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Abstract This paper proposes an extension of the SHB8PS solid–shell finite element to large strain
anisotropic elasto-plasticity, with application to several non-linear benchmark tests including sheet
metal forming simulations. This hexahedral linear element has an arbitrary number of integration
points distributed along a single line, defining the "thickness" direction; and to control the hourglass
modes inherent to this reduced integration, a physical stabilization technique is used. In addition, the
assumed strain method is adopted for the elimination of locking. The implementation of the element
in Abaqus/Standard via the UEL user subroutine has been assessed through a variety of benchmark
problems involving geometric non-linearities, anisotropic plasticity, large deformation and contact.
Initially designed for the efficient simulation of elastic–plastic thin structures, the SHB8PS exhibits
interesting potentialities for sheet metal forming applications – both in terms of efficiency and accuracy.
The element shows good performance on the selected tests, including springback and earing predictions
for Numisheet benchmark problems.

Keywords solid–shell element · reduced integration · physical stabilization · assumed strain method ·
elastic–plastic behavior · anisotropic plasticity · sheet metal forming · springback

1 Introduction

The need for large-scale computations together with advanced algorithms for geometric and mate-
rial non-linear applications has motivated many researchers to develop elements that are simple and
efficient. Considerable effort has been devoted, during the last two decades, to the development of
eight-node solid–shell elements for modeling of thin structures. First approaches of this kind can be
found in Domissy [13], Miehe [31], Hauptmann and Schweizerhof [20], and Sze and Yao [45]. As they
use linear interpolation for efficiency reasons, these elements exhibit various locking phenomena which
should be avoided in order to achieve the desirable degree of accuracy. Nevertheless, compared to
conventional shell elements they have the following advantages.

The use of full three-dimensional constitutive laws, without plane-stress assumptions. Direct cal-
culation of thickness variations, as based on physical nodes. The procedure for configuration update is
simpler with no rotational degrees of freedom involved. Natural connection with classical solid elements
since displacements are the only degrees of freedom. For sheet forming applications, key features like
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the automatic consideration of double-sided contact, increased accuracy with only one layer of elements
through the thickness, and full 3D stress tensor make these elements particularly attractive, as they
allow much larger aspect ratios compared to conventional solid elements.

The reduced integration technique was the first successful solution to alleviate some locking patholo-
gies. Finite elements using this method are very attractive due to their computational efficiency. Never-
theless, stabilization procedures are required in order to prevent the spurious zero-energy deformation
modes (or hourglass modes) induced by this reduced integration. Initiated by the works of Zienkiewicz
et al. [52], Hughes et al. [24] and Hughes [22], many authors have used this approach (e.g. Reese [35],
Reese and Wriggers [37] and Reese et al. [38]).

In order to circumvent locking phenomena for three-dimensional low-order elements, several au-
thors, like Bui et al. [9], Areias et al. [7] and Fontes Valente et al. [17], have used the enhanced
assumed strain (EAS) method (or incompatible mode method), based on Simo and Rifai’s pioneer
work [44]. The basis of such element formulations is given by the mixed variational principle in which
the so-called incompatible strain and stress act as additional independent variables. Recent investiga-
tions have combined EAS and reduced integration techniques to derive efficient and accurate elements.
As examples, some authors used a fixed number of Gauss points in the thickness direction [34; 36; 3; 5].

The assumed natural strain (ANS) method is one of the approaches used to cure transverse shear
locking. This strategy has been used by Sze and Yao [45], Vu-Quoc and Tan [49] and Klinkel et al. [26]
for fully integrated solid–shells. In recent contributions, Cardoso et al. [11], Schwarze and Reese [39; 40]
and Schwarze et al. [41] have used both EAS and ANS approaches along with reduced integration.

The SHB8PS is one such element that has been recently developed [1; 28; 2], based on reduced
integration with eight physical nodes, but using an arbitrary number of integration points through the
thickness direction. This avoids the use of several layers of elements in order to increase the number
of thickness integration points, e.g. for metal forming problems. The approach combining the assumed
strain method and reduced integration is adopted in order to eliminate locking problems. The hourglass
modes caused by the in-plane reduced integration are efficiently controlled by a stabilization technique
following the approach given by Belytschko and Bindeman [8].

The SHB8PS element was first developed within an explicit formulation and implemented into an
explicit dynamic code (EUROPLEXUS) in order to simulate impact problems [1]. Later, an implicit
version of the element was formulated and implemented into the quasi-static implicit code (INCA)
for elastic–plastic stability applications [28; 2]. More recently, this version was implemented into the
quasi-static implicit code (ASTER). In the current contribution, the solid–shell element SHB8PS is
implemented into the commercial code (Abaqus/Standard) using the User Element subroutine UEL
and coupled with a general, anisotropic elastic–plastic model [18]. The good performance of the element
is demonstrated through non-linear benchmark problems involving large strains, plasticity and contact.

The outline of the paper is as follows. The formulation of the SHB8PS element is summarized in
Section 2, including its physical stabilization. In Section 3, its formulation is extended to anisotropic
elastic–plastic behavior models with combined isotropic-kinematic hardening at large deformations.
Section 4 summarizes the implementation of the resulting element into the Abaqus/Standard code.
To assess the effectiveness and performance of the element implementation, Section 5 is devoted to
numerical examples dealing with geometric and material non-linear analyses as well as springback and
earing predictions for Numisheet benchmark problems. Finally, some concluding remarks are drawn in
Section 6.

