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Abstract. In order to reduce the computation time of a quasi-static problem solved by the finite element
method, methods of model order reduction can be applied. In this context, two approaches, the Proper
Orthogonal Decomposition and the Proper Generalized Decomposition, are applied to the vector poten-
tial formulation used to solve the quasi-static problem. The developped methods are compared on an
academic example.

1 Introduction

In quasi-static problems, the distributions of the magnetic
and electric fields depend on time. By using a numerical
approach, the Maxwell equations are discretized simul-
taneously in the space and the time domains. To solve
this kind of problem, the finite element method is com-
monly used to approximate the distribution of the fields in
the space domain. The time domain can be discretised by
an implicit or explicit Euler scheme or any time-stepping
schemes. If the mesh of the space domain is fine and a
small time step is used, the computation time can be sig-
nificant. To tackle this issue, an alternative is to use model
order reduction methods. These approaches consist in ex-
panding the solution of the initial problem in a reduced
basis. In the litterature, several approaches have been de-
veloped, we can distinguish the a-priori and a-posteriori
methods. In this work, two methods of model order re-
duction are applied to solve quasi-static field problems.
The first method is the Proper Orthogonal Decomposition
(POD) approach which is an a-posteriori method [1]. It
consists in performing a projection onto the reduced basis
of the space domain. In the discrete domain, the Snapshot
approach is mainly used to determine the discrete projec-
tion operator [2]. In computational electromagnetics, the
POD method has been applied, for example, to study the
behavior of magnetic core with non linear static hysteresis
[3] or to solve an electroquasistatic field problem [4]. The
second approach presented is the Proper Generalized De-
composition (PGD) method which is an a-priori method.
This is based on the separated representation of the solu-
tion, as for example, in function of time and space [5][6][7].
In computational electromagnetics, the PGD method has
been applied to study a fuel cell polymeric membrane
model [8], the skin effect in a conducting domain [9][10]
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or a soft magnetic composite microstructure [11]. These
two methods of model order reduction are investigated to
solve a quasi-static problem using the vector potential for-
mulation. In a first part, the quasi-static problem and the
vector potential formulation are presented. In the second
part, the POD and PGD approaches are developped. Fi-
nally, a 3D academic example is studied with both meth-
ods. The results are compared with those obtained by a
more classical approach, fully discretised in the time and
space domains.

2 Maxwell’s equations and vector potential
formulation

Let us consider a domain D of boundary Γ (Γ = ΓB ∪ΓH

and ΓB ∩ ΓH = ∅). In D, a conducting domain Dc of
boundary Γc (Γc = ΓJind∪ΓE and ΓE ⊂ ΓB) is introduced
(Fig. 1).
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Fig. 1. Computational domain
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The quasi-static field problem can be represented by
Maxwell’s equations without the displacement current,

curlE(x, t) = −∂tB(x, t), (1)

curlH(x, t) = J ind(x, t) + Js(x, t), (2)

divB(x, t) = 0, (3)

div (J ind(x, t) + Js(x, t)) = 0 (4)

with B the magnetic flux density, H the magnetic field,
E the electric field, Js the known current density flowing
through the stranded inductors and J ind the eddy current
density in the conducting domain. To take into account
the material behavior, the constitutive relations between
the fields B and H and the fields J ind and E must be
considered. In the linear case, we have

B(x, t) = µ0µrH(x, t), (5)

J ind(x, t) = σE(x, t) (6)

with µ0 the magnetic permeability of the vacuum, µr the
relative permeability and σ the electric conductivity. To
impose the unicity of the solution, boundary conditions
must be added

H(x, t)× n = 0 on ΓH , (7)

B(x, t) · n = 0 on ΓB , (8)

E(x, t)× n = 0 on ΓE , (9)

J ind(x, t) · n = 0 on ΓJind (10)

with n the outward unit normal vector.
To solve the previous problem, the A∗ formulation can

be used. A magnetic vector potential A∗(x, t) is defined
in the whole domain by using (1) and (3)

B(x, t) = curlA∗(x, t) , E(x, t) = −∂tA∗(x, t)(11)

and A∗(x, t)× n = 0 on ΓB .

