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Abstract

Methods are now available to solve numerically tetenagnetic problems with uncertain input data éwébur law or
geometry). The stochastic approach consists in Hiogleincertain data using random variables. Disicmuities on
the magnetic field distribution in the stochastimension can arise in a problem with uncertaintieshe geometry.
The basis functions (polynomial chaos) usually useapproximate the unknown fields in the randomatisions are
no longer suited. One possibility proposed in tterdture is to introduce additional functions {ehment function) to
tackle the problem of discontinuity. In this papeg focus on the method of random mappings andho® ghat in

this case the discontinuity are naturally taken extcount and that no enrichment function needthe tadded.

1 Introduction

In electrical engineering, to predict the behawidra real device, numerical models based on thatisal of the
Maxwell equations are widely used. Thanks to theettppment of powerful computing tools as well ag th
development of new numerical methods, the numeritadiels become more and more accurate. The assumpti
considering that the effects of uncertainties @uindata are negligible compared to modelling ancherical errors
can be no longer valid. For a prediction closedality, numerical methods taking into account theseertainties
were proposefil, 2. Among these methods, the probabilistic approalrevthe input and the output of the models
are modelled by random variables or fields is wideded. In computational electromagnetics, theegganerally three
kinds of uncertainties: those on the source tethase on the material behavior and those on themsions of the
apparatus under study. In [3, 4, 5, 6, 7, 8, 9esanethods using polynomial chaos expansions werngoped to
quantify the effect of uncertainties on the behevaws on the outputs of the model. For problemthwandom
domains (the dimensions are uncertain), discort@aican appear on the field distribution in thentiom dimension”
(stochastic discontinuity). The approximation withpolynomial chaos expansion (classical polynoraos) [10]
which is well adapted to approximate random vadahiith a “smooth” probability density function €pds not well
suited to approximate random variables with pdfilguseveral local maxima (mode). However, in theecaf a

stochastic model involving random dimensions, teqgd the fields at certain positions can exhilgiveral modes due



to its stochastic discontinuity. In [11], to impmthe approximation, additional functions enrichthg original basis
of the approximation space can be used to takeaictount these discontinuities (enrichment basisriigue).
Another approach to solve a problem with randomedlisions consists in using a random mapping thasfvams the
problem on the original random domain into a problen a deterministic domain with a modified behawaw
(transformation method) [12, 13]. The randomnedsigsecond problem is bore by the behavior lathefmaterial.
In this paper, we aim at comparing the approackedas the enrichment basis technique and the apiptoased on
the use of random mappings, especially when theegalinder interest are local field values. First, present the
problem when the uncertainties are bore by the\heh&aws. Several methods have been proposed amgpared to
solve this type of problem. We present briefly thest popular non intrusive methods with the assediapace of
approximation - a truncated polynomial chaos exjmemsThen, we present the problem with uncertaéntia the
geometry. Two methods are presented to solve ttublgm, the transformation method and the enrictinbasis
method. In the transformation method, the initiedipem is transformed into a problem where the uaa#ies are
bore by the behavior law. In this case, the usuaicated polynomial chaos expansion can be uses, il the
problem is directly solved (remeshing techniquefeoming to each geometry realization for exampie)s shown
that the space of approximation should be enridhedke into account the discontinuity of the mdgnéeld. The

two methods are compared on an analytical exanmuleoa a numerical example.

2 Uncertainties on the behavior law

A probabilistic approach can be used to model theetainties of an electromagnetic problem. In aclsstic
magnetostatic problem with uncertainties on theabwn law, the permeability can be modelled by adan field.
We suppose that this random field can be expreassedfunction of known random variabegsaussian variables or
uniform variable or...) with a joint probability deftysfunction f,(£) . The number of random variablés=(¢y, & ..,
&y) is equal to d. A stochastic magnetostatic probdiedined on domain D with uncertainties on the bétdaw can
be written:

divB(x,&)=0
curl H(x, &) =0 1)
B(x,§) = u(x E)H (%)

where B(x, ) the magnetic flux densityH (x, &) the magnetic field angu(x, &) the permeability of the domain. For

the sake of simplicity, it is assumed that the enrdensity is null in the domain D and that therse term is bore by

the boundary conditions defined on the boundagyof D:



M,=r,org
Mg :B(x&)M=0 2)
M, Hx&)xn=0

wheren represents the unit outward normal vector. Theasgabtential formulation is used to solve the systf
equations (1) and (2). The scalar potentik, &) is defined such that:
H(x, &) = —gradQ(x.{) 3)

The scalar potential is constant on each connesigdce ofl'y; and we haveQ(x,é) =0 onT'y; and Q(x,é) =V on
I'no. By replacing (3) into (1) we obtain:

div(u(x, &) [hradQ(x,&)) = 0 (4)
Regarding the solution of (4), two approaches lsarused : the non intrusive and intrusive approschibe non
intrusive approach (Monte Carlo simulation, praoj@ttmethod, regression method...)[5, 14] consistieitermining a
bunch of appropriate values for the input datan timesolving the deterministic model with theseieiof input data
and finally to exploit the values of the outputal@t a processing step. The non intrusive methogists in adding
just an additional “layer” to a deterministic model take into account the random dimensions. Ferititrusive

method, a new code has to be developed [3, 4,.6Thg equation (4) can be solved by using thediriiement

method. In this case, the scalar potential is sbimgtihe nodal shape function space, and we have:
Q(x,&) = QAN +VA(Y (5)
i=1

where Q,(§) are random variables to determinel (x), i=1 : n nodal functions of nodes that are not located on
I, andp(x) a linear combination of the nodal function asatem to the nodes located én,, where the magnetic

potential is assumed to be constant and equal to

In this paper, we will focus only on some non iste methods that are briefly presented in theWailhg part.

3 Non intrusive methods

We will present two non intrusive methods frequgnised to solve a stochastic problem: the regressiethod [5]
and the projection method [14]. We are interested irandom quantity &) (energy, torque, the nodal value of

Q,(&)in (5), local value oB, H...). This random gquantity is approximated by a potyia chaos expansion:

=G €)= Yaw @) ©®)



where W, (§) are multidimensional orthonormal polynomials [1&}da; the coefficients to determine. Different
methods can be used to calculate the coefficients
3.1. Projection method

Due to the fact that the polynomialg, (§) are orthonormal, coefficients; are determined by:

a, = E[G(&)W, ()] = [ GO, (O TR (7)
R

where E[X] is the expectation of the random variable Equation (7) means that the approximati@i is the

projection of G in the functional spaBeyenerated by the polynomialsW, (§) :

S=span¥(§), i=1P) 8
Different methods can be used to approximate tkegial (7): Monte Carlo simulation method, Gausadyature
method, sparse grid method, adaptive integratiberse [15, 16, 17]... All of them yield the follovgrexpression for

the approximation:
a; = Z_:wk [G(&) Wi (&) )

wherea, are the weights and, the evaluation points. A number of deterministitcaations has to be undertaken to
determineG(¢,) for each point§, k=1 :N. So, the deterministic model has to be solMetimes with &, as input

data.
3.2. Regression method
With the regression method, the coefficientsare determined by minimizing the following crige{b]:

(@0, ap)=arg, o MinE[ G €)-G" €)F|)(10)
Using the orthonormal property 8P, (£) this condition leads also to (7). However, in pic only a finite number
of evaluations ofG(£) are available to estimate| (G(§) - G"(£))’ | . Hence:

(a,,0,,.00)= arg%’az'._%mp[ Min¢ @, a, ,.a, )} (11)

with

r(aliaz’“ap):Z%(G@k)_zaiwi@rk D (12)



For the evaluation pointg, , the roots of the polynomia¥  (§) is one possible choice and the weight can be diyen

«), =1/N [18]. The minimization of (12) leads to solve fbhdowing linear system:
Alr=a (13)
with :
N
[Al; :Za&wi({k)wj(fk)
k=1
N
&, =Y wW (&) G(&) and (14)
k=1
[al, =a, with i, j=1:P
In this methodN evaluations G§), k =1: N are required. The choice of evaluation poififsind the associated weight

is an issue because a non appropriate choice adrdea singular system or at least to a ill-coadéd linear system
(13).
One can notice that with the same choicewpfand &, between (12) and (9) and withhigh enough to have an exact