2 Formulation of the SHB8PS element

2.1 Hu–Washizu variational principle

As proposed by several authors (see e.g. [16]), the Hu–Washizu non-linear mixed variational principle
is expressed by the equation:

δπ

(

v,
·

ε, σ

)

=

∫

Ωe

δ
·

ε
T · σdΩ + δ

∫

Ωe

σ
T ·

(

∇s(v)−
·

ε

)

dΩ − δḋT · fext = 0 (1)
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where δ denotes a variation, v the velocity field,
·

ε the assumed strain rate, σ the interpolated stress, σ

the stress evaluated by the constitutive law, ḋ the nodal velocities, fext the external nodal forces and
∇s(v) the symmetric part of the velocity gradient. The assumed strain formulation used to construct
the SHB8PS element is a simplified form of the Hu–Washizu variational principle as described by Simo
and Hughes [42]. In this form the interpolated stress is assumed to be orthogonal to the difference
between the symmetric part of the velocity gradient and the assumed strain rate, which gives

δπ

(

·

ε

)

=

∫

Ωe

δ
·

ε
T · σdΩ − δḋT · fext = 0 (2)

2.2 Finite element interpolation

SHB8PS is a hexahedral isoparametric element with eight nodes and linear interpolation. It has nint

integration points chosen along the thickness direction ζ in the local coordinate frame. Fig. 1 shows
the reference geometry of the element and the location of its integration points.

Fig. 1 SHB8PS reference geometry.

The spatial coordinates xi, i = 1, 2, 3, of any point in the element are related to the nodal coordi-
nates xiI using the classic linear isoparametric shape functions NI (I = 1, ..., 8)

xi = xiINI (ξ, η, ζ) =
8

∑

I=1

xiINI (ξ, η, ζ) (3)

Subscript i varies from one to three and represents the direction of the spatial coordinates. Subscript I
varies from one to eight and corresponds to the nodes of the element. With the convention of implied
summation for repeated indexes, which will be used hereafter, the displacement field ui within the
element is expressed as a function of the nodal displacements uiI by

ui = uiINI (ξ, η, ζ) (4)

The strain (stored as a vector) can be related to the nodal displacements as

∇s(u) =















ux,x

uy,y

uz,z

ux,y + uy,x

uy,z + uz,y

ux,z + uz,x















= B̂ · d (5)

where B̂ is the modified discretized gradient operator (see [2]).
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2.3 Stabilization and assumed strain method

The operator B̂ enters the expression of the element stiffness matrix Ke:

Ke =

∫

Ωe

B̂T ·Cep·B̂dΩ + KGeom =

nint
∑

I=1

ω(ζI)J(ζI)B̂
T (ζI) ·Cep(ζI)·B̂(ζI) + KGeom (6)

In this equation, J(ζI) is the Jacobian, evaluated at the integration points, of the transformation
between the unit reference configuration and the current configuration of an arbitrary hexahedron;
ω(ζI) is the corresponding weight, while Cep = ∂∆σ

∂∆ε
is the elastic–plastic tangent modulus. The

geometric stiffness matrix KGeom originates from the linearization of the virtual work principle and is
due to the non-linear (quadratic) part of the strain tensor. Its expression is derived in [2].

Note that two integration points are sufficient for dealing with elastic problems whereas a minimum
of five integration points should be used when dealing with elastic–plastic applications, as it will be
shown through the numerical examples in Section 5.

Whatever the number of integration points, their particular location along a line generates six
so-called hourglass modes. These hourglass modes are characterized by a vanishing energy, while they
should induce a non-zero strain. The control of the hourglass modes of the SHB8PS element is achieved
by adding a stabilization component KSTAB to the element stiffness matrix Ke. This part is drawn from
the work of Belytschko and Bindeman [8], who applied an efficient stabilization technique together with
an assumed strain method. The stabilization forces are consistently derived in the same way. Moreover,
the discretized gradient operator is projected onto an appropriate sub-space in order to eliminate shear
and membrane locking.

Due to the particular location of the integration points, it can be shown that several terms of the B̂

operator vanish. In other words, the B̂ operator reduces to its B̂12 part. Then, the remaining part B̂34

of B̂which vanishes at the integration points, is further projected as B̂34 onto an appropriate sub-space
(the full details of this decomposition can be found in [2]). The new operator can be written as

B̂= B̂12 + B̂34 (7)

To take into account its contribution, the projected term B̂34 is no longer evaluated at the integration
points but using a specific co-rotational coordinate system in which analytical expressions are made

possible. For the detailed expressions of operators B̂12 and B̂34 as well as the comprehensive derivation
of hourglass modes and their stabilization stiffness matrix KSTAB, the reader can refer to reference [2].

By introducing the additive decomposition of the B̂ operator, given in Eq. (7), into Eq. (6), the
stiffness matrix becomes

Ke =

∫

Ωe

B̂
T

·Cep·B̂dΩ + KGeom = K12 + KSTAB + KGeom (8)

where the first term K12 is evaluated at the integration points as

K12 =

∫

Ωe

B̂T
12 ·Cep·B̂12dΩ =

nint
∑

I=1

ω(ζI)J(ζI)B̂
T
12(ζI) ·Cep(ζI)·B̂12(ζI) (9)

and KSTAB represents the stabilization stiffness:

KSTAB =

∫

Ωe

B̂T
12 ·Cep·B̂34dΩ +

∫

Ωe

B̂
T

34 ·Cep·B̂12dΩ +

∫

Ωe

B̂
T

34 ·Cep·B̂34dΩ (10)

The stabilization terms cannot be evaluated in a standard manner at the integration points, as they
would vanish. Consequently, KSTAB (as well as the corresponding stabilization forces) are rather cal-
culated in a co-rotational coordinate system (see Belytschko and Bindeman [8]). Such a co-rotational
approach has numerous advantages, including simplified expressions for the above stabilization stiffness
matrix and a more effective treatment of shear locking in this frame.
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The stabilization stiffness matrix given in Eq. (10) is obtained analytically in the co-rotational
system in the block-diagonal form

KSTAB =





K11 0 0

0 K22 0

0 0 K33



 (11)