Combining the previous relations and the behavior laws
in (2), we obtain the vector potential formulation of the
problem which must be solved in D × [0, T ] with T the
length of the time interval. The weak form to be solved is
then written∫ T

0

∫
D

1

µ
curlA∗(x, t) · curlA′(x)

+σ∂tA∗(x, t) ·A′(x)dDdt

=

∫ T

0

∫
D

Js(x, t) ·A′(x)dDdt (12)

with A′(x) a test function defined on the same space
as A∗. In the 3D case, the potential A∗(x, t) is semi-
discretised in space by using the edge elements:

A∗(x, t) =

Ne∑
i=1

Ai(t)wai(x) (13)

with wai the edge shape function associated with the
i -th edge, Ai(t) a function of time and Ne the number

of edges. We denote by AD(t) the vector of components
(Ai(t))1≤i≤Ne . Then a system of coupled ordinary differ-
ential equations has to be solved

MAD(t) +N
dAD(t)

dt
= F (t) (14)

with Mi,j =

∫
D

1

µ
curlwai(x) · curlwaj(x)dD,

Ni,j =

∫
Dc

σwai(x) ·waj(x)dDc,

Fi(t) =

∫
D

Js(x, t) ·wai(x)dD.

Generally, to solve (14) in the time domain, an Euler
scheme is used. In the following, the known current density
Js in the stranded inductors is expressed by a separated
representation

Js(x, t) = N(x)i(t) (15)

with N(x) the source field and i(t) the evolution of the
current versus the time that is supposed to be known.

3 Model order reduction

The Proper Orthogonal Decomposition and the Proper
Generalized Decomposition methods are based on a sep-
arated representation of space and time functions of the
potential A∗(x, t)

A∗(x, t) ≈
M∑
n=1

Rn(x)Sn(t) (16)

with Rn(x) defined on D, Sn(t) defined on [0, T ] and M
the number of modes taken into account for the approxi-
mation of A∗(x, t). The aim of the POD and PGD meth-
ods is to find the ”best” separated representation with M
functions.

3.1 Proper Orthogonal Decomposition

With the POD method [1], we consider that the functions
Rn(x) are an orthogonal basis, that is∫

D

Ri(x) ·Rj(x)dD = 0 if i ̸= j. (17)

The functions Sn(t) can be expressed from the projection
of A∗(x, t) on the basis of functions Rn(x) such that

Sn(t) =

∫
D

A∗(x, t) ·Rn(x)dD. (18)

To determine the set of functions Rn(x), we aim at min-
imizing the quantity

∥A∗(x, t)−
M∑
n=1

Rn(x)Sn(t)∥2 (19)

= ∥A∗(x, t)−
M∑
n=1

(

∫
D

A∗(x, t) ·Rn(x)dD)Rn(x)∥2
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To determine a discrete representation of the functions
Rn(x), the Snapshot method can be used [2]. In a first
step, the system (14) is solved for the first M time steps

(called Snapshots). TheM vectors ofAi
D obtained at each

time step are gathered in a matrix AS of size Ne ×M . In
the discrete domain, (18) and (19) can be written

P = ASR, (20)

AS = PASr (21)

with ASr the matrix of the Snapshot in the reduced ba-
sis,R a matrix whose column i corresponds to the discrete
representation of the function Ri, P

t the discrete projec-
tion operator between the values of A∗ in the basis of
the Ne edge functions and the reduced basis. In order to
determine the expression of P , a Singular Value Decom-
position (SVD) is applied to the matrix of Snapshots such
that AS = V ΣW t with Σ the diagonal matrix of the
singular values, V and W the orthogonal matrices of the
left and right singular vectors. By combining (20), (21)
and the SVD of AS , we have

AS = V ΣW tRASr. (22)

By fixing R = W , since W is orthogonal WW t = I, the
previous equation can be simplified such that

AS = V ΣASr. (23)

By identification, the expression of P can be defined such
that P = V Σ. Another approach to obtain the expression
of P can be carried out by the calculation of the SVD
of the correlation matrix defined by At

SAS . The reduced
matrix system can be deduced by using the operator P in
(14) to obtain

M rAr(t) +N r
dAr(t)

dt
= F r(t) (24)

with M r = P tMP , N r = P tNP

and F r(t) = P tF (t).

