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AN INTRODUCTION TO THE STATISTICAL
THEORY OF POLYMER NETWORK
FORMATION
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Arts et Metiers ParisTech, Paris (France)

Abstract

A short but detailed introduction to the statistical theory of polymer netwarkdtion
is given, including gel formation, gel structure, and sol fraction. Bdsyput on the use
of probability generating functions, and results that are of interest doymper network
elasticity are emphasized. Detailed derivations are supplied, and a simjgle prscedure
is provided, so that the reader is able to adapt and apply the theory to hishamical
systems, even if examples are given on polyurethanes essentially.
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Introduction

The statistical theory of polymer network formation may sometimes appear asrtgaic
cated, which limits its extensive use. The aim of this chapter is to give a shiodekailed
introduction to this theory, including gel formation, gel structure, and rsaition, that is
both straightforward and ready for use. An exhaustive accountdaAmibeyond an intro-
ductory chapter and extensive details can be found elsewhere, bahiesl useful to favor
step-by-step applications of the theory to simple examples. The expositiersligietly
simplified notations, even if generality is lost temporarily, and differs on sovirggpfrom
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original papers, but results are unchanged. Indications are givear@mus extensions of
the theory, but emphasis is put on basic ideas, with examples given onstgmiymer-
ization, and on polyurethanes especially. Moreover, stress is put oreshés that are
useful to the understanding of polymer network elasticity. The theoryepted here uses
probability generating functions, but some correspondences with thesiee approach of
Macosko and Miller [1, 2] are given, which is summarized in a review bys@land Mark
[3].

This Chapter has been inspired by the long review paper that Kelopublished in
1989 [4], but his more recent papers have also been useful, efpenia[5] where distri-
butions of functionalities are considered. The paper that liaesid Disek [6] published
in 1983, where the entanglement factor is detailed, has also been veiiyl h8tpme results
of these articles are recovered below. The reader will also find comptargenaterial in a
book [7] published in 2002, and of course the seminal paper by Gq8lesamains essen-
tial to the mathematics involved in the theory, but beyond the elements that @&ssagc
below. These are only very few examples among numerous papersybdiden published
on the subject.

In what follows, the basic mathematical concepts that are necessameaented first.
Then, they are applied to the simplest case of a single type of monomer upit efim-
ple polyurethane case is considered, without functionality distribution. This tiontés
then removed before a summary of the method is given with a practical 6+stepdore.
Finally, this procedure is applied to cases of various complexities in order sirdte its
possibilities. Even if telechelic polymers only are considered in this Chapii#ouwy cy-
clization, to keep things simple, quite exhaustive derivations are given indkisctive
context, and it is hoped that they provide the reader with the elements thataaflother
exploration of more elaborate theories of polymer network formation.

Mathematical background

A very elementary part of the theory of stochastic branching procésdetailed here, with
limitation to the only notions that are applied below extensively, and an exhaasttount
can be found in the reference monograph by T.E. Harris [9], for imstaifhis theory is
applied here to the growth of a random graph, and the simplest image thatengset
in such an exposition is that of a family tree. Such trees are examples oéstimcypraphs
when one assumes that distribution of males and females at each gendpatismoandom
process. An essential phenomenon in this context is the possible ultimatetiertioica
family.

Slightly special family trees are considered here, since the children ofderoaly are
of interest. In this matriarchal society, a family tree begins with a primitive mother

an ancestor, and the offspring of females only are recorded at ebsba@ient generation.

Therefore, ultimate extinction of a family is defined by all branches of theléaging to
males. Consider, for instance, that any primitive mother has 3 children arayrdaughter

1This contrasts with the very beginning of the theory, at the end of the 18tirge when F. Galton and
H.W. Watson studied the extinction of family names. One reason for tiseptrehoice is thatére, in French,
means bottmotherandmer, thus making a connection between genealogy and polymer science...

as
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Figure 1. Various sets of children that a primitive mother (gray) may haik either sons
(white) or daughters (black). Birth order is not considered, that wividte each of the two
central cases.

(or granddaughter, great-granddaughter, etc.) has 2 childrgnddhotes the probability

that a child is a female, theh— p is the probability that the child is a male. The children

of a primitive mother may be either 3 sons (and the family extincts immediately), or one
daughter and two sons, or two daughters and one son, or three daudftie probability

of having 3 daughters ig® and the one for three sons(is — p)3. When daughters have
brothers, several possibilities yield from birth order. If a daughtertivasbrothers, for
instance, she may be the oldest child, the youngest, or intermediate, withabpity of
(1—p)?pin each case. Similarly, three possibilities come up when there is one son and two
daughters, with probabilities @il — p)p?. The whole set of possible combinations can be
summarized as the coefficients of the following polynomial of a dummy variable

Fo(z) = (1= p)® +3(1 — p)?pz + 3(1 — p) p*2° + p°2°. 1)

In polynomial Fyy(z), the coefficient of:* equals the probability for a primitive mother
(hence subscript 0) to hakedaughters, according to the above discussion. Not only does it
gather the set of probabilities in a single expression (hence its ramigability generating
function), with Fy(1) = 1 consequently (the sum of all probabilities equals one), but this
polynomial also has a very concise form:

Fo(2) = (L=p+p2)’ 2)

as can be checked easily by developing the right-hand side. Morealjgnéthe number
of children of a primitive mother, and consequently her maximum number aftdars, is
f, then the probability to havé daughters is the coefficient of in (1 —p + pz)7. In

the f = 3 case detailed above, the various possibilities can be represented ghigpsdn
Figure 1.

The same procedure can be followed to count the possibilities that a dabghtehen
she becomes a mother (with two children): two boys (probalkility p)?, with immediate
extinction of the descendants), two girls (probabilif), or one boy and one girl (with
two cases depending on the birth order, and therefore a total probalfiltylo- p)p).
Figure 2 shows these three possibilities, with probabilities that are gathetteifvilowing
polynomial:

F(z)=(1-p’+2(l-ppz+p°2*=(1—-p+pz)? ©)

where the coefficient of* is the probability for a non-primitive mother to hakelaughters.
The average number of daughters per mother can be deduced frommabelbts shown
in Figure 2 by summing the product of the number of daughters by the plipabeach
casel x (1 —p)2+1x2(1—p)p+2 x p?, thatis2p, which is alsoF’(1), whereF” denotes
the derivative ofF'. In the more general case where a primitive mother may liareldren,
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Figure 2. Various sets of children that a non-primitive mother may have:rditleesons,
or one son and one daughter, or two daughters.

the possibilities that are offered to the females in the following generationgwame by the
coefficients of 1 —p+p )/ ~! and the average number of daughters per mothgt-isl)p.

