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Abstract 

Methods are now available to solve numerically electromagnetic problems with uncertain input data (behaviour law or 

geometry). The stochastic approach consists in modelling uncertain data using random variables. Discontinuities on 

the magnetic field distribution in the stochastic dimension can arise in a problem with uncertainties on the geometry. 

The basis functions (polynomial chaos) usually used to approximate the unknown fields in the random dimensions are 

no longer suited. One possibility proposed in the literature is to introduce additional functions (enrichment function) to 

tackle the problem of discontinuity. In this paper, we focus on the method of random mappings and we show that in 

this case the discontinuity are naturally taken into account and that no enrichment function needs to be added. 

1 Introduction 

In electrical engineering, to predict the behavior of a real device, numerical models based on the solution of the 

Maxwell equations are widely used. Thanks to the development of powerful computing tools as well as the 

development of new numerical methods, the numerical models become more and more accurate. The assumption 

considering that the effects of uncertainties of input data are negligible compared to modelling and numerical errors 

can be no longer valid. For a prediction close to reality, numerical methods taking into account these uncertainties 

were proposed [1, 2]. Among these methods, the probabilistic approach where the input and the output of the models 

are modelled by random variables or fields is widely used. In computational electromagnetics, there are generally three 

kinds of uncertainties: those on the source terms, those on the material behavior and those on the dimensions of the 

apparatus under study. In [3, 4, 5, 6, 7, 8, 9], some methods using polynomial chaos expansions were proposed to 

quantify the effect of uncertainties on the behavior laws on the outputs of the model. For problems with random 

domains (the dimensions are uncertain), discontinuities can appear on the field distribution in the “random dimension” 

(stochastic discontinuity). The approximation with a polynomial chaos expansion (classical polynomial chaos) [10] 

which is well adapted to approximate random variables with a “smooth” probability density function (pdf) is not well 

suited to approximate random variables with pdf having several local maxima (mode). However, in the case of a 

stochastic model involving random dimensions, the pdf of the fields at certain positions can exhibit several modes due 



 2 

to its stochastic discontinuity. In [11], to improve the approximation, additional functions enriching the original basis 

of the approximation space can be used to take into account these discontinuities (enrichment basis technique). 

Another approach to solve a problem with random dimensions consists in using a random mapping that transforms the 

problem on the original random domain into a problem on a deterministic domain with a modified behavior law 

(transformation method) [12, 13]. The randomness in this second problem is bore by the behavior law of the material.  

In this paper, we aim at comparing the approach based on the enrichment basis technique and the approach based on 

the use of random mappings, especially when the values under interest are local field values. First, we present the 

problem when the uncertainties are bore by the behavior laws. Several methods have been proposed and compared to 

solve this type of problem. We present briefly the most popular non intrusive methods with the associated space of 

approximation - a truncated polynomial chaos expansion. Then, we present the problem with uncertainties on the 

geometry. Two methods are presented to solve this problem, the transformation method and the enrichment basis 

method. In the transformation method, the initial problem is transformed into a problem where the uncertainties are 

bore by the behavior law. In this case, the usual truncated polynomial chaos expansion can be used. Else, if the 

problem is directly solved (remeshing technique conforming to each geometry realization for example), it is shown 

that the space of approximation should be enriched to take into account the discontinuity of the magnetic field. The 

two methods are compared on an analytical example and on a numerical example.  

2 Uncertainties on the behavior law 

A probabilistic approach can be used to model the uncertainties of an electromagnetic problem. In a stochastic 

magnetostatic problem with uncertainties on the behavior law, the permeability can be modelled by a random field. 