The Young modulus E and Poisson ratio ν enter the expressions of the 8×8 sub-matrices Kii, together
with the nodal coordinates (see [2] for the complete details). However, this choice holds only for elastic
behavior. In the case of elastic–plastic behavior, Young’s modulus E is no longer valid. Instead, a scalar
modulus E∗ is defined, characteristic of the current tangent elastic–plastic stress–strain relationship. In
this work, an average value is taken over the integration points across the thickness. This choice avoids
an overstiff response that would correspond to a purely elastic hourglass stabilization scheme. This
simple and robust approach provides a physical stabilization method without any tuning parameters,
which effectively handles not only the dramatic change in stiffness due to the elastic–plastic transition,
but also the intermediate situations where an arbitrary subset of integration points are in elastic state
while the other ones are in plastic regime. Such configurations often occur during e.g. bending, multiple-
step forming sequences, and springback. Bending-dominated applications are selected in Section 5 to
validate this approach.

In a similar way, the internal forces of the element can be written as

f int =

∫

Ωe

B̂
T

· σdΩ = f int
12 + fSTAB (12)

where f int
12 is evaluated at the integration points in the conventional way

f int
12 =

∫

Ωe

B̂T
12 · σdΩ =

nint
∑

I=1

ω(ζI)J(ζI)B̂
T
12(ζI) · σ(ζI) (13)

The second term fSTAB represents the stabilization forces and depends on Young’s modulus exactly
like KSTAB (see [2] for their exact expressions). Consequently, the same scalar elastic–plastic tangent
modulus E∗ is consistently used in the expression of fSTAB for the stabilization of the SHB8PS element
when coupled with elastic–plastic constitutive models. The details of this coupling are given in the
following section.

3 Constitutive equations

3.1 Incremental kinematics and local frames

In the framework of the SHB8PS continuum shell element, three local frames are required to perform
the entire calculations at the element level. All these local frames are orthogonal, and each of them is
defined by means of a specific rotation matrix which refers to the common, global frame:

– The “element” frame, defined by rotation matrix P, is calculated with respect to the coordinates
of the element nodes [2]. The anisotropic elasticity matrix Cele is expressed in this frame in order
to approach plane-stress conditions:

Cele =















λ̄ + 2µ λ̄ 0 0 0 0
λ̄ λ̄ + 2µ 0 0 0 0
0 0 E 0 0 0
0 0 0 µ 0 0
0 0 0 0 µ 0
0 0 0 0 0 µ















(14)

with λ̄ = Eν
1−ν2 and µ = E

2(1+ν) . The choice of this constitutive matrix avoids locking phenomena

encountered with a full three-dimensional law.
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– A “co-rotational” frame is used to calculate the stabilization stiffness KSTAB and the stabilization
forces fSTAB. The rotation matrix R that maps a vector from the global coordinate system to the
co-rotational system is given in [2].

– Finally, a “material” frame must be introduced, in which the anisotropic plastic behavior is defined.
A common choice to specify the rotation matrix R, which maps any vector or tensor from the
global frame to the material frame, is by defining its rate as

Ṙ = W·R (15)

where W = (∇v)
asym

is the spin tensor and [ ]asym denotes the skew-symmetric part of a given
tensor.

This particular choice corresponds to the use of the Jaumann objective rate in the constitutive
model. As in the finite element framework, only discrete (incremental) values can be calculated for W,
Hughes and Winget [23] proposed to use the gradient of the displacement increment evaluated at the
middle of the time step:

∆W =

(

∂∆u

∂xt+∆t/2

)asym

(16)

where xt+∆t/2 = 1
2 (xt + xt+∆t) . Then, the rotation matrix R is updated between stages n and n + 1

by
Rn+1 = r ·Rn (17)

where the rotation increment r is calculated as

r =

(

I− 1

2
∆W

)

−1

·
(

I +
1

2
∆W

)

(18)

Fig. 2 summarizes the different frames and rotation matrices used in this work. Any second-order
tensor aglo or fourth-order tensor Aglo, defined in the global frame, becomes aloc, respectively, Aloc

in a local frame defined by a rotation matrix Q according to the classic formulas

aloc = QT · aglo ·Q
Aloc = QT ·QT ·Aglo ·Q ·Q (19)

Finally, the strain increment in the global frame is consistently calculated based on the same gradient
of the displacement increment [23]:

∆εglo =

(

∂∆u

∂xt+∆t/2

)sym

(20)

where [ ]sym designates the symmetric part.

3.2 Constitutive modeling

The constitutive equations are written in a materially embedded coordinate system to ensure objectiv-
ity with respect to material rotation and to simplify the formulation and implementation of the material
model. The constitutive equations were implemented in Abaqus/Standard using a UMAT-like subrou-
tine (see [18]). This particular choice allows for a common implementation of new constitutive models
in Abaqus/Standard either directly or by means of the user element SHB8PS via a UEL subroutine.
On the other hand, this choice requires a rigorous separation of the element formulation, incremental
kinematics and material-frame-based stress update. Also the specific continuum shell elasticity matrix
must be taken into consideration in the constitutive algorithm. In the remaining of this section, all
the tensor quantities are written in the material frame, unless specified otherwise. For the sake of
simplicity, the “mat” superscript is omitted.

The rate of the Cauchy stress in the material, rotation-compensated frame, is given by the hypo-
elastic law

σ̇ = C : (D−Dp) (21)
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Fig. 2 Frames and rotation matrices used in the formulation of the SHB8PS element with anisotropic elastic–
plastic constitutive models.

where C is the anisotropic elasticity matrix (Eq. (14)) expressed in the material frame, while D and
Dp are the strain rate tensor and plastic strain rate tensor, respectively.