Even if a primitive mother has daughters, extinction of the family is nonethetess p
sible, since all branches of the family tree may lead to males. The probabiligt the
descendants of a non-primitive mother extinct can be obtained by coingjdlee three sit-
uations shown in Figure 2: it is equal to the probability for a mother to have coly, plus
the probability that she has one son and one daughter whose dedsemdanct (equal to
e times the probability to have a daughter), plus the probability that she has two daugh-
ters whose descendants extinct (equafttmes the probability? to have two daughters).
Therefore, the probability of extinction obeys the following equation

e=(1-p)?+2(1—-ppe+p?®  orequivalently, e= F(e) (4)

with two roots: e = 1, that does not depend gnand is consequently excluded since it
predicts extinction even when each generation has daughters only, and

e:<;—1>2. 5)

It can be observed first that extinction is less probable when daugjgersore probable,

as expected. If it is impossible to have sons (daughters palyl) extinction is impossible

(e = 0) but if sons and daughters are equally probaple-(1/2) extinction is unavoidable

(e = 1) because the average number of daughters per matpeis(1, reaching the limit

of a stable population growth. ffis lower thanl /2, extinction is even more a certitude,
and the values of given by (5) that are larger than 1 must be interpreted as being equal to
1 (extinction is suree = 1). It is now possible to compute the probabilityhat the whole
family of a primitive mother extincts, by weighting the probability of occurrenteaxh

plot in Figure 1 bye raised to a power equal to the corresponding number of daughters,
since the latter are as many non-primitive mothers whose descendants mat: extin

s=(1-p)P+3(1-p)32pe+3(1—pp2+p3 or equivalently, s = Fy(e) (6)

with s = 0if p = 1ands = 1if p < 1/2, using the correspondingvalues, which extends
the above conclusions to the whole tree.

In the more general case withchildren per primitive mother, the probability that the
descendants of a non-primitive mother extinct is obtained the same way\asaiibis the
root (non equal to 1) of

(1—p+pe)/~t =e or, equivalently, e T —petp—1=0 (7)
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Figure 3. Monomer (left) and trimer (right) in the case of a single, trifunctickiad of
reactive molecule. Terminal reactive groups are shown as corndsglia shown as white
squares.

which can be recast into

ef-1 —1 ) 1
P=——1 that gives p = —
e =53

B Siiel

(8)

==

after simplification bye—1, by takingu = 71 andi = f=linui—1= (u—1)%i_ uF1,
which is easy to obtain. The final one-to-one relation betweamd p shows that the
solution is unique, here againdecreases whep increases (since decreases whea
increases), and one has= 0 whenp = 1 ande = 1 when

1
b= ﬁ 9)
since the denominator is then the sumfof 1 terms that are all equal 1. Now that the
probability of extinctione for a non-primitive mother is obtained, the probabilitthat the
number of descendants of a primitive mother is finite is obtained as abovenbidering
the various possibilities at the first generation and weighting faysed to the correspond-
ing number of daughters, which gives

s=(1—p+pe) = Fyle) = er1 (10)

where the last expression has been obtained by notind‘tffa) = F(z)%. Therefore,
the extreme probability values for the whole tree (descendants of a primititheene =
0 ands = 1, are obtained in the same conditions as for any subtree (descendants of a
non-primitive mother)e = 0 ande = 1, as already noted in th¢ = 3 case above.
Consequentlys = 0 (the family is immortal certainly) ip = 1, ands = 1 (the family tree
is inevitably finite) ifp < 1/(f —1).

The above results are sufficient to pass now from preliminary genealagiosidera-
tions to polymer applications.

A first application

Consider the condensation of a very large number of monomer units witheByerpactive
functional groups. Between the initial stage where no functional graspédacted yet and
the final stage where reaction is complete, a mixture of molecules with varionbars
of connected monomer units develops. Figure 3 shows a star-shapedermmaoth three
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Figure 4. Graphs representing the two molecules of Figure 3: primitive maftiesons
only (monomer), and two possibilities for three-mother families (trimer), with wifie
choices for the primitive mother and either two or three subsequent gemsta

arms of equal length, for instance, and a trimer. If cyclization is exclutterlyarious
molecules formed can be represented as graphs similar to the family treessdi$au the
previous Section, as illustrated in Figure 4. In such trees, the number oéradaghtequal to
the number of monomer units involved, and the numbers of daughters amdrsoequal to
the numbers of reacted and unreacted functional groups, respectiyeolymer molecule
can be represented by several graphs, depending on the monomiatiisttaken as the
primitive mother, and this affects the number of generations, as illustratethdtggure 4.
Since all functional groups are assumed to have the same reactivity andnter of
monomer units considered is very large, the probabjlitp have daughters corresponds
here to the probability that a group has reacted, and is therefore eqhal fiactionz of
groups that have undergone reaction at the stage considered.g@ensg z, the extent
of reaction, is henceforth used insteadpof It should be noted that the purpose here is
a statistical description of the distribution of polymerous molecules in the systkimg ta
advantage of an initial number of monomers so large that it can be corsiaetafinite;
the purpose is not to follow the evolution of given molecules whémcreases from 0 to 1.
The extinction of a family that has been discussed in the previous Secti@sponds now
to a molecule being comprised of a finite number of monomer units, i.e., belonging to th
sol phase. In opposition, a mother with an infinite number of descendamésponds to
a monomer unit in the gel phase. The condition for gelation to occur can ¢hdeduced
directly from the analysis in the above Section, where it has been fouhdrnhafinite
family is possible fop > 1/2: gelation occurs when the fraction of reacted groups reaches
the valuex, = 1/2. More generally, relation (9) leads to the Flory condition [10] for

f-functional monomer units:
1
Once the gel has formed, the fraction of sol (soluble) phase, which isabton of
monomer units that belong to molecules of finite size, can be obtained easily: iteyme

equal tos defined by (10), which can be rewritten in the present context as
1 3
s=(1-2)+301—2)%re+3(1 — )z + 233 = ( - 1> (12)
X

with the last expression, also given by Flory [11], obtained by usingvt®rex replaces
p. Actually, the expanded expressionsoih (12) adds up the respective probabilities for a
monomer unit to have from 0 to 3 reacted groups with, in each case, tlmgesgyiving rise
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to finite subtrees, which is precisely the probability for a monomer unit selatteshdom
from the system to belong to the sol phase. Thus, not only does (12}hwvsol fraction,
which decreases from 1 (up to the gel point< = < x4, e must be taken equal to 1)
to O (full conversiongz = 1), but its various terms also give some information about the
structure of the sol phase. The simplest is the first term, equa(ty), which is merely the
fraction of unreacted monomers. The second term counts the numbamnofaéons of the
finite trees, where a single group has reacted and two remain unreacttdrdherm gives
the length of the branches, since twice reacted monomer units form chathshe last
term counts nodes, with three reacted groups from which three chains@feourse, this
information is statistical only, and relates to averages. These actually muteenaverages
here, because the latter yield directly from the statistical approach amgilvareby simple
formulae, whereas molar or mass fractions are considered in the followitgp8s. They
can be deduced from number averages, and the three quantities comdieke present
simple case of a single type of monomer unit.