We suppose that this random field can be expressed as a function of known random variables ξ (Gaussian variables or 

uniform variable or…) with a joint probability density function ( )fξξξξ ξξξξ . The number of random variables ξ =(ξ1, ξ2 …, 

ξd) is equal to d. A stochastic magnetostatic problem defined on domain D with uncertainties on the behavior law can 

be written: 

 

( , ) 0

( , ) 0

( , ) ( , ) ( , )

B

H

B H

x

x

x x x

=
 =
 =

ξξξξ
ξξξξ

ξ µ ξ ξξ µ ξ ξξ µ ξ ξξ µ ξ ξ

div

curl  (1) 

where ( , )B x ξξξξ the magnetic flux density, ( , )H x ξξξξ the magnetic field and ( , )xµ ξµ ξµ ξµ ξ the permeability of the domain. For 

the sake of simplicity, it is assumed that the current density is null in the domain D and that the source term is bore by 

the boundary conditions defined on the boundary DΓ of D: 
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where n represents the unit outward normal vector. The scalar potential formulation is used to solve the system of 

equations (1) and (2). The scalar potential ( , )xΩ ξξξξ  is defined such that:  

 ( , ) ( , )H x x= − Ωξ ξξ ξξ ξξ ξgrad  (3) 

The scalar potential is constant on each connected surface of ΓH and we have ( , ) 0xΩ =ξξξξ  on ΓH1 and ( , )x VΩ =ξξξξ on 

ΓH2. By replacing (3) into (1) we obtain: 

 ( ( , ) ( , )) 0x xµ ⋅ Ω =ξ ξξ ξξ ξξ ξdiv grad  (4) 

Regarding the solution of (4),  two approaches can be used : the non intrusive and intrusive approaches. The non 

intrusive approach (Monte Carlo simulation, projection method, regression method…)[5, 14] consists in determining  a 

bunch of  appropriate values for the input data then in solving the deterministic model with these series of input data 

and finally to exploit the values of the output data in a processing step. The non intrusive method consists in adding 

just an additional “layer” to a deterministic model to take into account the random dimensions. For the intrusive 

method, a new code has to be developed [3, 4, 6, 7]. The equation (4) can be solved by using the finite element 

method. In this case, the scalar potential is sought in the nodal shape function space, and we have: 

 
1

( , ) ( ) ( ) ( )
n

i i
i

x x V xλ β
=

Ω = Ω +∑ξ ξξ ξξ ξξ ξ  (5) 

where ( )iΩ ξξξξ  are random variables to determine,  ( )i xλ , i=1 : n nodal functions of nodes that are not located on 

HΓ and β(x) a linear combination of the nodal function associated to the nodes located on H2Γ  where the magnetic 

potential is assumed to be constant and equal to V. 

In this paper, we will focus only on some non intrusive methods that are briefly presented in the following part. 

3 Non intrusive methods 

We will present two non intrusive methods frequently used to solve a stochastic problem: the regression method [5] 

and the projection method [14]. We are interested in a random quantity G(ξ) (energy, torque, the nodal value of 

( )iΩ ξξξξ in (5), local value of B, H…). This random quantity is approximated by a polynomial chaos expansion: 

 
1

G( ) G ( ) ( )
P

P
i i

i

α
=

≈ = Ψ∑ξ ξ ξξ ξ ξξ ξ ξξ ξ ξ  (6) 
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where ( )iΨ ξξξξ  are multidimensional orthonormal polynomials [10] and iα the coefficients to determine. Different 

methods can be used to calculate the coefficients iα . 

3.1. Projection method 

Due to the fact that the polynomials ( )iΨ ξξξξ  are orthonormal, coefficients iα are determined by: 

 [ ]( ) ( ) ( ) ( ) ( )
d

i i i

R

G G f dα = ⋅ Ψ = ⋅Ψ ⋅∫ ξξξξξ ξ ξ ξ ξ ξξ ξ ξ ξ ξ ξξ ξ ξ ξ ξ ξξ ξ ξ ξ ξ ξE  (7) 

where E[X] is the expectation of the random variable X. Equation (7) means that the approximation GP is the 

projection of G in the functional space S generated by the P polynomials ( )iΨ ξξξξ  : 

 span 1( ( ), : )iS i P= Ψ =ξξξξ  (8) 

Different methods can be used to approximate the integral (7): Monte Carlo simulation method, Gauss quadrature 

method, sparse grid method, adaptive integration scheme [15, 16, 17]... All of them yield the following expression for 

the approximation: 

 
1

( ) ( )
N

i k k i k
k

Gα ϖ
=

≈ ⋅ ⋅ Ψ∑ ξ ξξ ξξ ξξ ξ  (9) 

where kϖ  are the weights and kξξξξ the evaluation points. A number of deterministic calculations has to be undertaken to 

determine ( )kG ξξξξ  for each point kξξξξ   k =1 : N. So, the deterministic model has to be solved N times with kξξξξ as input 

data.  