N
quadrature (so thdti]; = Z@Wi({k)‘vi({k) =4 ), the regression method and the projection metfieel the same

]
k=1

results.
3.3. Discussion on the polynomial chaos

If &is a Gaussian random variable, the Cameron-M&tinma [19] shows that the approximat®h(£) in (6) tends

to G() when P tends to infinity (if the variance of&béxists). In [10, 8], a generalization has beestuksed for non
Gaussian random variablésHowever, the convergence rate of (6) dependsersinoothness of &( When G¢§)

presents some discontinuities with respecs,tthe convergence rate of (6) can become very dlevause the right
hand side of (6) is continuous and infinitely diffatiable with respect to the componentsfofn a problem with
uncertainties on the behavior law, the electromtigrield keeps the same discontinuity propertigstlze random
permeability. So if the permeability can be expeesas a polynomial chaos expansion then the polialarhaos is
well fitted to approximate the magnetic field. Hoxee, we will see in the following part that in aoptem involving

uncertainties on the geometry, the magnetic fieéld point located close to a random interface caulibcontinuous.

In this case, a specific treatment has to be inized to speed up the convergence rate as we wilhgbe section 4.

4 Uncertainties on the geometry

4.1. Context



The uncertainties on the geometry can be modeljedabdom interface§ between two sub-domains Bnd D
(purple lines in domain @ in Fig. 2). In each sub-domain, the behavior Igpermeability) is assumed to be
homogeneous. We suppose also that these intertarede parameterized by known random varialjlesxd a

parameter c, we have:

% =09
X, = g5(£,0 with cO0A, 0O R? (15)
X = g5(£,0

wherexs, X, andxs are the coordinates of the points located onititésface. The parameteibelongs to\, a subset of
R? (Rin 2D case) and:¥, g,*, gs* are known expressions. For each realizatiof) tiiere is a bijective map betweap

andT'y. The permeabilityy depends on the positionand also on the realization of the random intex$adctually,

for a pointx located close to a random interfdge the value of the permeability depends on whide sifT', the point
x is located. Thus, in a given poixbf D which can be located on both sides of a ramtboundaryl’y (between the
subdomains Pand D) the permeability switches from the valugsand 4. If we denote d; (x,&), the indicator
function associated to the domain ([@(x,&)=1 if xdD; and O elsewhere), the permeability of the domaicabD be

written under the form:
Ny
U&= uly, (%€) (16)
i=1

whereny is the number of subdomains. Since the permegaislia random field, the magnetic fistland the magnetic
flux densityB are also random fields. To deal with the probleitih vandom domains, an easy way consist in using a

non-intrusive method with a remeshing step for eauhluation pointé, that corresponds to a new geometry.

However, this approach has some drawbacks. At flistfact that we have to perform a remeshing) thaestore the

stiffness matrix and the source vector for eachluat@mn point & makes the problem very time consuming.

Furthermore, the remeshing of the domain D addsumenical noise on the output data because mesh (the
connectivities between elements, the number of etm) changes from an evaluation point to anotiag).[
Furthermore, since the mesh changes from an ei@iugbint to another, the expression of the shapetions
changes as well. Consequently, it is not obvioushtain a simple expression of the distributionthaf fieldsH andB.
Finally, as we will see in the following part, theagnetic field at certain fixed points could haeens discontinuities

in stochastic dimension. Therefore, the approxiomatif magnetic field at this point by (6) is no dmm appropriate.

To avoid the former drawback, one possibility isrttvoduce additional functions (enrichment basethod) that can

account for the discontinuities. This technique basn proposed for the stochastic finite elemernthatein [11].



Another possibility consists in using the transfation method proposed in [12, 21]. In the followiaglD analytical
example with random interface will be presenteiltistrate the issue of the stochastic discontinaitd to present the
principle of both methods listed above.