By definition, a monomer unit that belongs to the gel phase has at leastacted
group with infinite continuation, i.e., a series of linked monomer units connectglieto
boundaries of the reaction vessel, in practice. If it has only one sached: group, it be-
longs to a dangling chain, since the other possible reacted groups higedintinuations.
If the monomer unit has two reacted groups with infinite continuations, it beltmngn elas-
tically active chain. It gives rise to a dangling chain if the third group hastesl (with finite
continuation). Finally, three reacted groups giving rise to as many infingmstdefine a
node of the elastically active network. The fractions of these various tgbenonomer
units in the gel phase can be evaluated easily by considering Figure fe thieeleftmost
scheme is excluded since belonging to the gel phase requires at leastotezl group, of
course. Using the probabilitiesand1 — e for finite and infinite continuations, respectively,

d=31-2)%x(1—e)+2x3(1—2)2*(1 —e)e+3xx3(1—e)e? = (1 —e)Fy(e) (13)

gives the fraction of monomer units that belong to dangling chains. Coetfciand 3 in
front of the second and third terms come from the possible choices foedimted group
(among 2 or 3) with infinite continuation. The first term corresponds to monanits that
terminate dangling chains, the second one to intermediates along bramzhtés kst term
to (elastically inactive) nodes belonging to dangling chains. The repladevhenvith (5)

gives ,
d:3<i—1> (2—}E> (14)

for x > 1/2 only, sinced = 0 when there is no gel. This fraction reaches a maximum for
x = 3/5 before decreasing back to 0 when= 1 (all chains are elastically active when
reaction is complete). Similarly, the fractianof monomer units that belong to elastically
active chains but are not nodes of the active network is deducedtfrertwo rightmost
schemes in Figure 1, since at least two reacted groups are requidad,given by

2
a=3(1-2)2r*(1—-e)*+3x2°(1—e)e=3 (i - 1> <2— i) (15)

for there are 3 possible choices for the reacted group with finite contimuiatitihe third
scheme in Figure 1. The two terms in (15) again have immediate interpretatiorfgsthe
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Figure 5. Variations of the various fractions of trifunctional monomer unftismpolymer-
ization proceeds beyond the gel point: those belonging to thesgahge dangling chains
(d), the elastically active chaing), the active nodesa|.

one corresponds to monomer units that are intermediates between tripleamutiéem
which an unreacted arm stems, whereas the second term is for monomeéramitshich
dangling chains originate. Finally, the fraction of monomer units that forntieddly active
nodes is obtained by considering the rightmost scheme in Figure 1 only, 3irezcted
nodes are necessary, each with infinite continuation:

3
n=a31-e)? hence n= (2 — i) . (16)

Additional terms would appear for functionalities larger than 3, because than 3 infinite
chains may stem from an active node; this will be considered a later Sedibthese
fractions, which are defined far > z,, which fulfill the balance equation for the total
number of monomer units+ d + a + n = 1, and which are illustrated in Figure 5, can be
gathered in the following polynomial

Fo(z) =s+dz+az?+n =[l—z+ze+a(l—e)2’ = Fy(e+ (1 —e)2) (17)

where the coefficient of* (with a (1 — ¢)* term) gives the probability for a monomer unit
to havek links with infinite continuations.

Let now these results be applied to the theory of rubber elasticity. Firstutnbery,
of moles of elastically active chains is expressed from the molar #ae$ the monomer
and the mass density of the mixture, for a given extent of reactian The number of
elastically active chains is equal 8 /2 times the total number of monomer units in the
system, since each active chain has its two ends connected to a trifunetobinal node,
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3 p 1\?
=—-—1(2-= 18
=22 ( m) (18)
with (3p)/(2M) moles of elastically active chains per unit volume when reaction is com-
plete and each chain is made of two arms of a monomer unit connected by grtadinis

the shortest possible chain length. The expression given by DossiBraedsley [12], and
used by [3] and [6] for instance, for the elastic shear modulus of theonkets

which gives, using (16),

G= <f” — h) nﬂ +eT.RT (29)
2 Vv

with our notations, wher&’ is the gel volume]' denotes absolute temperatufethe gas
constant,f,, the average functionality of active nodes, (wjth = f = 3 in the present
case). Parametér, introduced in [12], varies from O to 1 and allows a continuous varia-
tion from the affine theory of rubber elasticity to the phantom network thebRjory [13].
Parametet, introduced by Langley [14], accounts for an entanglement efféatden elas-
tically active chains in the case of a perfect network, if they are long gimo&actorT,,
between 0 and 1, weights this effect when the network is imperfect; it isopiopal to
the probability that two elastically active chains cross, and is therefora émjthe square
of the ratio between the lengths of the elastically active chains in the imperfégteafect
networks, respectively.

In the simple case considered in this Section, the entanglement factor is diasiky
by taking a monomer arm as unit length (the unit can be chosen arbitraritg aitength
ratio is computed), assuming that all arms (3 per monomer unit) have the sartfesleng
Each monomer unit belonging to an elastically active chain without being areaxide
contributes with 2 unit lengths, and each node contributes with 3, whicls give- 3n
moles of unit lengths per initial mole of monomers. In a perfect network, aleaare
active, leading to 3 moles of unit lengths per initial mole of monomers. The rattoesg
two quantities raised to power 2 gives thecoefficient:

2 4
Te:<§a+n> :::2<2—i) (20)

which evolves from 0 at the gel point (= 1/2) to 1 at full conversion{ = 1). Figure 6
compares the variations @t andn during gel growth: the two quantities are close and
consequently the values of tlheande parameters will have a moderate influence on the
shape of the variations of the shear moduluis the present simple case, and will affect its
amplitude essentially.

The above entanglement factor can readily be extended to the more geamralff-
functional star-shaped monomer units where fhe 2 arms have the same length. The
molar fraction of monomer units with branches having infinite continuations is the coef-
ficient of 2* in

Fo(2) =[1 —z +ex)+x(l —e)2] = EgZOle’“(l —z+xze) TR (1 - ek (21)

WhereC}c denotes a binomial coefficient, and they belong to elastically active chains if
k > 2, otherwise they are connected to the network on one side only and cemglq
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Figure 6. Variations of the fraction of monomer units that are elastically active nodes of
the network and of the entanglement factorduring gel growth, in the simple case of one
kind of trifunctional monomer unit.

belong to dangling chains. Each of these monomer units contributestvatins to the
elastically active chains and, using an arm as unit length, the total lengtk efdktically
active chains is

Ar,z) = Bf_,Chk (1 — 2+ ze) ~Fah(1 — )", (22)
Taking the derivative of (21) with respect tdeads to two equivalent expressions
Fo(z) = fll =z +ex) +2(1 —e)z) (1 —e) =
=% kCHQ — z +ze) TFaF(1 - e)FF1 (23)
which, when setting = 1, give
fx(l—e) = E£:1 k C'Jf(l —x+ze) FaF(1—e)f = f(1—ztex)/ Tz(1—e)+ X (24)
hence
A z) = fe(l —e)[l = (1 —z+ex) 71 = fa(l —e)[l — F(e)] = fz(1 —e)? (25)
by using (7a). Consequently(1, 1) = f and finally
T, = 2%(1 —e)t. (26)

It may be noted that functionality does afféict throughe, and the previous result (20) is
recovered wherf = 3.
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A simple polyurethane case

Consider a polyurethane produced by reaction between bifunctioral(dize OH group
at each end of the molecule) and triisocyanates (three NCO groupsetiiedy to create
links by reacting with with diol OH groups). Letp andn; denote the molar fractions of
diols and triisocyanates in the mixture, withy + n; = 1. The ratior = [NCOJ/[OH] =
(3nr)/(2np) identifies the proportions of functional groups in the mixture and 1 will
be assumed here, which means that there will never be an excess of WQ&¥g Let =
denote the fraction of reacted NCO groups; the fraction of reacted Olipgiis, therefore,
equal torz, with a fraction ofl — » OH groups left unreacted when all NCO groups have
reacted £ = 1), since each reaction consumes one group of each type. If, here egaal
reactivities are assumed, which excludes that the last NCO group is tetiveeafter two
groups of an isocyanate molecule have reacted, for instance, the igisalisheretofore
can be adapted readily.