3.2. Regression method 

 With the regression method, the coefficients iα  are determined by minimizing the following criteria [5]: 

1 2

2
1 2 ( , ,... )

( , ,... ) arg Min( ( ( ) ( )) )P
P

P
P G Gα α αα α α

∈
 = − ξ ξξ ξξ ξξ ξ

R
E (10) 

Using the orthonormal property of ( )iΨ ξξξξ  this condition leads also to (7). However, in practice, only a finite number 

of evaluations of ( )G ξξξξ are available to estimate 2( ( ) ( ))PG G − ξ ξξ ξξ ξξ ξE . Hence: 

 [ ]
1 2

1 2 1 2( , ,... )
( , ,... ) arg Min ( ( , ,... ))P

P
P Prα α αα α α α α α

∈
=

R
 (11) 

 with 

 2
1 2

1 1

( , ,... ) (G( ) ( ))
N P

P k k i i k
k i

r α α α ω α
= =

= − Ψ∑ ∑ξ ξξ ξξ ξξ ξ  (12) 
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For the evaluation points kξξξξ , the roots of the polynomial ( )qΨ ξξξξ is one possible choice and the weight can be given by  

1/k Nω =  [18]. The minimization of (12)  leads to solve the following linear system: 

 A ⋅ = aαααα  (13) 

with : 

 

1

1

[ ] ( ) ( )

[ ] ( )G( ) and

[ ] with , 1:

A
N

ij k i k j k
k

N

i k i k k
k

i i i j P

ω

ω

α

=

=

= Ψ Ψ

= Ψ

= =

∑

∑

ξ ξξ ξξ ξξ ξ

ξ ξξ ξξ ξξ ξ

αααα

a  (14) 

In this method, N evaluations G(ξk), k =1: N are required. The choice of evaluation points kξξξξ and the associated weight 

is an issue because a non appropriate choice can lead to a singular system or at least to a ill-conditioned linear system 

(13).  

One can notice that with the same choice of kω  and kξξξξ  between (12) and (9) and with N high enough to have an exact 

quadrature (so that 
1

[ ] ( ) ( )A
N

ij k i k j k ij
k

ω δ
=

= Ψ Ψ =∑ ξ ξξ ξξ ξξ ξ  ), the regression method and the projection method give the same 

results. 

3.3. Discussion on the polynomial chaos  

If ξ is a Gaussian random variable, the Cameron-Martin lemma [19] shows that the approximationG ( )P ξξξξ in (6) tends 

to G(ξ) when P tends to infinity (if the variance of G(ξ) exists). In [10, 8], a generalization has been discussed for non 

Gaussian random variables ξ. However, the convergence rate of (6) depends on the smoothness of G(ξ). When G(ξ) 

presents some discontinuities with respect to ξ, the convergence rate of (6) can become very slow because the right 

hand side of (6) is continuous and infinitely differentiable with respect to the components of ξ. In a problem with 

uncertainties on the behavior law, the electromagnetic field keeps the same discontinuity properties as the random 

permeability. So if the permeability can be expressed as a polynomial chaos expansion then the polynomial chaos is 

well fitted to approximate the magnetic field. However, we will see in the following part that in a problem involving 

uncertainties on the geometry, the magnetic field at a point located close to a random interface can be discontinuous. 

In this case, a specific treatment has to be introduced to speed up the convergence rate as we will see in the section 4.           

4 Uncertainties on the geometry 

4.1. Context 
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The uncertainties on the geometry can be modelled by random interfaces Γk between two sub-domains Di and Dj 

(purple lines in domain D(ξ) in Fig. 2). In each sub-domain, the behavior law (permeability) is assumed to be 

homogeneous. We suppose also that these interfaces can be parameterized by known random variables ξ and a 

parameter c, we have: 

 

1 1

2
2 2

3 3

with

( , )

( , )

( , )

k

k
k

k

x g c

x g c c

x g c

 =
 = ∈ ∆ ⊂
 =

ξξξξ
ξξξξ
ξξξξ

R  (15) 

where x1, x2, and x3 are the coordinates of the points located on this interface. The parameter c belongs to ∆k a subset of 