The plastic strain rate tensor Dp is given by the flow rule

Dp = λ̇
∂F

∂σ

= λ̇V (22)

where V is the flow direction, normal to the yield surface defined by the potential F, and λ̇ is the
plastic multiplier to be determined from the consistency condition. The potential F is given by

F = σeq(σ
′ −X)− Y ≤ 0 (23)

where σeq is the equivalent stress, which is function of the deviatoric part σ
′ of the Cauchy stress and

the back-stress X, whereas Y is the current size of the yield surface; (Y = Y0 +R, R being the isotropic
hardening variable).

The quadratic Hill’48 yield surface [21] is used here. This plastic anisotropy description is defined
by

σeq =
√

T : M : T (24)

where T =σ
′ − X is the deviatoric effective stress and M a fourth-order tensor containing the six

anisotropy coefficients of Hill.
Isotropic and kinematic hardening are governed by the following generic equations

Ẏ = HY λ̇, Ẋ = HXλ̇ (25)

The consistency condition Ḟ = 0 leads to

λ̇ =
V : C : D

V : C : V + V : HX + HY
(26)
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The analytical elastic–plastic tangent modulus can then be deduced as

Cep = C−α
(C: V)⊗ (V : C)

V : C : V + V : HX + HY
(27)

where α = 1 for plastic loading and 0 otherwise.

3.3 Hardening models

Numerous hardening models can be introduced in the general framework of phenomenological elasto-
plasticity. For any particular hardening model, one has to define functions HY and HX, respectively.
Concerning isotropic hardening, in this work we use the non-linear models of Voce and Swift as well
as the linear isotropic hardening model.

For consistency with Eq. (25), the rate form of Voce’s law can be written as

Ẏ = CR (Rsat + Y0 − Y ) λ̇ = HY λ̇ (28)

where CR characterizes the saturation rate of Y and Y0 + Rsat its saturation value, while Y0 is its
initial value.

The Swift law is given by

Y = K(ε0 + εp
eq)

n (29)

where K, ε0 and n are material parameters and εp
eq is the equivalent plastic strain, with ε̇p

eq = λ̇.
Eq. (29) can be rewritten as

Ẏ = nK
1

n Y
n−1

n λ̇ = HY λ̇ (30)

with Y0 = Kεn
0 .

Finally, the linear isotropic hardening model is given by the equation:

Y = Y0 + Hεp
eq (31)

or, similarly,

Ẏ = Hλ̇ = HY λ̇ (32)

The kinematic hardening can be described by a second-order tensorial variable X, which allows the
reproduction of the Bauschinger effect. The kinematic hardening defines a translation of the yield
surface in the stress space. One can use the Armstrong-Frederick law described by

Ẋ =CX(Xsatn−X)λ̇ = HXλ̇ (33)

where CX and Xsat are material parameters characterizing the saturation rate and saturation value of
X, respectively, while n = T

σeq
is the direction of the deviatoric effective stress.

These classic hardening models are adopted in this paper as they appear in the benchmark problems
selected in Section 5. However, more advanced models have been implemented in the same framework,
e.g. [18; 19; 33]. Virtually, any constitutive model implemented in a FE code via a UMAT-type user
material subroutine can be implemented in the developed setting – provided that it may incorporate an
anisotropic elasticity matrix. Alternatively, other continuum-type user elements can be coupled with
the elasto-plastic constitutive models by means of the incremental kinematics framework described in
this section.
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4 Outline of the SHB8PS implementation in Abaqus/Standard

In the following, the main steps of the non-linear implementation of the SHB8PS solid–shell element are
summarized for completeness. The algorithm applies for all individual elements, at any time increment
∆t = tn+1 − tn.

Input: ∆t
x, ∆u at the eight nodes
σ

glo
n , Rn, Xn, Rn at the nint integration points

Output: Ke, f int

σ
glo
n+1, Cglo

ep , Rn+1,Xn+1, Rn+1 at the nint integration points

– Initialization: K12 = 0, f int
12 = 0, KGeom = 0

– Compute Cele

– For each integration point (I = 1, nint)

– Compute B̂
glo
12 , ∇∆u, ∆εglo = (∇∆u)

sym
, ∆W = (∇∆u)

asym

– Compute rotation matrices:

r =
(

I− 1
2∆W

)

−1 ·
(

I + 1
2∆W

)

Rn+1 = r ·Rn

Compute Pn,Rn

– Rotation to material frame:
Cglo = Pn ·Pn ·Cele ·PT

n ·PT
n

Cmat = R
T
n+1 ·RT

n+1 ·Cglo ·Rn+1 ·Rn+1

σ
mat
n = R

T
n · σglo

n ·Rn

∆εmat = R
T
n ·∆εglo ·Rn

– Perform constitutive update: calculate Cmat
ep , σmat

n+1 , Rn+1,X
mat
n+1 (UMAT)

– Rotation to global frame:

σ
glo
n+1 = Rn+1 · σmat

n+1 ·RT
n+1

Cglo
ep = Rn+1 ·Rn+1 ·Cmat

ep ·RT
n+1 ·RT

n+1

– Update K12 ← K12 + ω(ζI)J(ζI)
(

B̂
glo
12

)T

·Cglo
ep · B̂

glo
12

– Update f int
12 ← f int

12 + ω(ζI)J(ζI)
(

B̂
glo
12

)T

· σglo
n+1

– Update KGeom ← KGeom + ω(ζI)J(ζI)kGeom(ζI)

– Store internal variables σ
glo
n+1, Rn+1,Xn+1, Rn+1

– Compute KSTAB and fSTAB

– Ke = K12 + KGeom + KSTAB

– f int = f int
12 + fSTAB

The underlying modularity of the algorithm is well illustrated by the calculation of the elastic–
plastic tangent modulus Cep involved in the expression of the stiffness matrix, Eqs. (6) and (8)-
(10). This algorithmic elastic–plastic tangent modulus is first calculated in the material frame, by
consistent linearization of the rotation-compensated state update algorithm. Analytical expressions of
the algorithmic (consistent) tangent modulus for backward Euler implicit time integration schemes have
already been derived, e.g., in [18; 19; 33]. If an explicit time integration scheme is adopted instead, the
analytical tangent modulus in Eq. (27) can be directly used. The resulting tensor is then pulled back into
the global frame with the rotation matrix corresponding to the selected kinematics formulation. Note
that one of the ingredients of the elastic–plastic tangent modulus, the elasticity matrix, incorporates
the "numerical" elastic anisotropy due to the element formulation (see the expression of Cele, Eq. (14),
defined in the element frame).