The polynomials that gather the probabilities that a triisocyanate unit seléctatiam
from the mixture has 0, 1, 2, or 3 reacted groups and for a randomlygdaikéto have 0,
1, or 2 reacted groups are

For(z)=(1—-xz+z2)3 and  Fyp(z) = (1 —rz +rzz)? (27)

by adapting (2) to probabilities = = andp = rz, respectively. The polynomials that
describe the probabilities to have more than one reacted group in a triigoeyardiol unit
are

Fr(z) =1 —z+x2)>? and Fp(z)=1—-rz+rxz (28)

respectively, by adapting (3). The condition for extinction is obtained bing that the
possible additional links of a triisocyanate that has already reacted odcéne possible
second link of an already reacted diol have finite continuations:

er=(1—2)2+2(1—x2)zep + 22} and ep=1—rx+rxes (29)

where the occurrence afp in the first expression and af; in the second owes to the
fact that the descendants of a triisocyanate reacted group are tlemdasts of the linked
diol, and vice versa. This renders the alternation between isocyanatdi@nghits in
polyurethane. These two equations can also be written more concisely as

er :F](ED) and ep :FD(EI) (30)

and their solutions between 0 and 1 (excluding the triwiak ep = 1 solution) are

1)\? 2 1
6[:<1—2> and eDzl———|-73. (31)
Tr xr rr
The gel conditiore;(z) = ep(z) = 1 is therefore obtained when reaction has proceeded
up to
1
Var

2In the study of a mixture with an excess of NCO groupsan be defined d©H]/[NCQ] in order to keep
x, still defined as the fraction of reacted majority groups, anth the same ranges.

(32)

Ig:
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As a consequence, a gel is obtained for complete reactioa () if the mixture is such
thatl/2 < r < 1.

More generally, iff-functional molecules are reacted wittiunctional molecules, with
f > 2andg > 2, the mixture is described by the= (f nr)/(g ny) ratio and the extinction
probabilities are given by

€f = (1 —.’L‘—i-xeg)f_l and eg = (1 —7“$+7“xef)9_1 (33)
which can also be rewritten, by developing the terms in parentheses,

f—1
ele—l—ZC]J?,l(eg—l)kxk and —1—1-2 Li(ep =) (rz)t (34)
k=1

which are also equivalent to

—1
Z}yl D1k and U =30 (e — 1) ra)! (35)

leading to

—11:+ZC'f1 —1k1k]x

[ —1rx+§: lep = 1))t =1. (36)

The gel conditiore; = e, = 1 is thus obtained whe:n takes the value

Tg = L (37)

Vr(f-1g-1)
which is a classical result (see [4] or [7], for instance), and (32%¢d¢evered iff = 3 and
g = 2. Therefore, a gel is obtained when reaction is complete if
> b (38)
T .
(f=Dlg—1)

If a triisocyanate molecule has no link with infinite continuation, it belongs to the so
phase and this occurs with a probabilityi&f; (e p), by adapting (10) to the triisocyanate-
diol alternation, and similarly for a diol molecule with a probabilityf, (e;). These two
number fractions can be used to compute the mass fraetioof sol phase, by weighting
with the mass fractions of isocyanate and diol in the system

Ming Mpnp

my = and mp = 39
"= Mn; + Mpnp D= Mg + Mpnp (39)

whereM; and M denote the molar masses of the two components, hence

ms = For(ep) mr + Fop(er) mp (40)
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and, therefore,

1\? 2 1\?
my-(&+2>nu+G—+3>nm (41)
T X T

which does given, = 1 at the gel point{ = 1/1/2r). At the end of reactiona( =
1), ms is not equal to the initial excess mass fraction of dib r)mp if » < 1: for
non stoichiometric conditions, the gel at the end of reaction coexists withghask that
contains molecules where isocyanates and diols are linked.

Once the gel is formed, the various number fractions of interest ara givéhe coeffi-
cients of

For(z) =1 — x4+ zep + x(1 — ep)z]?
and Fop(z) = [1 — ra +rzer +ra(l —ep)2]? (42)

by adapting (17) to triisocyanate and diols, respectively, still keeping in mhiaidan iso-

cyanate extends toward a diol, and vice versa. Of course, the ablofractons are ob-
tained as the constant terms in (42);(0) = Fos(ep) and Fyp(0) = Fyp(er), and the

number of moles of triple nodes in the gel phase, which are tri-reactechisatgs, is read-
ily obtained from the coefficient of® in Fy;(2):

1

3
n:x3(1—ep)3n1: <2—2> nr. (43)
rx

The3n/2 moles of elastically active chains in the mixture, which has a mass densityd
to the following number of moles of elastically active chains per unit volume:

3 pn 3pr 1\?
ve=" = 23— — ) . (44)
2Mmn;+ Mpnp 2rM; + 3Mp rx?

The molar fraction of the elastically active network, including both chainsramuts, is
deduced readily from the coefficients of andz> in (42), respectively:

mq = [3(1 — 2z 4+ zep)z®(1 —ep)? + 2°(1 — ep)®|ms + r22*(1 —er)*mp  (45)

1\? 1
me=|(2—— —1—1—1 mr+ —mp| . (46)
ra? ra? x2

Finally, the mass fraction of dangling chains, excluding the isocyanate ueytstém from,
which belong to active chains, is given by théerms in (42):

or, equivalently

mg = 3(1 — x + wep)*x(1 — ep)my + 2(1 — ra + raeer)re(l — ef)mp 47)

which, from (31), gives

1 1\? 2 2 1
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and it can be checked thai; + m, + mq = 1 does apply.