R
2 (R in 2D case) and g1

k, g2
k, g3

k are known expressions. For each realization of ξ, there is a bijective map between ∆k 

and Γk.  The permeability µ depends on the position x and also on the realization of the random interfaces. Actually, 

for a point x located close to a random interface Γk, the value of the permeability depends on which side of Γk the point 

x is located. Thus, in a given point x of D which can be located on both sides of a random boundary Γk (between the 

subdomains Di and Dj) the permeability switches from the values µµµµi and µµµµj.  If we denote IDi (x,ξ), the indicator 

function associated to the domain Di (IDi(x,ξ)=1 if x∈Di and 0 elsewhere), the permeability of the domain D can be 

written under the form: 

 
0

D
1

I( , ) ( , )
i

n

i
i

x x
=

= ∑µ ξ µ ξµ ξ µ ξµ ξ µ ξµ ξ µ ξ  (16) 

where n0 is the number of subdomains. Since the permeability is a random field, the magnetic field H and the magnetic 

flux density B are also random fields. To deal with the problem with random domains, an easy way consist in using a 

non-intrusive method with a remeshing step for each evaluation point kξξξξ that corresponds to a new geometry. 

However, this approach has some drawbacks. At first, the fact that we have to perform a remeshing, then to restore the 

stiffness matrix and the source vector for each evaluation point kξξξξ makes the problem very time consuming. 

Furthermore, the remeshing of the domain D adds a numerical noise on the output data because mesh (the 

connectivities between elements, the number of element…) changes from an evaluation point to another [20]. 

Furthermore, since the mesh changes from an evaluation point to another, the expression of the shape functions 

changes as well. Consequently, it is not obvious to obtain a simple expression of the distribution of the fields H and B. 

Finally, as we will see in the following part, the magnetic field at certain fixed points could have some discontinuities 

in stochastic dimension. Therefore, the approximation of magnetic field at this point by (6) is no longer appropriate. 

To avoid the former drawback, one possibility is to introduce additional functions (enrichment basis method) that can 

account for the discontinuities. This technique has been proposed for the stochastic finite element method in [11]. 
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Another possibility consists in using the transformation method proposed in [12, 21]. In the following, a 1D analytical 

example with random interface will be presented to illustrate the issue of the stochastic discontinuity and to present the 

principle of both methods listed above. 

4.2. Analytical example 

We are interested in a one dimension magnetostatic problem presented in Fig. 1. On two opposite sides of the 

rectangular domain D of length l, a magnetomotive force γ0=1 is prescribed. The domain D is split into 2 subdomains 

with two different permeabilities µ1 and µ2. The position ξ of the straight interface between the two subdomains is 

random. This random interface can be represented by: 

 1 1

2 2

with 0
( , )

;
( , )

x g c
c h

x g c c

= =
∈    = =

ξ ξξ ξξ ξξ ξ
ξξξξ

 (17) 

We suppose that ξ is a uniform random variable that varies in the interval [0.4.l – 0.6.l]. We focus on a fixed point A 

with the coordinate x10 within the interval [0.4. l – 0.6. l]. The analytical expression of the component following x1 axis 

(other components equal obviously zero) of the magnetic field at this point is given by: 

 

0 1
10 10

2 1

0 2
10 10

2 1

( , ) with
( )

( , ) with
( )

H

H

A

A

x x
l

x x
l

γ µ
µ µ

γ µ
µ µ

= <
+ −

= >
+ −

ξ ξξ ξξ ξξ ξ
ξ ξξ ξξ ξξ ξ

ξ ξξ ξξ ξξ ξ
ξ ξξ ξξ ξξ ξ

 (18) 

We can notice that since the permeabilities µ1 and µ2 are different, the magnetic field at the point A is discontinuous 

with respect to ξ at the value ξ = x10 . We seek for an approximation 10( , )H P
A x ξξξξ  of  10( , )H A x ξξξξ under the form (6): 

 10 10
1

( , ) ( , ) ( )H H
P

P
A A i i

i

x x α
=

≈ = Ψ∑ξ ξ ξξ ξ ξξ ξ ξξ ξ ξ  (19) 

The coefficients αi have been calculated numerically from (9). The evolution of  10( , )H P
A x ξξξξ  and 10( , )H A x ξξξξ in 

function of ξ are given in Fig. 1. It shows clearly that the approximation (19) is not appropriate. As expected, the 

polynomial chaos can not account for the discontinuity of the function 10( , )H A x ξξξξ  at ξ = x10. 