5 Numerical examples

In this section, the efficiency and accuracy of the SHB8PS element, implemented in Abaqus/Standard,
are evaluated by analyzing five benchmark problems from literature. These numerical tests include
geometric and material non-linearities (large strain anisotropic elasto-plasticity), contact as well as
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springback and earing predictions for Numisheet benchmark problems. The results are compared to
solutions obtained by Abaqus elements. In the last two example problems, the results are additionally
compared to experimental data.

Four finite elements from the element library of the Abaqus code are used in this work; these are:

– S4R: 4-node reduced-integration shell element.
– C3D8I: 8-node three-dimensional continuum element with incompatible modes.
– C3D8R: 8-node three-dimensional continuum element with reduced-integration.
– SC8R: 8-node reduced-integration continuum shell element.

The first two elements are state-of-the-art Abaqus shell and continuum elements, respectively. The
last element is the continuum shell element recently made available in the code.

5.1 Hinged elastic–plastic thin cylindrical roof

This example concerns the instability behavior of a thin cylindrical roof. It has been considered by
many authors in the case of elastic behavior [12; 15; 25; 4]. The geometry of the problem is illustrated
in Fig. 3 and the geometric parameters are summarized in Table 1. The lateral straight sides are hinged
(u = v = w = 0), while the curved sides are free. The roof is subjected to a concentrated load P applied
at the center of the top surface. This problem is solved by the path-following Riks algorithm. Owing
to symmetry, only one fourth of the roof was discretized. In the case of solid and solid–shell elements,
two elements must be used along the thickness direction since the lateral straight sides are hinged on
the midsurface nodes.

Fig. 3 Hinged thin cylindrical roof subjected to a central concentrated load: geometry and boundary condi-
tions.

The material considered here is elastic–plastic with an elasticity modulus E = 3102.75 MPa,
a Poisson coefficient ν = 0.3 and non-linear isotropic hardening given by the Voce’s law (28). The
material parameters for this test are given in Table 2. The numerical results for a mesh containing
32×32×2 SHB8PS elements, given in terms of load versus displacement at the point where the load is
applied, are depicted in Fig. 4. These results are compared to those obtained by using Abaqus elements
with the discretizations: 32×32 S4R shell elements and 64×64×2 SC8R solid–shell elements. Note that
in this section, the reported results are the converged mesh solutions. In this first test, the curves
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Table 1 Geometric parameters of the hinged thin cylindrical roof.

length l width w thickness t radius R angle β load P
508 mm 507.15 mm 6.35 mm 2540 mm 0.1 rad 1000 N

Table 2 Voce’s material parameters for the hinged elastic–plastic thin cylindrical roof subjected to a central
concentrated load.

E [MPa] ν Y0 [MPa] Rsat [MPa] CR

3102.75 0.3 27 9 2

exhibit snap-through and snap-back behavior. Very good agreement between the solutions along the
entire unstable load–displacement path is observed. In particular, the results of the SHB8PS element
lay very close to those of the shell element, which should be the best suited classic element for this
geometry. Note also that the convergence of the existing classic elements has been previously verified
for these problems [27].
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Fig. 4 Load–displacement curves for the hinged elastic–plastic thin cylindrical roof subjected to a central
concentrated load.

Due to its particular geometry, this test is very sensitive to boundary conditions. In order to
recover the solution found with shell elements, we had to employ two solid, respectively, solid–shell
elements along the thickness and to hinge the lateral straight sides on the midsurface nodes. However,
it would be more efficient to use a single continuum-type element through the thickness – especially
continuum shell ones. In this case, the mesh no longer contains nodes on the mid-surface and boundary
conditions would be applied either on the top or bottom layers. One should note that, in engineering
practice, this would correspond very often to the boundary conditions actually applied to the real
structure. Fig. 5 shows the load versus displacement curves for a mesh containing 32×32×2 SHB8PS
elements obtained when hinging the bottom edge (LBC) and the top edge (UBC), compared to the
former reference solution (MBC). One can see that the difference is very important with varying the
boundary conditions. One advantage of the continuum-type elements is that they allow for any of these
three sets of boundary conditions, while shell elements are restricted to the mid-surface one.
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Fig. 5 Influence of the applied boundary conditions: Load–displacement curves for the hinged elastic–plastic
thin cylindrical roof subjected to a central concentrated load for SHB8PS element.

Table 3 Voce’s material parameters for the hinged elastic–plastic thick cylindrical roof subjected to a central
concentrated load.

E [MPa] ν Y0 [MPa] Rsat [MPa] CR

3102.75 0.3 15 9 2

5.2 Hinged elastic–plastic thick cylindrical roof

Several authors [46; 47; 48; 25] have emphasized the dramatic sensitivity of the previous test with
respect to the thickness of the sheet. Indeed, doubling the thickness (t = 12.7 mm) does not only
increase the critical buckling loads, but also modifies the shape of the load–displacement curve as the
snap-back phenomenon completely disappears. An elastic–plastic version of this test is considered here,
with the material parameters given in Table 3. Similarly to the first test, the load versus displacement
curves are compared for the discretizations containing 20×20×2 SHB8PS elements, 20×20 S4R shell
elements and 80×80×2 SC8R solid–shell elements (see Fig. 6). The curves present the snap-through
behavior typical for such limit-point buckling problems. The results of the SHB8PS element are in
good agreement with those of Abaqus elements.