The entanglement factor can also be obtained, since the total length ofadlpstotive
chains per mole of mixture adds up the contributions of the three arms of keatically ac-
tive triple node, the two arms of intermediate triisocyanates along elasticallg attains,
and the diols in the latter chains. Therefore, the same constitutive elementfa3 are
obtained and give

Mr,z) = 3123(1 —ep)®ns +67(1 — 2 +zep)x(1 —ep)®ny +r22%(1 — er)*np (49)

by taking a diol as unit length, assuming that all diols have the same lengtteantingr
the length of a triisocyanate arm (assumed all equal) with this unit. Replagciagdep in
the above expressions, and using= 2r/(2r + 3) etnp = 3/(2r + 3), which are readily
obtained, (49) is recast as

3 1\?27r+1
Alre) = 25 <2‘ xz> 2 +3 (50)

hence the entanglement factor:

[ A(r, @) 2_ 1 1\* 5 2
Te‘[m,l)] ‘x4<2‘m2> <2r+3) &L

which does not depend on the relative lengtbf triisocyanate arms compared to diols.
This is not surprising: be it in the imperfect or perfect network, an ela$tiactive chain
is a repeated sequence of one isocyanate arm followed by one diol éollbw one iso-
cyanate arm, and this defines another unit length (equzi te 1 times the previous one)
that vanishes when the ratio of the total lengths in the imperfect and pedbgbrks is
performed. Consequently, the lengths of isocyanate arms and diolstareavant in the
T, factor. In the examples considered belevis used nevertheless as a temporary and con-
venient variable in the intermediatecomputation. In stoichiometric conditions & 1),
T. andn have similar magnitudes during gel growth, which is similar to the result obtained
in the simple homopolymer case of the previous Section, since (51) andréd@yaivalent
to (20) and (16) where is replaced by:? , which modifies the shapes of the curves in
Figure 6 marginally, with now: betweeny/2 and 1. Moreover, off stoichiometry but at full
conversion £ = 1), Figure 7 shows similar trends farandT,. Consequently, the same
conclusions as in the previous Section are obtained as far as the infudmpE@rameters
ande are concerned.

The entanglement factor can also be calculated in the general case-siiabads -
functional units reacting witlg-functional units, withf andg larger than 2. For the total
length of elastically active chains, one gets

Ap(r,x) = fo(l —eg)[l — Fy(eg)lns = fo(l —eg)(1 —ef)ny
and Xy (r,z) = Tgra(l —ey)[l — Fy(er)ng = rgra(l —es)(1 —eg)ng (52)

as the contributions of-functional andg-functional units, respectively (note that re-
placest for the latter), using an arm gf-functional molecule as unit length, withdenot-
ing the length of an arm gf-functional molecule. Therefore,

T+1

Ay x) = Ap(r,x) + Ag(r,x) = fgra(l —ey)(1 — €f>gr 7

(53)



Statistical Theory of Polymer Network Formation 15

/
0.8+ 7 .
7
. 7
2
/4
T //
() .
~ 0.6 e. // ]
T g .
© //
= n/ni //
S~
c 04f , .
7 Te
s
s
e
0.2} - ]
7
7
7
7
. ~
.’ _ - -
—-‘—‘ — - | | | I | |

0 1
05 055 06 065 07 075 08 08 09 09 1

Figure 7. Fractiom/n; of triisocyanates that are nodes of the active network (unbroken
line) and entanglement factd@t (broken line), for full conversion with an excess of OH,
when composition of the triisocyanate-diol mixture evolves. The entanglefaent 7, is

also shown (dotted line) for the diisocyanate-triol mixture that is considated

usingny = gr/(gr + f) andng, = f/(gr + f), which yield fromn; + n, = 1 and
r = (fny)/(gng). Consequently)(1,1) = fg(t+1)/(¢ + f) and

2
> With f>3 g>3 r=2" <1 (54)
g

g

g+ /f
gr+f
which does not depend on as expected. This expression simplifies slightly when one type

of units is bifunctional. Assume for instance tt@;at:~ 2: the contribution of bifunctional
molecules is directly given by the coefficientofin Fp,(z), thatis

T, = T2a:2(1 — 69)2(1 - ef)2 (

Ay = 77222 (1 —ep)?ng = 7(1 — e)?ny (55)
usinge, = 1 — vz + rxey, as given by (29). Therefore,

oTf +2
2r + f

usingny = 2r/(2r+f) andny = f/(2r+f). Consequently\(1,1) = 2f(7f+2)/(2+f)
and

A, x) = Ap(r,z) + Ag(r,x) = 2f(1 — eg) (56)

2+ 1\ Ing
=(1—e,)* > =2 <
Te = (1—eg) <2r+f) with f>3 and r on, = 1 (57)
which recovers (51) fof = 3. Finally, (57) can also be obtained directly from (54) by
changingg into 2 and using1 — e;) = rz(1 — ey) that yields from (34). It should be
noted, however, that these operations do not change (53) into (B&use a bifunctional
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molecule is not star-shaped, actually. Consider now that2, the bifunctional molecules
are minority, which leads now to

g+2
gr + 2

2
2

> with ¢>3 and r= -4 <1 (58)
gng

T. =71*(1—ep)* <

which can also be deduced from (54) by changfrigto 2 and usind1 —es) = z(1 —¢ey).
Thus, having either majority or minority bifunctional units leads to differetaeglement
factors and, consequently, network properties.

A more general polyurethane case

In order to illustrate the possibilities of the theory further, consider now a&momplex
system with a distribution of functionalities: tri-, bi-, and monofunctional isoates, as
well as bi- and monofunctional diols. Let;s, ¢52, andyy; denote the fractions of each
isocyanate typey ps andpp the fractions of diols, withprs + @72 + w1 = 1 andepps +

pp1 = 1. Letagaim; andnp denote the molar fractions of isocyanates and diols, whatever
their types, witm;+np = 1, and assume equal reactivities. The ratio between the numbers
of NCO and OH groups in the mixture, that is again supposed not to ex¢eeul that is

also the ratio of the number of NCO and OH groups that have reacted, islgive

f] nr
== 59
Fonn (59)

using the average functionalitigs = 3 @73 + 22 + @ andf, = 2ps + ¢p1. The
probability that an isocyanate unit selected at random from the mixture teasted groups
combines the probabilities to get each type of isocyanates and thereforedeffieient of
2* in the following polynomial:

For(2) = pr3(1 — 2 4+ 22)® + (1 — 2 — 22)* + o1 (1 — x4 x2) (60)
and similarly for a diol selected at random:
Fop(2) = ppa(1 —rz +rzz)? + opi(1 — raz + raz) . (61)

Computing the probabilities for an isocyanate or a diol to have reacted mareriica must
owe to the fact that, for instance, a randomly picked NCO group has alpitip 303/ f;

to belong to a trifunctional isocyanate. Similarly, it has a probaliiity, / f; to belong to a
bifunctional isocyanate, and a probability; f; to belong to a monofunctional isocyanate.
Therefore, the probabilities for a unit to have established more than onarkngiven by
the following polynomials:

1

Fi(z) = ?—[3@3(1 —x+ :m)2 +2012(1 — x + x2) + @] (62)
I

and

Fp(z) = ;[Q@Dg(l —rz+rxz) + ¢pi] (63)
fp
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for isocyanates and diols, respectively. More generally,) deduces fronfy(z) as

_Ry(2)
Fy(1)

F(z) (64)
whereFjj(z) is the derivative off(z). This concise relation is a further interest of using
probability distribution functions to describe network formation, and it cacheeked that
(62) and (63) are recovered, as well as (3) and (28).

