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Abstract. The optimization of automotive security components requires good knowledge of the 

material state after fabrication, particularly with respect to damage that may have been done to the 

material by the manufacturing process.  To achieve this, numerical simulation of the fabrication 

process is often undertaken. However, classical continuum damage models, like the Gurson [3] 

model, are not appropriate for the simulation of the blanking by punching operation because the 

material damage is primarily the result of shear stresses. This work is focused on the use and 

validation of a modified Gurson type damage model capable of modeling this process, which has 

recently been proposed by Nahshan [7]. After a brief description of the modification, the 

implementation and the validation of the modified Gurson model is detailed. A comparison between 

the original Gurson model and the modified model is presented in order to highlight the importance 

of the modification for a pure shear stress state and to show that the two models are equivalent for a 

purely hydrostatic stress state. It is also shown that the results from the modified model are 

dependent on the finite element mesh size.  

Introduction 

Thanks to their good mechanical properties HSLA steel sheets are widely used for the 

manufacturing of automotive components. In some forming processes, such as blanking, ductile 

fracture of these materials is caused by damage occurring in the form of localized shear strain. In a 

classical sense ductile fracture is a result of a gradual change in the material that occurs during 

plastic deformation, which is usually characterized by the nucleation and growth of cavities or voids 

and their subsequent coalescence to form cracks. A great deal of work has been done concerning 

ductile failure modes with high tri-axiality. The fundaental analysis was begun by McClintock [1] 

and later by Rice and Tracey [2] who studied the evolution of cylindrical and spherical cavities in a 

ductile matrix. Gurson [3] proposed a model based on a micromechanical approach. This model 

describes the growth of spherical cavities and its influence on the material behavior. The Gurson 

model was later modified by Tevergaard and Needleman [4] by adding a mechanism to describe 

ductile fracture by nucleation, growth and coalescence of spherical cavities. This is generally 

referred to as the GTN model. Improvements to the GTN model have been made in terms of 

hardening by Leblond [5]. The effect of cavity shape has been investigated by Grange [6] and 

Benzarga [12] has included plastic anisotropy. The basic formulation of the Gurson model is unable 

to predict location and rupture for shear dominated stress states as found in the blanking by 

punching process. Recent extensions to the Gurson model have been proposed by Nahshan [7] to 

take into account the accumulation of effective damage caused by the distortion of cavities and the 

inter-cavity interaction due to shear strain, as observed in a previous study [8].  



 

In the first part of this paper the extension to the Gurson model proposed by Nahshan is 

presented. In the second part, the implementation of this model in the ABAQUS
®
 [9] commercial 

finite element code is described. The implementation is subsequently verified to check the 

algorithm and to illustrate the effect of growth and rotation rate on cavities or voids loaded in shear. 

The results from a numerical tensile test are then presented to analyze the effect of mesh size on the 

material behavior.  

 

Description of the ductile damage model modified for shear 

The yield surface. The yield surface is given by: 
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Where q1, q2 and q3 are the constitutive parameters proposed by Tevergaard [4],  
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the Von Mises equivalent stress,  
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ij ij ij ijS     is the deviatoric stress tensor,  
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hydrostatic stress, and σ0 is the flow stress of the undamaged material matrix, given by the Ludwick 

law: 0 ( )
p n

y K    , where n is the hardening exponent and K is a material parameter. 

The function f* represents the increase in the void volume fraction due to coalescence. This 

function is given by [4]:  
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Where fc is the critical void volume fraction for which coalescence begins, and ff is the void 

volume fraction at rupture. 

 

Void growth rate. The new expression for the void volume fraction growth rate  ̇   is given by 

Nahshan [7] as: 
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Where  (   ) is determined by:  
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 is the sum of the diagonal of the strain rate tensor and    is the third invariant of the  

deviatoric stress tensor (J3=det(s)). For axisymmetric stress states combined with a hydrostatic 

component, w is equal to zero and this model is equivalent the original Guson model.  However, for 

shear stress states with a hydrostatic stress component, w is equal to 1.0. The constant kw in 

equation (3) is a material parameter that defines the amplitude of the damage growth rate due to 

shear. The evolution of the void volume fraction is:  ̇   ̇     ̇                                               (5)                                                                                                   

Where   ̇    ̅̇  represents nucleation, and   
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fN is the void volume fraction created by nucleation, εN is the average plastic strain for which 

nucleation is a maximum and SN is the standard deviation of the distribution of nucleated voids with 

respect to the plastic strain. 