5.3 Pinched cylinder at large elastic–plastic deformations

In this example, the elastic–plastic deformation of a cylinder subjected to two opposite concentrated
loads in the middle of the structure and bounded by rigid diaphragms on its extremities is considered.
This problem has been investigated by a number of authors like [43; 50; 14; 28].

The undeformed mesh and boundary conditions are shown in Fig. 7. The geometry is characterized
by the length L = 600 mm, the radius R = 300 mm and thickness t = 3 mm. Due to symmetry, only
one eighth of the cylinder is discretized. At the ends of the cylinder, the rigid diaphragms prevent any
displacement in the radial directions. Material properties are the elasticity modulus E = 3000 MPa,
Poisson’s coefficient ν = 0.3 and initial yield stress Y0 = 24.3 MPa. A linear isotropic hardening law is
adopted as given in Eq. (31). The linear hardening coefficient H is taken equal to 300 MPa.
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Fig. 6 Load–displacement curves for the hinged elastic–plastic thick cylindrical roof subjected to a central
concentrated load.

Fig. 7 Geometry and boundary conditions for the pinched cylinder.

Fig. 8 depicts the load–deflection curves. For the same mesh (40×40×1 elements), the results of
the SHB8PS solid–shell element are compared to those of the SC8R solid–shell element and the S4R
shell element, along with the reference solutions obtained by Wriggers et al. [50] and Eberlein and
Wriggers [14]. The calculations using the S4R element failed at a certain loading level, while the SC8R
element is too stiff in this test problem and also converges more slowly. For this particularly discrimi-
nating test, the curve using SHB8PS element is clearly in better agreement with the 3D investigations
of Wriggers et al. [50] and Eberlein and Wriggers [14].
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Fig. 8 Load–deflection curves for the elastic–plastic pinched cylinder.

5.4 Unconstrained cylindrical bending

In this section, the example of the unconstrained cylindrical bending test proposed as springback
benchmark in Numisheet 2002 [32] is investigated to assess the performance of the SHB8PS element
in presence of geometric, material and contact non-linearities. This test has been considered in several
references like in [51; 29; 10; 6]. This benchmark involves a bending-dominated deformation since there
is no blank holder. The problem has complex contact boundary conditions during the forming process
and the springback after forming is severe.

The schematic view of the problem is illustrated in Fig. 9. Following [32], the geometric parameters
are summarized in Table 4. Both an Aluminum Alloy 6111-T4 and a High strength steel were investi-
gated in this benchmark. The materials are supposed elastic–plastic with isotropic hardening following
Swift law given by Eq. (30). The material properties of Aluminum 6111-T4 and High strength steel
as well as the Coulomb friction coefficient of the interaction of the surfaces punch–sheet and die–sheet
are given in Table 5.

Fig. 9 Tool geometry for the unconstrained bending problem.
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Table 4 Geometric parameters of the unconstrained cylindrical bending problem.

Geometric parameter [mm] Geometric parameter [mm]
Punch radius 23.5 Length of the sheet 120.0
Die radius (R2) 25.0 Thickness of the sheet 1.0
Die shoulder (R3) 4.0 Width of the sheet 30.0
Width of tools (W) 50.0 Punch stroke 28.5

Table 5 Material properties of the used materials for the unconstrained cylindrical bending problem.

Material
Young

modulus
E [MPa]

Poisson
ratio ν

K [MPa] n ε0

Friction
coefficient

µ
Aluminum
6111-T4 7.05× 10

4
0.342 550.40 0.22300 0.0093 0.13480

High
strength

steel
2.175 × 10

5
0.300 645.24 0.25177 0.0102 0.14812

The amount of springback is quantified by the angle θ as defined in Fig. 10. This angle is measured
after forming at the maximum punch displacement and after springback. The tools are defined as
analytical rigid surfaces.

Fig. 10 Definition of the angle to measure springback for the unconstrained cylindrical bending problem.

The SHB8PS element is compared with Abaqus solid and shell elements. Indeed, it is well-known
that in applications of sheet metal forming, shell elements have difficulties in dealing with double-
sided contact – while conventional solid elements necessitate several element layers to capture bending
effects. In the present work, the simulations carried out with the SHB8PS element use only one element
layer through the thickness, with several integration points. For symmetry reasons, only one quarter
of the blank is discretized by means of 150 SHB8PS elements in the length and only one element over
the width of the sheet. Unless otherwise specified, the analysis with the SHB8PS element is performed
using five Gauss points in the thickness direction.

5.4.1 Contact treatment

Abaqus capabilities are limited inasmuch user elements cannot be part of a contact surface. To
overcome this limitation, two techniques have been used to deal with contact when the SHB8PS
element, implemented in Abaqus through the UEL interface, must form part of the contact surface.
The first one, called the overlay element technique consists in superimposing three-dimensional Abaqus
elements with SHB8PS ones. These elements share the same nodes as SHB8PS elements; they have a
negligible stiffness and their role is to deal with contact. This technique also allows for the visualization
of the deformed mesh, but it induces a slightly modified rigidity and requires additional CPU time.

The second possibility is to use surface elements. It consists in superimposing Abaqus surface
elements to the SHB8PS faces that are in contact with the tools. These elements share the same nodes
as SHB8PS elements. The Abaqus surface elements have zero rigidity and they only handle the contact
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Table 6 Simulated opening angles before and after springback by using SHB8PS element for High Strength
Steel and Aluminum 6111-T4: comparison of contact techniques.