The probabilities of extinctiore; andep are given by the coupled equations =
Fr(ep) andep = Fp(eg), since it suffices to express that the additional links of a unit that
has already reacted once have finite continuations, with an alternationcyaistie and
diol. Therefore,

1
er = 7—[3@13(1—x+xe[))2+24p12(1—a:+:ceD)+g011] (65)
I

and .
ep = ?—[2<,0D2(1—rw+m:e[)—|—<ppl]. (66)
D
The special role played by monofunctional molecules may be noted: theyibeae to
the extinction probability with their share in the average functionality, since ¢theynot
establish new links after they have reacted once. These two equatiensgiediately

er—1 3przi(ep — 1) + 63z + 20107 and 2 1 2pporx

= _ = = (67)
ep — 1 f[ er—1 fD
hence
23 fif 1 frp 1—
ep=1-2 9013+<PI2+ fi1fp o oand e =1- [ 22 (68)
3 3T 6prspparT 20p2 razx

If there is no monofunctional unit; = » = 1 leads toep = e; = 0: a perfect network
is obtained, since no link has finite continuation. In contrast, if monofunctiomiéd are
present, they are dangling chains in the network, which is not perfecuglththe reaction
is complete in stoichiometric conditions, and the extinction probability is not zero.
The fraction of reacted NCO groups at the gel point, obtainedfoe ¢; = 1 to have

infinite chains, is
) —
T, = = fIfD (69)
4r (313 + ¢12) PD2
and therefore a gel is obtained when reaction is complete if

fifp
4313 + w12) ©D2

r > (70)

For instance, ifp;3 = ¢ = 1/2 andpps = 1 (thenp;; = ¢p1 = 0), i.e., for an equal
mixture of bi- and trifunctional isocyanates plus bifunctional diols only, lagyebtained at

the end of reaction if > 5/8 = 0.625. Thus, distributed functionalities shift the gel point,
which is 0.5 without bifunctional isocyanates as shown in the previous Section, tothighe
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values. This is due to rapidly saturated units, because of their small fualitypcoming
into play and slowing down the network formation.

Since probabilities p, and1 —ep merely have to be given to links with finite and infinite
continuations, respectively, the fractions of the various types of is@atgainits when a gel
has formed (active network nodes, elastically active chains, danglaigs;hsol fraction)
are given by the coefficients of the following polynomial:

fof(z) =3[l —z+xep + (1 — eD)z]3 +er[l —x+zep +x(1 — eD)z}2+

+en[l —x+zep+x(1—ep)z] (71)
and for diols, similarly:
ﬁop(z) = gpo[l —rx+rrer+rz(l— 6[)2]2 +epi[l —re+rzer+rz(l—er)z]. (72)
For instance, the total mass fraction of sol is

1
me = 7 [ngl(l —rz +rzer)npMp1 + ppa(1 — rz + rzer)*np Mpa+
+ 9011(1 —x+ aﬁeD)TL[M]l + @[2(1 —x+ $€D)2n1M[2+

+<,D[3(1 —x+ .I(BD)SHIMK),] (73)

using the molar mass of each component and the average molar mass of the mixtur

M =np(¢p1Mp1 + ¢p2Mp2) + nr(en M + eraMr + @r3Mi3) . (74)

The number of moles of trifunctional isocyanate units that have formed trqulesiin the
gelis _
n:gofgzc?’(l—ep)gn]: ng(l—ep)?’ (75)
rfp+fr
sincen; =rfp/(rfp+f;) andnp = f;/(rfp+ f;), and therefore the number of moles
of elastically active chains per unit volume is

P T?D ?ITD 1 )
1Y MrTnt ], ( PI3 + P12 Lo 172 (76)

The total length of elastically active chains, which generalizes (49), ismalatdoy adding
up the contributions of the three arms stemming from the network nodes, thertvgmé
tri- and bifunctional isocyanates along elastically active chains, and theidithe latter
chains:

Ar,z) = 37'.563(1 — eD)3cp13 nr+67(1 —x+ xeD)x2(1 — eD)Qcpjg nr+
+ 27'3:2(1 — eD)2<p12 ny -+ 7"2302(1 — ej)Qgppg np (77)

using the same unit length as in the previous Section. This expression camgidied
with (68):
- =2
2 1
4¢p2 rfp+ fr
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The reference length is then, using (68) again:

- 2 - = 2
A1) = J1p <23“‘”3+‘P12 _ _Jifp > 2l (79)
dpp2 \3  ¥13 60rsep2) fp+ f1
andT, is obtained by squaring the ratio of these two quantities:
ot 6 !
T.=(1—ep) ( DR ) ( LEELS L B— ) (80)
rfp+ /1 dppa(3prs +wr2) — fpfr

which does not depend an The last term disappears afigh = 2 when there is no mono-
functional component: this generalizes (57) where the average fualitjoof isocyanates
£ replaces the integer functionaligy

Thus, the expressions are more involved in the case of distributed fualtiiesy but of
course the results of the previous Section are recovered when ppo, = 1 and therefore

wr2=¢n =¢p1 =0.

Concise procedure

As could be observed, the statistical theory of network formation carmo¢diuced to a
small set of general formulae, for they differ in each case consid&mgirical adaptation
of known results to new conditions, even close apparently, is risky amddhe avoided.
Nevertheless, the procedure to follow can be adapted in a very systematiemsince it
proceeds in 6 steps:

1. Write, for each chemical species, the polynomial that uses as cagfitie proba-
bilities to have the various numbers of reacted groups.

2. Deduce, by taking and normalizing the derivative, the polynomial tlest as coeffi-
cients the probabilities, for each chemical species, to have addition&degroups
after a first group has reacted.

3. Use this polynomial to compute the probability that a reacted group leadsritea fi
branch, for each chemical species.

4. Deduce the gel condition by writing that these probabilities reach the triéittee of
1, below which infinite chains are allowed.

5. Rewrite the initial polynomial for each chemical species, replacing the duwaniy
able z by the expression + (1 — e)z that uses the probability of extinction of the
other chemical species.

6. Deduce the fractions of interest in the mixture while reaction proceetifrastion,
active nodes, elastically active chains, dangling chains, trapped ézags, etc.

In the present exposition, notations differ slightly from those employed ilitdrature,
where several dummy variablesare introduced simultaneously, or where the coefficient
of z* is defined from the:-th derivative of the polynomial, for instance, which did not
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seem necessary here. Moreover, the gel condition has been irgtbchare simply than
by using additional polynomials or computing a determinant, as is frequently siooe
[8]. Despite these changes, the results are the same as in the literatunstdoce (14)
corresponds to (3.33) in [7] and (38) to (3.86), using the recipragfatition of . Similarly,
(68) corresponds to (67) of [5] in thep, = 0 case, using the reciprocal definitioniofoo,
(69) corresponds to (64), (73) to (68) and (76) to (74). Thesdtseare also recovered in
page 314 of [4] but by reversing the roles of isocyanates and diotsagus the appendix
of [6].

Examples of straightforward application of the procedure

The 6-step procedure of the previous Section is applied below to three adth various
complexities, in a straightforward manner which assumes that the abovg treobeen
studied.