The size of the matrices M r and N r and the vectors
F r and Ar depend on the number of Snapshots that is
generally much smaller than the number of edges of the
mesh. To obtain the solution on [0, T ], the reduced matrix
system is solved all time steps. For each time step, the
solution on the original mesh AD(t) can be retrieved from
the solution Ar(t) of the reduced model by

AD(t) = P tAr(t). (25)

3.2 Proper Generalized Decomposition

With the PGD approach, the weak formulation defined
by (12) is considered. To compute the functions Rn(x)
and Sn(t), an iterative enrichment method is used. The
couple (Rn(x), Sn(t)) is calculated regarding the previous
couples (Ri(x), Si(t)) with i ∈ [1, n− 1]. In this case, the
test function A′ can be written such that

A′(x, t) = R′
n(x)Sn(t) +Rn(x)S

′
n(t) (26)

with R′
n(x) and S′

n(t) the test functions defined in the
same spaces as Rn(x) and Sn(t) respectively. Each cou-
ple (Rn(x), Sn(t)) is calculated by solving iteratively two
equations determined from (12). First, we suppose that
Rn(x) is known. Then, the function R′

n(x) vanishes in
(26) and the test function A′ is equal to Rn(x)S

′
n(t).

Equation (12) is solved in order to determine the func-
tion Sn(t). This can be rewritten∫

D

1

µ
curlRn(x) · curlRn(x)dD

∫ T

0

Sn(t) · S′
n(t)dt

+

∫
D

σRn(x) ·Rn(x)dD

∫ T

0

∂tSn(t) · S′
n(t)dt

=

∫
D

N(x) ·Rn(x)dD

∫ T

0

i(t) · S′
n(t)dt

−
n−1∑
i=1

∫
D

1

µ
curlRi(x) · curlRn(x)dD

∫ T

0

Si(t) · S′
n(t)dt

−
n−1∑
i=1

∫
D

σRi(x) ·Rn(x)dD

∫ T

0

∂tSi(t) · S′
n(t)dt. (27)

One can note that the previous equation is a weak form
of the following Ordinary Differential Equation

ARSn(t) +BR
dSn(t)

dt
= CS(t) (28)

AR =

∫
D

1

µ
curlRn(x) · curlRn(x)dD

BR =

∫
D

σRn(x) ·Rn(x)dD

CS(t) = i(t)

∫
D

N(x) ·Rn(x)dD

−
n−1∑
i=1

Si(t)

∫
D

1

µ
curlRi(x) · curlRn(x)dD

−
n−1∑
i=1

dSi(t)

dt

∫
D

σRi(x) ·Rn(x)dD.

Secondly, we compute the function Rn(x) assuming that
Sn(t) is known. In this case, the function S′

n(t) vanishes
in (26) and the test function A′ is equal to R′

n(x)Sn(t).
To determine Rn(x), the relation (12) is solved with these
conditions. This corresponds to∫ T

0

Sn(t) · Sn(t)dt

∫
D

1

µ
curlRn(x) · curlR′

n(x)dD

+

∫ T

0

∂tSn(t) · Sn(t)dt

∫
D

σRn(x) ·R′
n(x)dD

=

∫ T

0

i(t) · Sn(t)dt

∫
D

N(x) ·R′
n(x)dD

−
n−1∑
i=1

∫ T

0

Si(t) · Sn(t)dt

∫
D

1

µ
curlRi(x) · curlR′

n(x)dD

−
n−1∑
i=1

∫ T

0

∂tSi(t) · Sn(t)

∫
D

σRi(x) ·R′
n(x)dDdt. (29)
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The equation is also a weak form of a Partial Derivative
Equation that can be written under the form

AS(
1

µ
Rn(x)) +BSσRn(x) = CR(x) (30)

AS =

∫ T

0

Sn(t) · Sn(t)dt

BS =

∫ T

0

∂tSn(t) · Sn(t)dt

CR(x) = N(x)

∫ T

0

i(t) · Sn(t)dt

−
n−1∑
i=1

curl(
1

µ
curlRi(x))

∫ T

0

Si(t) · Sn(t)dt

−
n−1∑
i=1

σRi(x)

∫ T

0

∂tSi(t) · Sn(t)dt.