4.2. Analytical example

We are interested in a one dimension magnetospatiblem presented in Fig. 1. On two opposite sioeshe
rectangular domain D of lengtha magnetomotive forcg=1 is prescribed. The domain D is split into 2 sufdins
with two different permeabilitieg; andu,. The positioné of the straight interface between the two subdomés

random. This random interface can be represented by

{&zgquf with c0[0; h] (17)

X =0,(§,0=¢
We suppose thdtis a uniform random variable that varies in theiwal [0.4l — 0.61]. We focus on a fixed point A
with the coordinate  within the interval [0.4l — 0.6.1]. The analytical expression of the component feif@ x; axis

(other components equal obviously zero) of the ratigiiield at this point is given by:

Yot ;
H 0008 = — 25— witn £ < x,
%67? $) (18)
H (%0, ) =m with &> X,

We can notice that since the permeabilifiggndyu, are different, the magnetic field at the pointsAdiscontinuous

with respect ta@ at the valu& = x;, . We seek for an approximatida® (x,,,&) of H ,(x,,&)under the form (6):
b P
H (X0, &) =H (40, 6) =D W, (£) (19)
i=1

The coefficientsa; have been calculated numerically from (9). Thelgian of H%(x,,&) and H,(x,,&)in

function of & are given in Fig. 1. It shows clearly that the apgmation (19) is not appropriate. As expected, the

polynomial chaos can not account for the discoitiref the functionH ,(x,,,§) até =X

Generally, for a fixed point that can be locatedlifferent sub-domains depending on the randontfante realization
(point A in Fig. 1 can be located in,Br D, depending on the value &f the magnetic field is discontinuous at the
stochastic level. The discontinuity appears atvdlae ofé for which this point is located on the random ifgee. For
a point that remains in the same subdomains, this & discontinuity does not exist and a classpral/nomial chaos
expansion is well appropriate to approximate tledd§i. In the following, we will present some methdd deal with
this stochastic discontinuity problem. At first, wlscuss on the enrichment basis method and therthen

transformation method.



4.3. Enrichment basis method

We suppose that the discontinuity poéht & is a priori known. The main idea consists in addienrichment

functions into the space of approximation in theekastic dimension. The approximation (6) becomes:
os P K
G() =G (&) =D aW (&)+D y () (20)
i=1 i=1

where f,(§) is a discontinuous function at the poiht & andy; the coefficients to determine. The discontinuify o

G(¢&) can then be taken into account bg€) . It will speed up the convergence rate@f* (&) towardsG(§) (20). A

priori, we can usef, (§) of the following form:

(OO @) , i=1K (21)
where:
1 g<q,
T({)_{—l it £2¢, 2)

The determination of; andy; in (20) can be done by either regression methquaection method.
4.3.1. Regression method

Seeking for the stationary point of:
N P K
R(alva'27--a'p>1 ): Za)k (G@k )_zaiwi @rk )_Zyi fi (fk ))2 (23)
k=1 i=1 i=1

we obtain the following linear system of equations:

AN e

whereA, B, C are respectively BxP matrix, PxK matrix andKxK matrix. The vectoa is of dimensiorP andb of

dimensionK. The coefficients of the previous matrices aregity:

[Al; =Za&”’i(<‘k)‘4’j(fk) . [Bl; =Za&f,-(fk) wi( )

[, =3 @ (&) (&) 1 14, =Xq¥(EC(&) (25)

N

(b, :Z(‘ifi(fk)c‘(fk) ; [al,=a, and[y] =)

k=1
In this case, we have to perfoinevaluations of G.
4.3.2 Projection method

We seek for the orthogonal projection of G in thace S

S =span¥,(§), (&) withi= 1P j= 1K) (26)



which imposes that:

E[(G(&) -G (&)W (£)] =0 with i=1: P
E[(G(&€)-G™ (&) U, (§)| =0 with j=1:K

RN @

whereE, F, H are respectively BxP matrix, PxK matrix andKxK matrix. The vectoe is of dimensiorP andh of

(27)

Equation (27) leads to a linear system:

dimensionK. The vector of the unknown coefficients arandy of dimensiond andK respectively. The elements of
the previous matrices are given by:
[E], =E[W(H ¥ (H]=4; [A; =E[W(HT(J]

[H], =E[ £(H(H]; [d =E[qH¥(] (29)
[h, =E[G(& T(H ] ; [dl, =a and [y} =y

In (29) the coefficients of the matrixés F, andH can be evaluated analytically. However, for trerants ok andh
it requires several integral calculations. One watice that these integral calculations can be dameerically by (9)
but in some cases it requires some additional nicalereatments because of the irregularity (disiooity) of the
integrand. In [11], one technique that consistausing a recursive method and dividing the integlainain into
several “boxes” is proposed. However, in a highatision problem (large dimensidrof &) this integral calculation
method can be very time consuming.