Generally, for a fixed point that can be located in different sub-domains depending on the random interface realization 

(point A in Fig. 1 can be located in D1 or D2 depending on the value of ξ) the magnetic field is discontinuous at the 

stochastic level. The discontinuity appears at the value of ξ for which this point is located on the random interface.  For 

a point that remains in the same subdomains, this kind of discontinuity does not exist and a classical polynomial chaos 

expansion is well appropriate to approximate the fields. In the following, we will present some methods to deal with 

this stochastic discontinuity problem. At first, we discuss on the enrichment basis method and then on the 

transformation method. 
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4.3. Enrichment basis method  

We suppose that the discontinuity point ξ = ξ0 is a priori known. The main idea consists in adding K enrichment 

functions into the space of approximation in the stochastic dimension. The approximation (6) becomes: 

 
1 1

( ) ( ) ( ) ( )
P K

P
i k i i

i i

G G fα γ+

= =

≈ = Ψ + ⋅∑ ∑ξ ξ ξ ξξ ξ ξ ξξ ξ ξ ξξ ξ ξ ξ  (20) 

where ( )if ξξξξ  is a discontinuous function at the point ξ = ξ0 and γi the coefficients to determine. The discontinuity of 

( )G ξξξξ can then be taken into account by( )if ξξξξ . It will speed up the convergence rate of ( )PG + ξξξξ  towards ( )G ξξξξ  (20). A 

priori, we can use ( )if ξξξξ of the following form: 

 ( ) ( ) ( ) , 1:i if i Kτ= ⋅ Ψ =ξ ξ ξξ ξ ξξ ξ ξξ ξ ξ  (21) 

where: 

 0

0

1 if
( )

1 if
τ

<
= − ≥

ξ ξξ ξξ ξξ ξ
ξξξξ

ξ ξξ ξξ ξξ ξ
 (22) 

The determination of αi and γi in (20) can be done by either regression method or projection method. 

4.3.1. Regression method  

Seeking for the stationary point of: 

1

2
1 2

1 1 1

( , ,... ) (G( ) ( ) ( ))
N P K

P k k i i k i i k
k i i

R fα α α ω α γ
= = =

= − Ψ −∑ ∑ ∑ξ ξ ξξ ξ ξξ ξ ξξ ξ ξ   (23) 

we obtain the following linear system of equations: 
 

 
A B

B Ct

     
=     

     

a

b

αααα
γγγγ

 (24) 

where A, B, C are respectively a PxP matrix, PxK matrix and KxK matrix. The vector a is of dimension P and b of 

dimension K. The coefficients of the previous matrices are given by: 

1 1

1 1

1

[ ] ( ) ( ) ; [ ] ( ) ( )

[ ] ( ) ( ) ; [ ] ( )G( )

[ ] ( )G( ) ; [ ] and [ ]

A B

C

N N

ij k i k j k ij k j k i k
k k

N N

ij k i k j k i k i k k
k k

N

i k i k k i i i i
k

f

f f

f

ω ω

ω ω

ω α γ

= =

= =

=

= Ψ Ψ = Ψ

= = Ψ

= = =

∑ ∑

∑ ∑

∑

ξ ξ ξ ξξ ξ ξ ξξ ξ ξ ξξ ξ ξ ξ

ξ ξ ξ ξξ ξ ξ ξξ ξ ξ ξξ ξ ξ ξ

ξ ξ α γξ ξ α γξ ξ α γξ ξ α γ

a

b

(25) 

In this case, we have to perform N evaluations of G.  

