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Abstract. In turning, the applied forces have to be known as accurately as possible, especially
in the case of difficult-to-cut materials for aircraft workpieces finishing operations.
Traditionally, edge discretisation methodology based on local cutting laws is used to determine
the cutting forces and results are usually considered suitable. Nevertheless, only the rake face is
considered in most of studies and the cutting relations are determined by direct identification
with a straight edge.
This study deals with finishing operations of Inconel 718 alloy with one type of round insert. The
main objective is to formulate a novel cutting forces model, taking into account the clearance
face. First, a generic model based on a geometrical description using homogeneous matrix
transformation is presented. Then, cutting coefficients are identified by inverse identification
from experimental measurements distributed with an orthogonal design experiment including
tool wear.
Finally, modeling and experimental values of the cutting forces are compared and the identified
model is analysed.

Introduction

In the context of aircraft engine manufacturing, calculation of cutting forces enters a global
approach of simulation, which should ensure the workpiece performances.

Profiling operations with round inserts cannot be modeled by classical cutting forces mod-
els, due to the important variation of cutting conditions along the active cutting edge. Edge
discretisation principle is often used for modeling milling operations [1-5], but it can be also
applied to turning. Then, local cutting conditions - as the uncut chip thickness h - are taken
into account in the cutting relations used to calculate the local cutting forces.

Local forces can be expressed as tangential, radial and axial in relation with the tool axis
[1-2] or as normal and tangential to the rake face [3]. A local basis linked to the cutting edge
and the rake face is proposed by Bissey-Breton et al. [4]; it allows a physical explanation to the
local forces (normal pressure and tangent friction forces applied on the rake face) to be given.

However, in this latest case, only the rake face is considered since only roughing operations
are studied. Yücesan and Altintas [5] introduced a local basis linked to the clearance face and
took into account the flank forces.



Generally, orthogonal and/or oblique cutting operations are used to determine cutting re-
lations [2,4]; but the development of numerical simulations has induced progress in inverse
identification in order to determine local laws [6] or coefficients [7]. So, identifications from
complex cutting measurements become possible.

The aim of this study is to identify a cutting model by using only round inserts. Since
the uncut chip thickness varied along the active cutting edge, the discretisation principle has
been chosen. The methodology has consisted in: first, describing discretised cutting geometry
and then, calculating global forces by summation of local forces applied on each segment of
the discretisation. Coefficients of the local model have been identified by comparison between
measured and calculated global forces (inverse identification). The particularities of the model
used are that the clearance face and the scaling effect [3,8] are taken into account.

Geometrical modeling of turning operations with round inserts

The aim of this section is to describe cutting geometry in a coordinate system parallel to
the machine axis [9] (the considered machine is a rear turret lathe). Indeed, cutting forces are
experimentally measured in the machine axis reference and it is also the reference for primary
and feed motions, which are used for the calculation of working cutting angles [10-11].

In this study, coordinate systems, taking into account an origin, are preferred to classical
vector basis. The cutting edge is assumed to be circular with a radius rε.

Parameterisation and coordinate systems definition. Let ns be the number of segments
of the discretisation and M the current point on the cutting edge localized by its angular co-
ordinate θ. Then, the cutting edge is characterized by ns points M(θ) and 2 · ns coordinate
systems Rγ = (M(θ), a,nγ,gγ) and Rα = (M(θ), a,nα,gα), respectively linked to the rake face
Aγ and the clearance face Aα. The vector a is tangential to the edge and n is normal to the
considered surface [4]. Let O be the center of the circle.

Angles γTH and λTH (Fig. 1) define the positioning of the insert on the tool holder. These
angles are not normalised [10]; however, they are commonly used for inserts with negative basic
shape [12-13].

Angles γE
n and αE

n (Fig. 2) define the local cutting angles given by sintering or grinding;
these angles could be variable along the edge.

Fig. 1: Global coordinate systems: Fig. 2: Local coordinate systems:
Tool holder positioning and circular edge. Cutting angles of the insert.



Homogeneous matrix transformation. The use of homogeneous matrices allows describing
global and local cutting geometries and edge shape with the same model, avoiding a stand-
alone parametric representation [2,14]. The change of coordinate system matrix from R1 to R2

is denoted MR1/R2 .

Positioning of the insert on the tool holder (Fig. 1).

MRm/R′TH =


cos(−λTH) −sin(−λTH) 0 0
sin(−λTH) cos(−λTH) 0 0

0 0 1 0
0 0 0 1

 . (1)

MR′TH/RTH =


1 0 0 0
0 cos(γTH) −sin(γTH) 0
0 sin(γTH) cos(γTH) 0
0 0 0 1

 . (2)

Global shape of the cutting edge (Fig. 1).