Polyurethane considered in [6]

The mixture is composed of triols with either 3 or 2 functional groups, anchbifonal
diisocyanatel Therefore, withr = 2n;/((¢ + 2)nr), usingy for o3 for brevity and
consequently, = 1 — ¢, step 1 gives

For(z) = (1 —z+z2)? For(z) = o(1 —rz+rz2)® + (1 — p)(1 —rz+rzz)? (81)

hence (step2)

=1l—-z+zxz
For(1)
Fp(s) = FéT(z) _ 3p(1 —rz +7r22)? +2(1 — ) (1 — ro + roz) (82)
Forp(1) p+2
leading toe; = Fy(er) ander = Fr(er), which give (step 3)
22 1 2 1-—
e R N s and  ep—1- - 83)
3 rx 3priz3 T

1 2
Y I e iy (84)
2r2¢+1

2

Moreover (step 5),

1?’01(2) = F()](eT + (1 — €T)Z) = [1 — T +xer + l’(l — eT)z] and
For(z) = For(er + (1 — e1)2) = @[l — ra + rae; + ra(l — ef)2]*+

+ (1 — )1 —rz+rzer +rz(l —er)z]* (85)

3Fractions of additional monofunctional components are also considefé], but are not supplied; they
are ignored here.
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give, for instance (step 6)

n=er3z3(1 —e;)’ny (86)
and
1 2
ms = ﬁ[(l — )1 —rz+reer)*nrMro+
+o(1l—rx+ rxe[)?’nTMTg +(1—2x+ JUGT)QTLIMI} (87)
with

M = nT[(l — (,D)MTQ + (pMT3] +nrM;y. (88)
One also ha¥, = [\(r, z)/A(1, 1)]? with

A, z) = 3r323(1 — ep)3pny + 6(1 — rx + raep)r?z?(1 — ef)2pnp+
+2r22%(1 — e1)?(1 — @)ny + 722(1 — e7)?n;  (89)

by counting the constitutive elements of elastically active chains. The armislefare as-
sumed to all have the same length, taken as unityaehotes the length of a diisocyanate.
Usingny = 2/[(p+2)r+2] andn; = (p+2)r/[(p+2)r+2], deduced from the definition
of r and fromnp + n; = 1, this expression simplifies into

Ar,z) = (1 —61)2(()0:_02—;702_’_27“(7'—&-2) (90)
giving, finally
_ pt4 1°
Te = 7‘2(1 - 6[)4 |:(QO—|-2)7"+2:| (91)

which does not depend on It may be noted that this result can also be obtained by
replacing the integer functionalityin (58) by the average functionality + 2.

These results do recover those given in the appendix of [6] when mockidnal units
are ignored, with the reciprocal definition for Similarities may also be noted with the
results given above in the last polyurethane case studied above, whesfumctional
molecules are ignored: the gel condition, for instance, or the numbetioé aodes. For
the latter;-x replacest, in addition to the roles of alcohols and isocyanates being reversed,
what could be missed in an empirical adaptation to the present chemical system.

In the special case where all triols are trifunctional-£ 1), there is also a similitude
with the first, simple, polyurethane case considered above, by revéngimgles of the two
components since the majority component is trifunctional now. For instareentangle-
ment factor (91) becomes

1 1\*/ 5 \?
T, = 2 - — 92
r2zd < m?2) <37“ + 2) (92)

instead of (51). As shown in Figure 7, is larger than with reversed functionalities, which
allows more significant changes of tG&r) function by tuning parametefsande in (19).
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Tetrafunctional monomer

Up to this point, functionalities lower than 4 were considered, but it is integegtinbserve
the qualitative changes that are induced by a functionality of 4. In this ®ethie simple
case of the condensation of a 4-functional monomer is considered. oRgertence, a
star-shape with all arms of the same length is assumed. The procedur&aeiargstep 1)

Fo(2)

R =(1—-z+zz)® (93)

Fy(z) = (1 -z +22)* hence (step2) F(z)=

and (step 3) conditioma = F'(e) leads, after simplification by — e, to a second degree
equation with respect tb— e (note that it is often simpler to compute- e thane):

23(1—e)? —32°(1—e)+32—-1=0 (94)

where a single root ensures tlat= 0 whenz = 1 (perfect network, all chains are infinite
and extinction probability is zero):

3x — \/x(4 — 3x) (95)

272

l—e=

which does lead to the expected gel condition (11) where = 0, i.e.,z, = 1/3 (step 4).
Finally (step 5),

Fo(z) = Fole+ (1—e)2) =[1 — (1 —e)z + (1 — e)x2]* (96)

leads immediately (step 6) to the sol fractienthe fractions of monomers involved in
dangling chaingl and of elastically active chains(uncounting nodes):

s=[1-(1—-e) ]! d=4[1-(1-e)zPAl—e)z a=6[1—(1-e)z]*(1—e)%2® (97)

and, eventually, the fractions of monomers that are active nodes ofttilverkewith either
3 or 4 reacted groups, are given by:

n3 = 4[1 — (1 —e)z](1 — e)3z3 and  ny = (1—e)izt. (98)

Therefore, the total fraction of monomers that are active nodes, améteeage function-
ality are given by

n=nz+ng=[4-31-ex](l—e)3z>

3ns + 4ny _43—2<1—6)£L'

and f = 4-3(1—e)z’

(99)

Figure 8 shows that this average functionality, which of course is 4 farieqt network
(x = 1), takes its lowest possible value of 3 at the gel point(1/3) and varies nonlinearly
when reaction proceeds.

The respective weights of the two terms in the expression (19) of the simulus
are interesting to discuss. Whérvaries from 0 to 1, the first term evolves frofyn /2,
the number of elastically active chains (since each one connects two, andgsn chains
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Figure 8. Variation of the average functionality of active nodes duringdensation of
tetrafunctional monomers.
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Figure 9. Variations of the fraction of monomers that are active nodds¢ken line),
of the two limit values of the first term in the expression of the shear moduhokdh
lines), and of the entanglement factor (dotted line), while condensatiorrafuectional
monomers proceeds.
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stem from the latter) t9f,,/2 — 1)n, the value given by the phantom network theory [13].
The entanglement factor is obtained easily from the total length of elasticélhe abains,
which can be written as follows by using the length of a monomer arm as unit:

Mz) =4ng +3n3+2a=4(1—¢€)x (100)

thusA(1) = 4 and
T, =2%(1—e)! (101)

in concordance with (26). Figure 9 shows the variations of the two patteeafhear mod-
ulus, including the two limit cases for the first one. For comparison, theti@argof the

fraction of monomers that are active nodes is also shown. It can bevedghat the term
from the affine theory retains part of the downward concavity of thiatrans of the number
of active nodes, which was absent in the cases studied up to this point witiofalities

below 4. In contrast, the term from the phantom network theory exhibitpaang con-

cavity. Its values are close to half the values for the affine theory, beegilg one half for

perfect networks only (which is expected for tetrafunctional nod#s)values are found
close to the entanglement factor.