4.3.2 Projection method  

We seek for the orthogonal projection of G in the space S+: 

 span with 1 1( ( ), ( ) : , : )i jS f i P j K+ = Ψ = =ξ ξξ ξξ ξξ ξ  (26) 
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which imposes that: 

 
0 with 1

0 with 1

( ( ) ( )) ( ) :

( ( ) ( )) ( ) :

P
i

P
j

G G i P

G G f j K

+

+

 − ⋅ Ψ = = 

 − ⋅ = = 

ξ ξ ξξ ξ ξξ ξ ξξ ξ ξ

ξ ξ ξξ ξ ξξ ξ ξξ ξ ξ

E

E

 (27) 

Equation (27) leads to a linear system: 

 
E F

F Ht

     
=     

     

e

h

αααα
γγγγ

 (28) 

where E, F, H are respectively a PxP matrix, PxK matrix and KxK matrix. The vector e is of dimension P and h of 

dimension K. The vector of the unknown coefficients are α and γ of dimensions P and K respectively. The elements of 

the previous matrices are given by: 

[ ]
[ ]

[ ] ( ) ( ) ; [ ] ( ) ( )

[ ] ( ) ( ) ; [ ] ( ) ( )

[ ] ( ) ( ) ; [ ] and [ ]

E F

H

ij i j ij ij i j

ij i j i i

i i i i i i

f

f f G

G f

δ

α γ

   = Ψ ⋅ Ψ = = Ψ ⋅   

 = ⋅ = ⋅ Ψ 

= ⋅ = =

ξ ξ ξ ξξ ξ ξ ξξ ξ ξ ξξ ξ ξ ξ

ξ ξ ξ ξξ ξ ξ ξξ ξ ξ ξξ ξ ξ ξ

ξ ξ α γξ ξ α γξ ξ α γξ ξ α γ

E E

E E

E

e

h

(29) 

In (29) the coefficients of the matrixes E, F, and H can be evaluated analytically. However, for the elements of e and h 

it requires several integral calculations. One can notice that these integral calculations can be done numerically by (9) 

but in some cases it requires some additional numerical treatments because of the irregularity (discontinuity) of the 

integrand. In [11], one technique that consists in using a recursive method and dividing the integral domain into 

several “boxes” is proposed. However, in a high dimension problem (large dimension d of ξ) this integral calculation 

method can be very time consuming.    

4.4. Transformation method  

The main idea of this method consists in using a random mapping that transforms the original domain D with random 

inner interfaces into a deterministic reference domain. The original problem is transformed into a new problem defined 

on a reference domain E with modified behavior laws that become random fields (Fig. 2).  

Actually, the permeabilities on the subdomains of E are not constant anymore but depend on the position and also on 

the random variables ξ.  

In [12, 21], it is shown that if it exists a one to one random mapping ( , )X X x ξ= that transforms the domain D(ξ) into 

a deterministic domain E, we obtain: 

 ( , ) ( ( , ), )x X x′Ω = Ωξ ξ ξξ ξ ξξ ξ ξξ ξ ξ  (30) 

where ′Ω is the solution of the scalar potential formulation of the problem defined on the domain E with the 

modified permeability:  
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( , ) ( ( , )) ( , )

( , )
det( ( , ))

tM X X x M X
X

M X

µµ ⋅ ⋅′ = ξ ξ ξξ ξ ξξ ξ ξξ ξ ξξξξξ
ξξξξ

 (31) 

with ( , )M X ξξξξ the Jacobian matrix of the random mapping. This reference problem, defined on the deterministic 

domain E with a random permeability( , )Xµ ′ ξξξξ  can be solved by using the two methods proposed in part 3.1 and 3.2. 

The magnetic field on the reference domain E can be then approximated by: 

 
1

H H H( , ) ( , ) ( ) ( )
P

P
i i

i

X X X
=

′ ′ ′≈ = Ψ∑ξ ξ ξξ ξ ξξ ξ ξξ ξ ξ  (32) 

From (3) we can deduce an approximation of the magnetic field of the initial problem in D(ξ):  

 ( , ) ( ( , ), ) ( ( , ), )H HP t Px M X x X x′= ⋅ξ ξ ξ ξ ξξ ξ ξ ξ ξξ ξ ξ ξ ξξ ξ ξ ξ ξ  (33) 

We can notice that for a given position X = X0, the Jacobian matrix M(X0, ξ) and 0( , )H P X′ ξξξξ are continuous with 

respect to ξ but discontinuous with respect to X for a given ξ. Therefore, a discontinuity with respect to ξ of 

( , )H P x ξξξξ in (33) at some points x=x0 can be taken into account naturally without any enrichment basis technique. In 

the transformation method, the main difficulty is the determination of the random mapping ( , )X X x= ξξξξ  that 

transforms the original domain D(ξ) to a deterministic reference domain E. In [21] two methods to determine this 

random mapping were discussed. In the following, we will see with the analytical example presented in part 4.2 how 

the transformation method enables to deal naturally with the stochastic discontinuity.  