Implementation of the model in ABAQUS 



 

 The modified Gurson model has been implemented in ABAQUS/Explicit [9] by using a 

VUMAT subroutine coupled with an implicit stress integration scheme proposed by Aravas and 

Zhang [10,11]. The procedure includes two principal steps: an elastic prediction followed by a 

plastic correction. The total strain is divided into elastic and plastic parts:        . The plastic 

strain increment is further divided into spherical and deviatoric parts:     
 

 
     

 

    
     , 

where        
  

  
 and       

  

  
.    is the plastic multiplier. The volume fraction f and the 

equivalent plastic strain of the matrix  ̅  are treated as being two scalar internal variables, H
1
 and 

H
2
. The implementation procedure can be described by the following steps: 

1- Initialize the variables at time t=0:         
        , where    are state variables, 

2- Determine the elastic predictor by assuming that the strain increment is purely elastic: 

     
                 , where C is the isotropic linear elastic forth order stiffness tensor, 

3- Calculate the hydrostatic stress:      
       

 

 
     

        

4- Calculate the equivalent von Mises stress:      
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5- Determine la yield surface:      
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a. If      
       , the current state is elastic,            

     , hence go to step 7. 

b. If      
       , the current state is plastic, hence go to step 6 for the plastic correction, 

6- Determine the plastic correction by using the Newton-Raphson iterative method to resolve 

the following non-linear equations: 
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The flow rule and the condition that the stress state must remain on the yield surface are 

simultaneously satisfied. The consistency condition (Eq. 9) must also be satisfied at the same time. 

  
(   )  

   

  ̅  ̅ (   )
                                                                                                                     (9) 

Iteration is continued until |  | and |  | are less than a specified tolerance (1.0E-05), which 

indicates that convergence using the Newton-Raphson method has been achieved. On convergence, 

go to the following step. 

7- Update p, q et    : 
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Where   
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 is the shear modulus and   
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 is the compressibility modulus. E  and 

ν are the Young’s modulus and the Poisson’s ratio of the material. 
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Validation  

In the following, simple FE models using only one 3D finite element (see Figure 1) have been 

undertaken in order to validate the implementation of the modified Gurson model. 

Firstly, the simulation of a hydrostatic tensile stress state (see Figure 1(a)) has been done in order 

to verify the equivalence between the modified model and the original Gurson model. These two 

models should give the same results for this type of loading condition. A simple shear stress loading 



 

condition (see Figure 1(b)) is then presented in order to highlight the difference between the 

modified model and the original Gurson model. The results have been compared to the analytical 

solution in order to demonstrate the relevance of the results. 

 
Figure 1: Boundary conditions and nodal loads for the 2 loading conditions tested: (a) Hydrostatic 

tension, (b) shear stress 

 

Validation: Hydrostatic Tension. The validation was done using a single cube shaped element of 

size 1x1x1mm. The material has an initial yield strength of          , a Young’s modulus of 

         , and a Poisson’s ratio of      . The plastic behavior is given by:        
   ( ̅ )   . The following constitutive parameters of the model are used:           . The 

initial volume fraction is set to         . The parameters related to the void nucleation are 

chosen to be:                         . The critical void volume fraction is         and 

the void volume fraction at rupture is        . For this loading condition w is equal to 1.0, hence 

the results are independent of   . 

A quadratic element with 8 nodes and reduced integration (C3D8R) has been used to test the 

hydrostatic tension loading condition. Figure 2 show the evolution of the normalized pressure and 

void volume fraction as a function of the logarithmic volumetric strain       (  
  

 
).  

Comparisons between the two models have been done with ABAQUS\Explicit using the same 

input parameters. The evolution of the void volume fraction and the evolution of the hydrostatic 

pressure have been plotted for the modified Gurson model (VUMAT) and for the original Gurson 

model (see Figure 2). The curves show that the results of the modified model and the original model 

are perfectly coincident.   