High Strength Steel
overlay element

technique
surface element

technique
forming 23.0692 22.8231

springback 36.3952 36.3000
Aluminum 6111-T4

forming 22.3336 22.1607
springback 62.9229 62.8598

constraints. This technique does not allow for the visualization of the deformed mesh with the Abaqus
built-in postprocessor.

Fig. 11 compares the punch force–displacement curves for the two contact techniques. At the
beginning, the punch force increases linearly due to the elastic response of the sheet metal. After
the plastic deformation has been started, the slope decreases and becomes negative by the end of
the process as the sheet is completely bent. Table 6 compares the opening angles before and after
springback. The simulated values for the two techniques are almost identical both in terms of load–
displacement predictions and opening angles. The CPU time is 20% higher in the case of the overlay
element technique. In the following, the overlay element technique is used because it enables the
visualization of the deformed mesh with Abaqus postprocessor.
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Fig. 11 Punch force vs. punch displacement plots for Aluminum 6111-T4 and High Strength Steel (HSS):
comparison of contact techniques.

5.4.2 Comparison with Abaqus elements and experiment

In order to validate the proposed solid–shell element, its predictions are compared to the experimen-
tal results of the Numisheet 2002 benchmarks for the two materials. The S4R and C3D8I elements are
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also used in the comparison. Again, 150 uniformly distributed elements are used in the length direction
for the three elements. However, two layers of C3D8I elements are required in the thickness direction
in order to represent the stress distribution due to bending with sufficient accuracy. Also, ten C3D8I
elements are used along the width direction in order to keep their aspect ratio in acceptable limits.
Note that five integration points were used for S4R and SHB8PS. Figs. 12 and 13 display the punch
force versus punch displacement curves predicted by the three elements, along with the experimental
results from Meinders et al. [30]. Results of four experiments (denoted BE-1, . . . , BE-4) are reported
by Meinders et al. [30]. As illustrated in Fig. 12, slight differences – up to 15% – appear between
the different experiments. Consequently, the experimental curve represented for the Aluminum alloy
(Fig. 13) is an average of the available experiments.
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Fig. 12 Punch force vs. punch displacement plots for High Strength Steel.

Figs. 12 and 13 show that the numerical results obtained with SHB8PS element are the closest
to the experimental results and they lay close to the solid element predictions. The slight differences
between the two may be due to the different number and distribution of integration points along the
thickness direction; this issue will be addressed in Section 5.4.3.

The springback angles are also investigated, as they were also experimentally measured [30]. The
springback phenomenon is particularly exacerbated in this unconstrained bending application, as il-
lustrated in Fig. 14. Table 7 summarizes the opening angles before and after springback for elements
SHB8PS, C3D8I and S4R, compared to experiments. The simulated values with SHB8PS and C3D8I
elements are close to each other and the closest to experiments. Comparing the numerical results to the
experimental ones, the good performance of the SHB8PS solid–shell element is once again confirmed.

5.4.3 Influence of the number of integration points through the thickness

For elastic applications, two integration points over the thickness are sufficient to model bending
problems, as the through-thickness stress distribution is linear. However, elastic–plastic applications
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Fig. 13 Punch force vs. punch displacement plots for Aluminum 6111-T4.

Fig. 14 Deformed shape of the sheet in the unconstrained bending problem.

need more integration points to describe the strongly non-linear through-thickness stress distribution.
Several authors, like Abed-Meraim and Combescure [2], showed that, in general, five integration points
in minimum are required to provide an accurate response in elastic–plastic problems.

The impact of the number of integration points is briefly investigated here as it may induce slight
differences between predictions of different elements. A finer mesh is used for this analysis (300 elements
in the length direction) so that the oscillations of the punch load, due to the contact evolution, are
eliminated. Figs. 15 and 16 show the punch force vs. the punch displacement curves for SHB8PS
element with varying the number of Gauss points through the thickness for both High Strength Steel
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Table 7 Measured and simulated opening angles before and after springback for High Strength Steel and
Aluminum 6111-T4.

High Strength Steel
experimental simulated

BE-01 BE-02 BE-03 BE-04 SHB8PS C3D8I S4R
forming 22.7707 22.0064 23.0255 20.8599 23.0692 22.5820 33.3078

springback 37.4212 35.6787 30.9036 35.3636 36.3952 32.0832 43.9071
Aluminum 6111-T4

forming 21.0061 21.0061 19.4817 19.6341 22.3336 21.9577 32.5502
springback 55.7784 54.4311 55.1796 53.5329 62.9229 54.8291 66.8663

Table 8 Simulated opening angles before and after springback by using SHB8PS element for High Strength
Steel and Aluminum 6111-T4: variation of the number of integration points through the thickness.

High Strength Steel
2 Gauss
points

3 Gauss
points

5 Gauss
points

7 Gauss
points

9 Gauss
points

forming 23.1956 23.1073 23.1301 23.1289 23.1266
springback 38.8581 35.3352 36.3560 36.6505 36.7748

Aluminum 6111-T4
forming 22.2996 22.4240 22.3557 22.3265 22.3107

springback 70.3063 59.8636 62.8028 63.6647 64.0352

and Aluminum 6111-T4, respectively. As expected, the elastic part of the curve is already well described
with only two Gauss points. However, two Gauss points and three Gauss points over– and underestimate
the punch force, respectively, in the elastic–plastic range. The curves converge with increasing the
number of integration points. For the problem at hand, five integration points already provide a good
approximation – thus validating the previous analyses. This choice has also been made in order to
minimize the number of solid element layers used for comparison. Table 8 summarizes the influence
of the through-thickness integration points on the forming and springback angles. These results are
consistent with the conclusions previously drawn for the load–displacement predictions.
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Fig. 15 Punch force vs. punch displacement plots for High Strength Steel: influence of the number of integra-
tion points through the thickness.