4.5 Comparison of both methods on the analytical example  

4.5.1. Enrichment basis method 

With the enrichment basis method, the magnetic field at point A (Fig. 1) is approximated by: 

 0 0
1

( , ) ( , ) ( ) ( )H H
P

P
A A i i

i

x x α α τ
+ +

=

≈ = Ψ +∑ξ ξ ξ ξξ ξ ξ ξξ ξ ξ ξξ ξ ξ ξ  (34) 

where ( )τ ξξξξ is defined by (22) with ξ0=x10 for this case and αi, α + the coefficient to determine (we use (20) with K=1). 

4.5.2. Transformation method 

To transform the random domain D(ξ) into a deterministic domain E, one random mapping can be given by the 

following expression and the corresponding domain E is given in Fig. 3:  

 
1 1

1

1 1

with 
2

( 2 )
with

2( ) 2( )

l
x x

X
l l l

x x
l l

 ⋅ ≤
=  − ⋅ + >
 − −

ξξξξ
ξξξξ

ξξξξ ξξξξ
ξ ξξ ξξ ξξ ξ

 (35) 

The modified permeabilities are obtained by (31): 



 11 

1 1 1 1 2 2 1 1 1 1 2 2 1( , ) ' ( ) ' ( ) ( ) ( )
2 2( )

l l
X I X I X I X I X

l
µ µ µ µ µ′ = + = ⋅ + ⋅

−
ξξξξ

ξ ξξ ξξ ξξ ξ
 (36) 

where 1 1( )I X is the indicator function that is equal to 1 when X1 < l/2 and equal zero elsewhere and 

2 1 1 1( ) 1 ( )I X I X= − . The magnetic field in the reference domain is given by the following expression: 

0 2 0 1
1 1 1 2 1

2 1 2 1

2 2 ( )
( , ) ( ) ( )

( ( )) ( ( ))
H

l
X I X I X

l l l l

γ µ γ µξ
µ µ µ µ

−′ = +
+ − + −

ξ ξξ ξξ ξξ ξ
ξ ξ ξ ξξ ξ ξ ξξ ξ ξ ξξ ξ ξ ξ

 (37) 

We can notice that the magnetic field in (37) is continuous with respect to ξ when the position X1 is given. Therefore, a 

classical polynomial chaos expansion (32) can be used and the magnetic field in the original domain can be obtained 

by (33).   

By using the transformation method, the discontinuity with respect to ξ of the magnetic field still exists naturally in the 

original domain. Actually, if we focus on the right hand side of  (37), the indicator functions1 1( )I X and 2 1( )I X  that 

are discontinuous in function of the position X1, do not depend on ξ in the reference domain. By contrast, in the 

original domain D(ξ), the functions 1 1 1( ( , ))I X x ξξξξ and 2 1 1( ( , ))I X x ξξξξ  becomes dependant on ξ and since they are 

discontinuous, the field H is discontinuous. The discontinuities of the magnetic field at some points (point A for 

example) in the domain D(ξ)  with respect to ξ is bore then by these two indicator functions. In Fig. 3, we compare the 

solution obtained by the transformation method with the one obtained by the enrichment basis method, we can notice 

that the two methods give very close result to the exact solution (the relative error between solutions and the exact 

solution is less than 0.2%).  

5 Numerical example 

We consider now a magnetostatic problem defined in a random domain D(ξ) presented in Fig. 4. The domain is 

divided in 4 areas Di, i=1, 4 with relative permeabilities µ1 = µ2 = µ3 =1000 and µ4 = 1. We impose a magnetomotive 

force γ = 2A between Γ1 and Γ2 and B.n = 0 on the remaining boundary [22], [23]. The uncertain dimensions (Fig. 4) 

are modelled by uniform independent random variables ξ = (ξ1, ξ2) the radius of the two teeth in front of the disk D3. 