MRTH/ROθ
(θ) =


cos(π

2
− θ) 0 sin(π

2
− θ) 0

0 1 0 0
−sin(π

2
− θ) 0 cos(π

2
− θ) 0

0 0 0 1

 . (3)

MROθ /R
M
θ

=


1 0 0 0
0 1 0 0
0 0 1 −rε
0 0 0 1

 . (4)

Local cutting geometry - may depend on θ (Fig. 2) -.

MRMθ /Rγ
=


1 0 0 0
0 cos(γEn ) −sin(γEn ) 0
0 sin(γEn ) cos(γEn ) 0
0 0 0 1

 . (5)

MRMθ /Rα
=


1 0 0 0
0 cos(−π

2
− αEn ) −sin(−π

2
− αEn ) 0

0 sin(−π
2
− αEn ) cos(−π

2
− αEn ) 0

0 0 0 1

 . (6)

Therefore, the matrix transformations fromRm toRγ andRα can be calculated as following:

MRm/Ri =MRm/R′TH MR′TH/RTH MRTH/ROθ
(θ) MROθ /R

M
θ
MRMθ /Ri

with i = α, γ. (7)

Coordinates of the current points and the local systems Ri (i = α, γ) in the machine-tool
system Rm can be determined:

M(θ) =


x(θ)
y(θ)
z(θ)

1


Rm

=MRm/Ri


0
0
0
1


Ri

. (8)



a(θ) =


xa(θ)
ya(θ)
za(θ)

0


Rm

=MRm/Ri


1
0
0
0


Ri

. (9)

ni(θ) =


xn(θ)
yn(θ)
zn(θ)

0


Rm

=MRm/Ri


0
1
0
0


Ri

. (10)

gi(θ) =


xg(θ)
yg(θ)
zg(θ)

0


Rm

=MRm/Ri


0
0
1
0


Ri

. (11)

Results of the geometrical modeling. According to the paragraph on matrix transforma-
tion, the cutting geometry is defined in the machine coordinate system, in which tool/workpiece
relative motions are given. So, the working cutting geometry - planes and angles of the tool-
in-use system [10] - can be known at each point M of the discretisation. Let vc,vf ,ve be
respectively the local cutting, feed and effective cutting speeds.

Planes of the tool-in-use system.

Pre⊥ve. (12)

Pfe = (vc,vf ). (13)

Pse = (ve, a). (14)

Pne = (nγ,gγ) = Pn. (15)

Angles of the tool-in-use system.

γne = (Aγ, Pre)Pn = (ve
⊥Pn ,nγ). (16)

αne = (Aα, Pse)Pn = (ve
⊥Pn ,gα). (17)

λse = (Pre, a)Pse = (ve, a)− π

2
. (18)

κre = (Pse, Pfe)Pre = (vf
⊥Pre , a⊥Pre). (19)

The notation vi
⊥Pj means the orthogonal projection of the vector vi on the plane Pj.

Let us consider two examples of configurations:

• Example (a): a RNGN09 round insert with a CRSN tool holder:
λTH = −6

◦
, γTH = −6

◦
, γEn = 0

◦
, αEn = 0

◦
.

• Example (b): a RCGX10-AL [12] insert with a SRDCN tool holder:

λTH = 0
◦
, γTH = 0

◦
, γEn = 20

◦
, αEn = 7

◦
.

The results obtained for these examples, in the case of cylindrical turning with f = 0.2 mm/tr
and ap = 1.5 mm, are presented on Fig. 3 and Fig. 4. Differences between global angles γTH ,
λTH and local angles γEn , αEn are clearly shown.



(a) (b)
Fig. 3: 3D representation in Rm: Rγ and Rα (colour shading) and ve (dotted-line).

(a) (b)
Fig. 4: Working cutting angles along the active cutting edge.

Since the working cutting geometry is known, it is possible to take it into account in the
cutting forces relations [4]. Another interest of this model is the possibility of evaluating the
moments easily.

Cutting model in the case of Inconel 718 cylindrical turning

The aim of this section is to build a local cutting model expressed in Rγ and Rα, which
allows calculating the global cutting forces Fc (or FY ), Ff (or FZ) and Fp (or FX) in Rm (in
which measurements are made). The study is limited to the cylindrical turning of Inconel 718
(Specified characteristics: Rm > 1275 MPa, Hardness 346-450 HB, Grain size 7-9 ASTM) in
finishing and semi-finishing conditions with only one type of insert (cutting geometry is fixed).