4.4. Transformation method

The main idea of this method consists in usingn@doan mapping that transforms the original domaiwith random
inner interfaces into a deterministic reference dimmThe original problem is transformed into a maablem defined
on a reference domain E with modified behavior Ithveg become random fields (Fig. 2).

Actually, the permeabilities on the subdomains afr& not constant anymore but depend on the positid also on
the random variables
In [12, 21], it is shown that if it exists a onedne random mapping = X(x ) that transforms the domain §)(into
a deterministic domain E, we obtain:

Q(x,§) =Q'(X(x£).¢) (30)
where Q'is the solution of the scalar potential formulatiohthe problem defined on the domain E with the

modified permeability:



M (X, &) U(X(x &) IM(X,€) (31)

(X, &)= ot < 2]

with M (X, £) the Jacobian matrix of the random mapping. Thigreefce problem, defined on the deterministic
domain E with a random permeabiliiy( X, &) can be solved by using the two methods propos@diin3.1 and 3.2.

The magnetic field on the reference domain E cathée approximated by:
=}
H'(X,&) =H'P(X,&) = X H{(X)W,(§) (32)
i=1

From (3) we can deduce an approximation of the mgfield of the initial problem in LZ):

H"(x, &) = M (X(x&).E)H " (X(x£).6)  (33)
We can notice that for a given positidh= X, the Jacobian matrix M, &) and H'?(X,,&)are continuous with
respect to¢ but discontinuous with respect % for a given¢. Therefore, a discontinuity with respect goof
HP(x,&)in (33) at some pointg=x, can be taken into account naturally without angioliment basis technique. In
the transformation method, the main difficulty isetdetermination of the random mappkg X(x¢&) that

transforms the original domain §(to a deterministic reference domain E. In [21btmethods to determine this
random mapping were discussed. In the following,wilesee with the analytical example presentegant 4.2 how

the transformation method enables to deal natuvatly the stochastic discontinuity.
4.5 Comparison of both methods on the analytical example

4.5.1. Enrichment basis method

With the enrichment basis method, the magnetid #lpoint A (Fig. 1) is approximated by:
P
Ha06 &) =HY (6,6) =2 aW (&) +a'r(§) (34)
i=1

where 7(§) is defined by (22) witk&,=x,, for this case and;, a”the coefficient to determine (we use (20) withl).

4.5.2. Transformation method
To transform the random domain gp(into a deterministic domain E, one random mappiag be given by the
following expression and the corresponding domais @iven in Fig. 3:
X, E—Izl—gr with x <&
X, = (35)

I (-2
XlDZ(I _{)+ 2=¢6) with x > &

The modified permeabilities are obtained by (31):

10



X,, LX)+ 51 (X G—1 (X 1 (X 36
,U(lf)//()"'//(J),U{(j)luz(lf)z()()

where [,(X,)is the indicator function that is equal to 1 whe4 < I/2 and equal zero elsewhere and

I,(X,) =1-1,(X,). The magnetic field in the reference domain iegiby the following expression:

bty (x )+ o=

H/(X, &)= — Vo2 _ ol
0d) (16 + 1, =€) (g + = §)

1(Xy)  (37)

We can notice that the magnetic field in (37) istoauous with respect twhen the positioix, is given. Therefore, a
classical polynomial chaos expansion (32) can leel @and the magnetic field in the original domain ba obtained
by (33).

By using the transformation method, the discontinwiith respect t& of the magnetic field still exists naturally in the

original domain. Actually, if we focus on the righand side of (37), the indicator functidpéX,) and 1,(X,) that

are discontinuous in function of the positi¥n do not depend od in the reference domain. By contrast, in the

original domain D§), the functions!,(X,(x,,§))and 1,(X,(x,,§)) becomes dependant @and since they are

discontinuous, the fieldH is discontinuous. The discontinuities of the mdignéeld at some points (poinA for

example) in the domain B) with respect td is bore then by these two indicator functions. ig. B, we compare the
solution obtained by the transformation method i one obtained by the enrichment basis methed;am notice
that the two methods give very close result todkact solution (the relative error between solgiand the exact

solution is less than 0.2%).