The solution (Rn(x), Sn(t)) verifies the ODE (28) and the
PDE (30). This solution is obtained by an iterative proce-
dure. In our case, we assure that Sn(t)

0 = 1 on [0, T ], then
solving (30) we obtain Rn(x)

0. Solving (28) taking Rn(x)
= Rn(x)

0, we obtain Sn(t)
1 and then the equation (28) is

solved with Sn(t) = Sn(t)
1 and so on. This procedure is

stopped once the difference between two consecutive iter-
ates is sufficiently small. If we denote by (Rn(x)

j , Sn(t)
j)

and (Rn(x)
j−1, Sn(t)

j−1) the couples of functions deter-
mined at the iteration j and j − 1.

The convergence proof of the separated solution rep-
resentation methods has been given in [12]. Our problem
does not belong to this class of problem. However, even
though the proof is not given, our problem is similar to
other ones which have been solved with the PGD approach
and for which no convergence proof has been given [13]. In
term of solution, the ODE formulation (28) can be easily
solved by the Euler implicit scheme. The functions Sn(t)
and i(t) are discretised in each time step. The weak for-
mulation (29) is solved to determine the functions Rn(x),
for example, by using the finite element method. The func-
tions Rn(x) and N(x) are discretised in the edge shape
function space with the same boundary conditions as A∗
and in the facet shape function space respectively [14].

4 Application

As a 3D application example, a stranded inductor located
between two conducting plates is considered. Due to the
symmetries of the device, only one eighth of the system
has been modeled (Fig. 2). The inductor is supplied by
a sinusoidal current with a magnitude equal to 1A and a
frequency of 20kHz. The number of turns of the inductor
is equal to 100. The relative magnetic permeability of the
conducting plate is fixed to 1 and its electrical conductiv-
ity to 10kS/m. The 3D spatial mesh has 14970 nodes and
80199 tetrahedrons. The problem has been solved using
the POD and PGD approaches applied to the A∗ formu-
lation. In order to evaluate the efficiency of the proposed

models, the A∗ formulation has been solved using a time
stepping Finite Element Method. This approach will be
considered in the following as the reference.

Fig. 2. Example of application

In the following, we denote by MPOD, MPGD and
MREF the models obtained from the POD, PGD and clas-
sic approaches.

4.1 Influence of the number of modes on the global
values

The length of the time interval is fixed to 0.1ms with 60
time steps. In order to evaluate the influence of the number
of modes M on the global values, the evolutions of Joule
losses versus the time obtained from MPOD and MPGD
are compared with those computed from MREF in Fig. (3)
and (4) respectively. We can observe that the number of
modes influences the evolution of the Joule losses for both
methods. To estimate the convergence versus the number
of modes of these curves, an error estimator ϵ(Pj) is defined
such that

ϵ(Pj) =
∥Pjref − Pjest∥2

∥Pjref∥2
(31)

with Pjref and Pjest the vectors of Joule losses for all time
steps obtained from MREF and MPOD or MPGD. Fig-
ure (5) presents the evolution of ϵ(Pj) versus the number
of modes. The curves of error converge until zero. With
MPOD the convergence is faster than with the MPGD.
To obtain an error inferior to 0.1 percent, 5 modes are
required with the MPOD and 12 with the MPGD.

In the case of MPGD, the evolutions of the functions
Sn(t) in the time domain are determined. In figure (6), the
evolutions of the functions Sn(t) for the four first modes
are presented. A transient state can be observed on all
curves. This transient state can also be observed on the
evolution of the Joule Losses (Fig. (4)).
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4.2 Influence of the number of modes on the fields
distribution

As the vector potential is approximated by a sum of con-
tribution associated with each mode, it is possible to give
a distribution of the magnetic flux density and of the eddy

current density for each mode. For MPGD, the figures (7)
and (8) present the distribution of B on a section P pre-
sented in Fig. (2) for the first and the second mode. For
the POD approach, the figures (9) and (10) present the
distributions of B for the first and second mode.