Fig. 5: The case study: cylindrical turning.

Experimental achievement. The insert used is a RCGX 09 0700F (rε = 4.7625 mm) in Seco
carbide grade CP200 (PVD coating (Ti, Al)N + TiN) assembled with a CRDCL 2025 P09-

AJ3M. This configuration gives the following values of parameters: λTH = 0
◦
, γTH = 0

◦
, γEn =

0
◦
, αEn = 7

◦
.



The tests have been conducted on a 2-axis lathe SOMAB T400. A piezo-electric dynamome-
ter Kistler type 9121 with a charge amplifier type 5019B were used to measure the cutting forces
- with an acquisition frequency of 1 kHz. Static calibration [11] is given in Table 1; the signal-
to-noise ratio is acceptable.

According to the Tool Material Pair methodology [4,15], the cutting speed has been fixed at
85 m/min. At this speed, the wear is extremely fast; for this reason, tests have been conducted
with a particular attention to the cutting time.

Variables. Only the uncut chip thickness h is considered as a variable in the model; it is
calculated numerically (Fig. 6) in the plane Pr which corresponds to the rake face and is close
to Pre. No projections [14] have been done.

Working cutting geometry will be introduced in the cutting relations in future work. There-
fore, in the present study, chip flow angle [16] is not taken into account (λse(θ) = 0

◦ ∀θ).
Due to the edge shape, the value of h depends on both the feed f and the depth of cut ap.

Table 2: Experimental parameters
and measurements.

Table 1: Static calibration
of the dynamometer.

Fp Ff Fc
Calibrated 0-3 0-3 0-6
range [kN]
Sensitivity -7.824 -7.736 -3.826

[pC/N]
Linearity 0.05 0.16 0.15

[< ± % FSO]
Cross Talk -0.7 2.2 -0.3

[%]

Parameters Measured forces
Test tc f ap Fc Ff Fp
nT [s] [mm/rv] [mm] [N] [N] [N]
1 10 0.1 0.1 90 20 163
2 20 0.1 0.85 397 174 513
3 30 0.15 0.55 430 156 515
4 40 0.15 0.7 455 158 523
5 50 0.1 0.4 237 76 352
6 60 0.15 0.25 215 50 306
7 10 0.2 0.85 619 212 637
8 20 0.2 0.1 119 20 190
9 30 0.25 0.7 603 178 613
10 40 0.2 0.55 428 132 517
11 50 0.25 0.25 261 55 337
12 60 0.25 0.4 373 91 443

(a) (b)
Fig. 6: f = 0.2 mm/tr and ap = 0.25 mm: (a) Cross section of undeformed chip;

(b) Uncut chip thickness along the active cutting edge.

An orthogonal design of experiment, including cutting time tc in addition to f and ap [1],
has been used (Table 2). So, the parameters f and ap are distributed independently of each
other, and there is no link between the variation of these parameters and the variation of wear.



Cutting model. The local cutting forces applied on a segment (Fig. 7) are assumed to follow
the equations (20) to (23).

The hypothesis of independence of the segments can be done, because of the size of the
insert and the shape of the rake face (a plane).

Fig. 7: Local linear forces (fγn , fγg , fαn , fαg )
and global cutting forces (Fc, Ff , Fp).

fγn = Kγ
n · h(θ) · [1 + e

−
(
h(θ)
h0

)m
]. (20)

fγg = Cγ
f · |f

γ
n |. (21)

fαn = kαn . (22)

fαg = Cα
f · |fαn |. (23)

At small uncut chip thickness (preponderant parameter), cutting forces are non-linear.
A size effect function based on a Weibull function, proposed by Ko and Cho [3], is prefered

to the classical Kienzle-Victor model [8,13].
In a first approximation, the normal force on the clearance face fαn is kept constant (Eq. (22)).
Tangential forces are calculated with Coulomb’s friction law (Eq. (21) and (23)).

It can be noticed that Eq. (20) integrates only three coefficients and not four [3] in order to
reduce the degrees of freedom of the model.

Inverse identification. Inverse identification consists in comparing calculated (by summa-
tion) global values with measured global values, in order to determine local coefficients.

In the present study, the 36 measured global forces (Table 2) are compared to the global
forces given by the integration (calculated for the same set of parameters (f and ap)).

In order to determine the best combination of the 6 coefficients (Kγ
n , h0, m, C

γ
f , k

α
n , C

α
f ),

a criterion should be chosen and minimized. For example, it could be the sum of squared devi-
ations or a weighted overall error [7]; absolute or relative errors could be considered.