Polyurethane considered in [15]

The system is composed of bifunctional diols and a mixture of tri- and quadyésates.
With » = (4 — ¢)n;/(2np), wherep = ¢ for conciseness and therefapg, = 1 — ¢,
step 1 leads to:

For(z) = (1—p)(l—z+z2) 4+ p(1 —z+x2)3 Fop(z) = (1 —rxz+rxz)? (102)
thus (step 2)

CFj(2) A1 - o)1 -z +22)3 + 3p(1 — z + x2)?

1= B 4—y

—=—=1—rx+rzxz. (103)

Hencee; = Fi(ep) andep = Fp(er), which give readily (step 3)

3(4—-3 — VA 1-—
( p)re and er=1-— 22
8(1 — ¢)ra? rT

ep=1-— (104)

since a single root of the second degree equation to solve ersyres; = 0if z =7 =1
(no finite chain in the perfect network), with

A= (4—p)r[16(1 — ) —3(4 - 5p)rz?]. (105)

The gel point yields, wheap = ey = 1 (step 4):

2y = e ?. (106)
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Next (step 5),

For(2) = For(ep + (1 — ep)z) =
=(1-p[l—z+zep+z(l—ep)z]* + [l —x+zep + (1 —ep)Z]
and  Fyp(z) = Fop(er + (1 —ep)z) = [1 — ra + raer + ra(1 — ef)2]®>  (107)

3

give, for instance (step 6),
n=[4(1-p)1—z+zep)a’(1—ep)’ +pa*(1—ep)’+(1—p)z*(1—ep)'Ins (108)

since active nodes are formed by triisocyanates and quadriisocyaaatethe latter may
have either 3 (first? term in Fy;(2)) or 4 (singlez* term in Fy;(z)) reacted NCO groups.
This expression can also be recast as

n=(1-ep)z34—30—301—-¢)(1—-ep)xlns. (109)

The sol fraction is given by

Mg = [(1 —rr+ m:ej)QnDMD—I—

=l =

+(1 — (p)(l -+ xeD)4n1M14 + (,0(1 —x + $€D)3nIM[3] (110)
with o
M =npMp + (1 — o)nyMrs + oniMps. (111)

All these results agree with appendix 2 of [5] in the= 1 case.
_ The entanglement factaf. = [A(r,z)/A(1,1)]* can be deduced from the terms of
For(z) andFyp(z) wherez is raised to at least 2, which gives

Ar,z) =47(1 — p) X
x [22(1 —ep)* +3(1 — x +zep)x(l —ep) + 3(1 —  + zep)?|z?(1 — ep)*nr+
+ 37 p[x(1 —ep) 4+ 2(1 — z + zep)]z®(1 — ep)?ny + r?2%(1 — e;)’np  (112)
assuming that all arms of isocyanate units have the same length, which is@fracf the

length of a diol. Usingr; = 2r/(2r +4 — ¢) andnp = (4 — ¢)/(2r +4 — ¢), which
yield from the definition of-, the previous equation reduces to

(1—ep)*(4—¢) (113)

with, consequently)(1,1) = (27 + 1)(4 — ¢)/(6 — ) and
n—(-f-¢ Y (1—ep) (114)
o\ 2r+4-— © b

which does not depend on Here again. is obtained from (57) if the average functional-
ity (f = 4 — ) replaces the integer functionality of the component that is not bifunctional.
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Whenz = 1 (reaction is complete) and = 0, i.e., there is no triisocyanate, therefore
all nodes are tetrafunctional amd= 2n;/np, the gel point is obtained far = 1/3 and
one has merely

ep=—=+4/——~ and n=(1-ep)*(1+3ep)ns (115)

with an entanglement factor given by

(1— eD)4
Te=9—F75 116
e (’I" + 2)2 ( )
which is a special case of (57) whgh= 4. Figure 10 illustrates the variations of the
number fraction of active nodes, with downward concavity for largalues, and of their
average functionality

nr 4 3 1+ 2ep
= —|4(1 — 12 1-— =4 .
fn n[ (1—ep)”+12ep(1 —ep)”] 15 3ep,

(117)

The above relations lead to the curves in Figure 11, where the two parte exgres-
sion of the shear modulus are shown, with two limit cases for the first ongelaas the
entanglement factor. Trends can be compared with those already fouhd previous
Section, where 4-functional units were also present, but now whemies. The approxi-
matel/2 ratio between the two variants for the first part of the shear modulus isveloke
but the downward concavity found far/n is significantly weakened by the product with
nr = 2r/(2r+1) andf,,. Moreover, the entanglement factor now differs significantly from
the other curves.

These results may also be compared with those given by the recursivaeapmf [2]
as summarized in appendix 2 of [3], for instance. The same definition isfasedand
P(FZ") corresponds tep. Actually, relations (70) and (78) of [3] do coincide with (104)
wheny = 0 andp = 1, respectively. Similarly, the numbers of active nodes obtained in
[2] agree with (109). In contrast, the entanglement factor in [3] misse&thef)/(2r +
f) squared term that was obtained in (57) from different molar fractionsoostituents
being involved in the perfect and imperfect networks off stoichiometris fitay be due to
different definitions of the reference network, and the two appraacheertheless lead to
the same results in stoichiometric conditions<{ 1).

Conclusion

An introduction has been given to the statistical theory of polymer networkdtion that
uses probability generating functions, starting from the few mathematicahnsatiat are
required and ending with a simple procedure that can be followed in maeyg oépractical
interest. It has been shown on several detailed examples of variousexitiep that, even
if the theory may seem complicated at first sight, its use is quite simple in many circum-
stances. Emphasis has been put here on connections with the theobpef alasticity,
with special attention devoted to the trapped entanglement factor, but pifieadions can
be considered, of course, by taking advantage of the various statfstidates of the gel
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Figure 10. Fractiom/n; of isocyanates that are active nodes of the network (unbroken
line) and average functionality of these nodes (broken line), whetioags complete, as
functions of the composition of a quadriisocyanate-diol mixture.
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Figure 11. Limits of the first term in the expression of the shear modulusdkabiines),
for h = 0 (upper curve) and = 1 (lower curve), for complete reaction, as functions of the
composition of a quadriisocyanate-diol mixture. The entanglement fagtigralso shown
(broken line).
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and sol phases that are obtained. The variation of the molecular weigfihtisn in the
latter with reaction extent, for instance, is of fundamental importance.

The present exposition is far from being exhaustive and has been limitedrtere
introduction. Examples have been given on stepwise polymerization of haymogrs
of various uniform functionalities, and on different polyurethane systeincluding dis-
tributed functionalities, but random crosslinking of linear polymer molecudssrot been
considered, for instance. This important process, of which vulcanizafioubber is an
example, has a close connection with complete condensation of (minorityutettiahal
and (majority) bifunctional units, as demonstrated by P.J. Flory [16]. Eqaativities have
also been assumed in this Chapter, whereas this may not apply to importemsythe
examples considered in [17] and [7], where two reactivities are camesldare interesting
in this respect. More importantly, cyclization has been neglected, althougimiolecular
reactions may play an important role in many cases. This phenomenon leadsewisat
more elaborate developments than what could be covered in this Chapteheareader
may refer to the work of R. Stepto ([18], for instance) and to the revieW.liyusSek [4] for
more details.
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