20

0 5 10 15 20 25
0

50

100

150

200

250

300

Punch displacement [mm]

P
un

ch
 fo

rc
e 

[N
]

 

 

SHB8PS 2 Gauss points
SHB8PS 3 Gauss points
SHB8PS 5 Gauss points
SHB8PS 7 Gauss points
SHB8PS 9 Gauss points
experiment average

Fig. 16 Punch force vs. punch displacement plots for Aluminum 6111-T4: influence of the number of integra-
tion points through the thickness.

5.5 Cylindrical cup drawing test

In this example, the cylindrical cup drawing test, proposed at Numisheet 2002 as benchmark Test A
[32], is used to investigate the earing evolution after forming when anisotropic behavior is considered
for the Aluminum alloy 6111-T4. This problem is commonly considered for an assessment of the planar
anisotropy via the earing profile along the rim of the cup after forming. Since a constant blank holding
force is applied during the cup forming, it is a typical double-sided contact problem.

The schematic view of the problem is illustrated in Fig. 17 and the corresponding dimensions are
given in Table 9. The material parameters of Aluminum 6111-T4 are given in Table 5 (section 5.4)
where Swift’s law is considered to describe the isotropic hardening. The plastic anisotropy behavior
has been considered in this benchmark and the three r-values used to identify Hill’s quadratic yield
criterion are summarized in Table 10. A constant 50 kN blank holder force is applied during the forming
process. The earing pattern is measured by the radial distance from the center to the outer edge of the
cup at different angles, at the final punch displacement of 40 mm.

Table 9 Geometric parameters of the cylindrical cup drawing setup.

Geometric parameter [mm] Geometric parameter [mm]
Punch diamater (Dp) 100.0 Punch profile radius (rp) 9.5
Die opening diameter (Dd) 102.5 Die profile radius (rd) 7.0
Blank diameter (Db) 180.0 Thickness of the sheet 1.0

Table 10 r-values for Al6111-T4 Aluminum alloy sheet.

Angle θ (deg.) from
rolling direction r-value

0
◦ 0.894

45
◦ 0.611

90
◦ 0.660
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Fig. 17 Cylindrical cup drawing set-up.

The tools are modeled as rigid bodies. Due to the problem symmetry, only a quarter of the sheet
was modeled with a total of 900 elements (see Fig. 18). Note that five through-thickness integration
points were used in the simulations with SHB8PS. For the contact, the first technique described in
section 5.4.1 is used to ensure the contact between the blank and the tools with a Coulomb friction
coefficient equal to 0.0096 [32]. The simulations are compared to the experimental data reported in
Numisheet 2002 benchmark A.

Fig. 18 Undeformed mesh of the blank for the cylindrical cup drawing test.

Fig. 19 shows the predicted outer profile of the blank at the final punch displacement of 40 mm
as function of θ using the SHB8PS element. This result is compared to the simulation using the
Abaqus finite element C3D8R with the same in-plane mesh as SHB8PS and two layers of elements
in the thickness direction. The results are also compared to the experiment from Numisheet 2002.
Both elements predict the correct four-ear profile exhibited by the experiments, the average rim radius
predicted with SHB8PS being very close to the experimental one. The punch force evolutions predicted
with the two types of elements (Fig. 20) are also similar, with SHB8PS overpredicting (up to 11%)
the load during the transient stage, while C3D8R underestimating it during the subsequent quasi-
stationary stage.
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Fig. 19 Outer profile of the blank at the final punch displacement.
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Fig. 20 Punch force vs. punch displacement plots for the cylindrical cup drawing test problem.
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6 Concluding remarks

An extended version of the solid–shell finite element SHB8PS has been implemented into the implicit fi-
nite element code Abaqus/Standard via the UEL subroutine. A modular finite element implementation
was proposed, with clear delimitation between: interpolation, kinematics, constitutive state update,
element integration, and stabilization. It is believed that this approach can be successfully and easily
extended to other choices for any of these independent modules, which were described in detail. This
version of the SHB8PS element can deal with problems involving anisotropic elastic–plastic behavior
at large deformations, which are typical in sheet metal forming applications. The formulation of this
element employs a combination of the reduced integration scheme with the assumed strain method
and a specific projection to eliminate locking phenomena. The resulting hourglass modes are controlled
using a physical self-adapting stabilization procedure.

The number of integration points through the thickness direction can be freely selected, avoid-
ing the computational cost of including several element layers. This aspect makes the element very
competitive for sheet metal forming applications. Another interesting feature is the convenient fully
three-dimensional framework on which this solid–shell element is based (eight-node hexahedron with
only translational degrees of freedom per node). Also, the presence of eight physical nodes allows for
the realistic modeling of double-sided contact.

The capabilities of SHB8PS element have been shown through several applications involving various
types of non-linearities: geometric, material and contact.

Numisheet benchmark problems, characterized by evolving contact, bending-dominated straining
mode and large springback, were used to validate the effectiveness of the new element for sheet forming
applications.

The unconstrained cylindrical bending of two sheets made of 6111-T4 aluminum alloy and High
Strength Steel was considered. Good agreement with experimental results for the punch force has been
obtained. At equivalent mesh density, SHB8PS performs at least as well as the most accurate (and
expensive) solid elements. However, this accuracy is achieved at a lower cost as several layers of linear
solid elements are replaced with one single layer of SHB8PS elements, simply by adjusting the number
of integration points. The element performance was also evaluated on springback predictions. Once
again, consistently with the load–displacement results, the springback predictions were found in good
agreement with the experimental measurements.

Finally, the performance of the element was assessed in the framework of anisotropy by investigating
the cylindrical cup drawing test. The earing profile was well predicted.
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