 

           
Figure 2: Results of the simulation of a hydrostatic tensile test as a function of the volumetric strain: 

(a) Hydrostatic pressure and (b) Void volume fraction 

 

Validation: pure shear stress. The same element type has been also loaded in shear by applying 

shear forces on the upper nodes in the Y-direction (see Figure 1(b)). The material parameters are 

identical to those detailed in the previous section, except nucleation is neglected in order to be able 

to compare the results to an analytical result. In this case, rupture is only due to void growth. 

 



 

For this loading condition  ̇  
 

   ̇  
 

   and  ̇  
   , hence the effective strain rate is defined by 

 ̇ 
    ̇  

  √  and the effective stain is given by   
      

  √ .  

Also, for      the expression for the evolution of the void volume fraction is  ̇   ̇       ̇
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If    is the initial void volume fraction, then      
    

 

 

With            the equation for the yield surface is simplified to:   (   )  . 

Dividing the material hardening law of the matrix by    gives: 
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Figure 3 shows the evolution of the void volume fraction and the effective stress (or the von 

Mises equivalent stress, q) as a function of the effective strain for different values of   . It can be 

seen that the numerical predictions and the analytical solutions are in perfect agreement. It can also 

be seen that an increase of    results in a reduction in the strain at which damage localization and 

rupture commence. In addition, an increase of    results in a higher void growth rate. For     , 

the void growth rate in the original Gurson model is zero. This implies that the original Gurson 

model predicts this loading condition to be non-damaging, which is contrary to experimental 

observations.  

 

  
(a)                                                                         (b) 

Figure 3: Results for shear stress simulations as a function of the effective strain: (a) the void 

volume fraction and (b) the effective stress 

 

Effect of the finite element size 

In certain cases, the use of damage and ductile failure laws requires a well refined finite element 

mesh in order to localize the damaged zones. In such cases, the results are strongly dependant on 

the mesh size. In this work, an investigation was undertaken in order to determine the optimal mesh 

size for the implementation of the modified Gerson model. Figure 4(a) shows the FE mesh of a 

tension specimen using 3D elements (type C3D8R). Only a quarter of the specimen is modeled as 

the planes of symmetry were exploited to reduce the calculation time. The material behavior is 

defined by the modified Gursion damage model (q1=1.5, q2=1, q2=2.25, εN=0.3, SN=0.1 et fc=0.15 et 

ff=0.25 and kw=2.5), and a Ludwik elasto-plastic law. 

Figure 4(b) shows the evolution of the ratio ‘instantaneous force / maximum force’ as a function of 

displacement for three different mesh sizes. For the three mesh sizes the hardening domain (i.e. 

before the onset of damage) is basically identical and conforms to the experimental results. 

However, the mesh size has a significant influence on the end part of the curves that are strongly 

affected by damage localization. The best results, with respect to the experimental curve, were 

obtained for a mesh size of 0.25x0.25x0.25mm. This concluded that this mesh size is optimal in 

terms of hardening, damage and computation time. 

 



 

        
(a)                                                                                                          (b) 

Figure 4: Comparison between the numerical and experimental results from a uniaxial tensile test: 

(a) Specimen geometry and finite element mesh and (b) the effect of the mesh size on the predicted 

force-displacement curves 

Conclusion 

  In this work the modified Gurson ductile rupture model, proposed by Nahshan [7] to better take 

into account shear stress states, has been implemented in the ABAQUS\Explicit finite element code. 

This was done via the development of a VUMAT subroutine using an explicit integration algorithm. 

The implementation has been verified via simple finite element models of a purely triaxial stress 

state and a pure shear stress state. The results have been compared to the original Gurson model for 

the first case and to the analytical solution for the second case. The effect of the parameter kw, 

which represents the damage growth rate in shear, has been investigated. It is concluded that the 

model is capable of predicting damage localization and rupture for stress states characterized by low 

stress triaxiality. The effect of the initial finite element size on the results has also been investigated 

via the simulation of a tensile test. Comparison with the experimentally determined force-

displacement curve indicates that mesh size has little influence on the hardening behavior. 

However, it is shown that the final part of the force-displacement curve is strongly dependant on the 

mesh size and that the finest mesh gives the best agreement with the experimental result. Increased 

mesh refinement obviously results in increased calculation times. This modified Gurson model has 

been implemented in ABAQUS by the authors in order to study sheet metal forming operations like 

blanking, which are characterized by very high shear stresses and low stress triaxiality. This work is 

in progress and will be reported in subsequent publications.   
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