5 Numerical example

We consider now a magnetostatic problem defined imndom domain &} presented in Fig. 4. The domain is
divided in 4 areas Di=1, 4 with relative permeabilitigs; = p, = n3 =1000 andu, = 1. We impose a magnetomotive
forcey = 2A betweerl"; andI', andB.n = 0 on the remaining boundary [22], [23]. The ut&i@rdimensions (Fig. 4)
are modelled by uniform independent random var@able (&, &) the radius of the two teeth in front of the di3k
These uniform random variables are defined in wakefa ; b]. The aim is to compare the magnetitdfig the points
Q1 @, Q; obtained by a regression method using two metfardihe calculation of the evaluation poiidts denoted
method 1 and method 2. The method 1 is based otrahsformation method. The magnetic field is espegl as a
classical polynomial chaos expansion. The methodngists in remeshing the domainfpfor each evaluation points
& In this case, depending on the location of thatpdhe magnetic field is approximated either bglassical

polynomial chaos expansion (section 3.1 and 3.Byan enriched basis (section 4.3).

11



The point Q is fixed but can be located either in & in D, depending on the value &f. The point Q is fixed also
but located only in domain fJor every realization of; and&,. The point Q is located on the surface of the tooth D
but remains inside this tooth. This point movesoading to the value of;.

We can notice that classical polynomial chaos i agpropriate to approximate the magnetic fieldhat points Q
and Q due to the fact that these points always remaithé same subdomain for any valuefand &. The
discontinuity at the stochastic level does not apper these points. We can notice also that thgnaic fields at the
point @Q; that become fixed in the reference domain canhbit&irmed directly by the method 1.

For the point @ if the method 1 is used then the discontinuityhaf magnetic field is naturally taken into account
However if the problem is solved directly in thentiin DE) (method 2) an enrichment basis method has tséé to
improve the approximation.

For the method 1, we use the reference domaintivttsame form of the original domain but we fix theensiong;

= &= (at+b)/2 (the random mapping is detailed in [2T]e order of the Legendre polynomials for eachedtision is
4. The number of polynomial used in (32) isBa& 15. For the enrichment basis technique we use latgendre

polynomials of order 4 in each dimension &wP=15in (20).

TABLEL. Mean value and standard deviation obtaimgdhethod 1 and by method 2

Point Q Point Q Point Q

Method 1 Method 2 Method 1 Method 2 Method 1 Method 2

Mean-value 1.45 1.47 34x%0 34x1C° 3.12 3.14

Standard deviation 1.49 1.50 2.13x*0 2.17 x 10 0.20 0.20

In Table 1, the mean and the standard deviatioth@fcomponent following axig, (Fig. 4) of the magnetic field
obtained by the method 1 and method 2 are giver. gdf of component following axis, of the magnetic field
(estimated using the kernel method) at the pointg@®and Q are given in Fig. 5. We can see that the two nutho
give close results. We can notice also that, Hergoint Q, the probability density function of the magndtald has

two modes due to its discontinuity in the stoclastvel.

6 Conclusion

We have discussed on the problem with geometriemainties. The difference between this problem tuedone on
the behavior law is that discontinuities in thechtastic dimension can arise. A classical polynowti@os is no longer

suited in this case. One possibility is to useeghdchment basis technique that adds “enrichmimittions in the

12



space of approximation to take into account thiatinuity. Or we can use the transformation me:tthat leads the
problem with geometric uncertainties to a probleithwncertainties on the behaviour law. We havenshthat for
the transformation method, no enrichment is reguita this paper, the transformation method is iggpto a 2D
problem. An application in a 3D problem of this e is possible and some numerical methods to meterthe
random mapping are available in the literature. fraasformation method is well fitted for small dehations (to
model the effect of the dimension variations inokerance interval for example). But, for high defations, the
transformation method can lead to significant nucaérerrors. In this case, the transformation métsbould be

combined for example with a remeshing method.
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Fig. 1: Left: magnetostatic problem on domai)DRight: magnetic field at point A with=1, ;=2 p,=1, P=8 and¢=I/2
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