These uniform random variables are defined in interval [a ; b]. The aim is to compare the magnetic field at the points 

Q1, Q2, Q3 obtained by a regression method using two methods for the calculation of the evaluation points ξk, denoted 

method 1 and method 2. The method 1 is based on the transformation method. The magnetic field is expressed as a 

classical polynomial chaos expansion. The method 2 consists in remeshing the domain D(ξ)  for each evaluation points 

ξk. In this case, depending on the location of the point, the magnetic field is approximated either by a classical 

polynomial chaos expansion (section 3.1 and 3.2) or by an enriched basis (section 4.3).  
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The point Q1 is fixed but can be located either in D1 or in D4 depending on the value of ξ1. The point Q2 is fixed also 

but located only in domain D4 for every realization of ξ1 and ξ2. The point Q3 is located on the surface of the tooth D1 

but remains inside this tooth. This point moves according to the value of ξ1.  

We can notice that classical polynomial chaos is well appropriate to approximate the magnetic field at the points Q2 

and Q3 due to the fact that these points always remain in the same subdomain for any value of ξ1 and ξ2. The 

discontinuity at the stochastic level does not appear for these points. We can notice also that the magnetic fields at the 

point Q3 that become fixed in the reference domain can be obtained directly by the method 1.  

For the point Q1, if the method 1 is used then the discontinuity of the magnetic field is naturally taken into account. 

However if the problem is solved directly in the domain D(ξ) (method 2) an enrichment basis method has to be used to 

improve the approximation.  

For the method 1, we use the reference domain with the same form of the original domain but we fix the dimension ξ1 

= ξ2= (a+b)/2 (the random mapping is detailed in [21]). The order of the Legendre polynomials for each dimension is 

4. The number of polynomial used in (32) is so P = 15. For the enrichment basis technique we use also Legendre 

polynomials of order 4 in each dimension and K= P =15 in (20). 

 

TABLE1. Mean value and standard deviation obtained by method 1 and by method 2 

Point Q1 Point Q3 Point Q2  

Method 1 Method 2 Method 1 Method 2 Method 1 Method 2 

Mean-value 1.45 1.47 3.4 x 10-3 3.4 x 10-3 3.12 3.14 

Standard deviation 1.49 1.50 2.13 x 10-4 2.17 x 10-4 0.20 0.20 

 

In Table 1, the mean and the standard deviation of the component following axis x2 (Fig. 4) of the magnetic field 

obtained by the method 1 and method 2 are given. The pdf of component following axis x2 of the magnetic field 

(estimated using the kernel method) at the points Q1, Q2 and Q3 are given in Fig. 5. We can see that the two methods 

give close results.  We can notice also that, for the point Q1, the probability density function of the magnetic field has 

two modes due to its discontinuity in the stochastic level.  

6 Conclusion 

We have discussed on the problem with geometric uncertainties. The difference between this problem and the one on 

the behavior law is that discontinuities in the stochastic dimension can arise. A classical polynomial chaos is no longer 

suited in this case.  One possibility is to use the enrichment basis technique that adds “enrichment” functions in the 
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space of approximation to take into account this discontinuity. Or we can use the transformation method that leads the 

problem with geometric uncertainties to a problem with uncertainties on the behaviour law. We have shown that for 

the transformation method, no enrichment is required. In this paper, the transformation method is applied to a 2D 

problem. An application in a 3D problem of this method is possible and some numerical methods to determine the 

random mapping are available in the literature. The transformation method is well fitted for small deformations (to 

model the effect of the dimension variations in a tolerance interval for example). But, for high deformations, the 

transformation method can lead to significant numerical errors. In this case, the transformation method should be 

combined for example with a remeshing method.      
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Fig. 1: Left: magnetostatic problem on domain D(ξ). Right: magnetic field at point A with l =1, µ1=2, µ2=1, P=8 and x10=l/2 
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Fig. 2: Transformation method 
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Fig. 3: Left: problem defined on the reference domain E. Right: magnetic field at point A with P=8 
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Fig. 4.  Magnetostatic system 
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 Fig. 5.  Probability density function of the magnetic field at the point Q1, Q2, and Q3 
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