The criterion W used in this study is the sum of the maxima of the relative deviations on
the whole tests for Fc and Fp (Eq. 24); Ff is neglected, so this criterion can be considered as
weighted.

W = max
nT

(∆FR
c ) + max

nT
(∆FR

p ). (24)



The identification gives the following values of the coefficients (incertitudes correspond to
numerical step):

Kγ
n = 2410 N/mm2 ± 10 (25)

h0 = 0.019 mm ± 0.001 (26)

m = 0.61 ± 0.01. (27)

Cγ
f = 0.48 ± 0.01. (28)

kαn = 148 N/mm ± 1. (29)

Cα
f = 0.52 ± 0.01. (30)

A comparison between modeled and measured cutting forces for the 12 tests is given in the
Table 3.

The average deviations are the following: 6.9 % for Fc, 4.8 % for Ff and 3.9 % for Fp.
For the two main components, the maximum relative deviation is close to 10%.

The chordal error is set arbitrarily equal to 1.10−5 mm for all the calculations; so, the length
of the segments is 19.4 µm.

Table 3: Absolute and relative deviations between the model and the measurements.
Absolute deviation Relative deviation

Test ∆FA
c ∆FA

f ∆FA
p ∆FR

c ∆FR
f ∆FR

p

nT [N] [N] [N] [%] [%] [%]
1 7 -2 14 7.4 -11.3 8.6
2 31 4 32 7.9 2.4 6.3
3 -45 -36 -44 -10.7 -22.9 -8.6
4 8 -0 14 1.7 -0.0 2.7
5 9 2 14 4.0 2.7 4.0
6 -0 0 -0 -0.1 0.3 -0.0
7 29 3 12 4.7 1.3 1.9
8 13 -1 10 10.7 -3.8 5.3
9 43 7 14 7.2 3.8 2.2
10 30 -2 -10 6.9 -1.7 -1.9
11 27 1 10 10.5 1.5 3.0
12 40 5 10 10.7 5.4 2.2

Analysis of the model and its results. The order of magnitude of the identified coefficient
h0 (Eq. 26) is the same as the one of the cutting edge radius rβ.

Cγ
f is smaller than Cα

f (Eq. 28 and 30), which can be explained by the higher temperature
on the rake face; however, the difference is weak.

Then, two cases are considered:

• Case (a): finishing conditions: f = 0.1 mm/rv; ap = 0.25 mm

• Case (b): semi-finishing conditions: f = 0.25 mm/rv; ap = 0.85 mm

The evolutions of local cutting forces along the cutting edge, for these cases, are presented
on Fig. 8. The evolution of local forces applied on the rake face fγn and fγg (Fig. 8) is near the
evolution of h (Fig. 6 (b)).



(a) (b)
Fig. 8: Local cutting forces along the active cutting edge.

In the first case, the sum of the forces applied on Aα is higher than that applied on Aγ,
whereas it is the opposite in the second case. Fig. 9 shows the contribution of each local
component on global forces.

(a) (b)
Fig. 9: Contribution of local forces to global calculated forces.

The identified coefficient Kγ
n (Eq. 25) is less than the order of magnitude of the specific

cutting force Kc (higher than 4000 N/mm2). It is due to the calculation of Kc which does not
consider the flank effects. The contribution of these effects to Fc could be higher than 50% (Fig.
9). It seems that the validity domain of the formula Fc = Kc ·AD is only roughing operations.

Concerning Ff and Fp, the major part comes from the contact between the workpiece and
the clearance face, which decreases in favor of the friction on Aγ when h increases.

Conclusion

In this paper, a geometrical model based on homogeneous matrix transformation is presented.
It is available for turning operations with round inserts and allows taking into account the flank
effects which are not negligible for these tools. This model will be generalized for other turning
operations, and even for other processes.

Even if the principle of independence of the segments is an assumption in the case of round
inserts, the proposed cutting model with 6 coefficients allows determining global cutting forces
with a low error in a large domain of feed and depth of cut.

The experimental approach is helpful to identify cutting laws in the case of fast wear. The
inverse identification does not permit to verify the form of the cutting model and the values
of the coefficients, contrary to orthogonal or oblique cutting tests. However, the macroscopic



results are satisfactory and a physical interpretation could be given at the identified coefficients.

Future work will introduce working geometry [4] and material parameters in cutting relations
when modeling profile turning. Then, other characteristics - as edge preparation - will be taken
into account.
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