Fig. 7. Distribution ofB(T ) for the first mode given by MPGD

Fig. 8. Distribution of B(T ) for the second mode given by
MPGD

Fig. 9. Distribution ofB(T ) for the first mode given by MPOD
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Fig. 10. Distribution of B(T ) for the second mode given by
MPOD

Since the reduced basis are differents, the distributions
of B obtained from MPOD and MPGD are not similar for
each mode. With MPGD, for the first mode, it seems that
the distribution does not take into account the effect of the
conducting plate. For the second mode, the distribution
is close to the reaction magnetic field distribution due to
the eddy current density. With MPOD, for the first mode,
the distribution takes into account the eddy current in a
conducting plate. With the second mode, we observe a
reaction magnetic flux density due to the eddy current
density.

For the global distribution of the magnetic flux density
obtained with MPOD and MPGD, the results are close to
the one computed with MREF.

4.3 Computation time

In terms of computation time, with a length of the time
interval of 0.1ms and 60 time steps, the MREF requires
5min7s to solve the numerical problem. For MPOD, the
computation time is of 1min50s, this time takes into ac-
count the solution of original model (14) with 5 snapshots
and 60 solutions of the reduced model (24). The size of the
matrix system to solve is reduced, thus the computation
time requires to solve the numerical problem (24) by us-
ing an iterative method is small compared to MREF. We
should mention that the calculation of the matrices M r

and N r and the vector F r which could be cumbersome
is not undertaken. In the iterative procedure by using a
conjugate gradient method, only matrix-vector products
are required, in the algorithm of the method, the prod-
uct M rXj with Xj the vector of the approximated so-

lutions at the j -th iteration is calculated by P tMPXj .
In the linear case, the calculation of the product M rXj

without using an explicit expression of M r is not nec-
essarily the most efficient. In the non linear case, it is
not possible to determine M r explicitly and the calcula-
tion of P tMPXj is required because M is a function of
the solution [15][16]. With MPGD, the computation time
is of 11min, this time takes into account the determina-
tion of the functions Rn(x) and Sn(t) associated with 15
modes. Each mode requires from 4 to 18 iterations to be

determined. Then, 83 numerical solving of (28) and (29)
are necessary. In term of computation cost, the numerical
solving of (29), which is close to this of MREF, is more
important than the solving of (28) due to the number of
unknowns in the space domain (mesh) much greater than
the number of time steps. We can note that the original
PGD method presented in this article can be improved
in order to reduce the number of modes with regard to a
given precision [6] [7]. To study the influence of the num-
ber of time steps on the computation time, a length of
the time interval to 0.2ms with 120 time steps is consid-
ered. The computation time require for MREF, MPOD
and MPGD is of 10min4s, 3min4s and 9min56s respec-
tively. As the number of time steps is multiplied by two,
so is the computation time for MREF. For MPOD, as the
computation cost of the solution of the original model for
5 snapshots is significant compared with this of the re-
duced model, the computation time is not multiplied by
two. For MPGD, the computation time is slightly reduced
compared with the first study. In fact, the number of nu-
merical solving of (28) and (29) required to determine the
space and time functions is smaller than for the first study
(63 times solving). With MPGD, the computation time is
less influenced by the number of time steps.

5 Conclusion

The Proper Orthogonal Decomposition and the Proper
Generalized Decomposition method associated with the
vector potential formulation has been developed in order
to solve a 3D quasi-static field problem. On the 3D ap-
plication example, it appears that the accuracy of the so-
lution obtained from both reduction methods is similar
compared with this of a fully described model. With the
POD model, the reduction of computation time is signifi-
cant. With the PGD model, the computation time is not
proportional to the number of time steps. On the studied
example, the POD model requires less computation time
and number of modes than the PGD model.
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