 

symmetry lines, after (a) 10 min thermoforming (two transparencies) and  

(b) complete thermoforming. Points A, B, and C refer to Fig. 5a. 

 


