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eri.duasse�ensam.eu

(Abbreviated title: Two-port desription of aousti bores)

ABSTRACT

For more than a deade, the digital waveguide model for musial instruments has been improved

through the simulation of ylindrial and onial bores. But several di�ulties remain, suh as

instabilities due to growing exponentials whih appear when two onial bores are onneted

with dereasing taper. In this paper, an alternative overoming these di�ulties is proposed

and an be extended to shapes other than ylinders, ones, and hyperboli horns. A two-port

model with more general state variables than usual traveling waves works e�iently for any

shape without disontinuities in ross-setion. The equations for onneting separate elements

at disontinuities make this two-port model appropriate for use in time domain simulation of

the physial behavior of the wind instrument and its interations with the player. The potential

of this new approah is illustrated by several detailed examples.

PACS numbers: 43.75.Ef, 43.60.Gk

1 Introdution

Two deades ago, sound synthesis by physial modeling of musial instruments, was at an embryoni stage

1,2
,

though already raising high expetations. Sine the end of the eighties

3,4
, this method of sound synthesis has

improved steadily, omputers have beome faster and faster, and nowadays, ommerial produts based on this

tehnology are available. In 1996, Smith

5
summed up the situation in this domain of researh and pointed out

several di�ulties. To reate a physial model of a wind instrument, a suitable model of a bore with varying

ross setion needs to be implemented. In this ontext, previous desriptions of wind instruments are brie�y

reviewed, separated into two groups.

The �rst approah onsiders a wind instrument to be omposed of a non-linear exitation mehanism - the

mouthpiee - and of a resonator - the body - whih is a linear element. The resonator is ompletely haraterized

by either its re�etion funtion or its input impedane

6−12
. This lumped approah, whih gives preise results

and a good math between experiments and theory for a given note, has a disadvantage: the properties of the

resonator are �xed. Thus, simulations lose to real playing situations, inluding realisti transients between

several notes, are di�ult to obtain. For instane, the dynami losing of tone-holes by �ngers or keys, or the

motion of a trombone slide, are not simulated.

For sound synthesis, the relationship between the player and the instrument needs to be taken into aount

4,13−17
,

inluding the ations of lips, tongue, blown air, and �ngers. A distributed approah is generally used. Beause

modularity is a key to this seond approah � a wind instrument is omposed of a mouthpiee, tubes, tone-holes,

a slide, a bell, ...et �, a tube has to be modeled as an element whih an be onneted at both ends to other

elements. In this approah, pieewise element modeling tehniques are generally employed for aousti bores

with varying ross-setion. Eah element is a two-port whih an be seen as a waveguide provided it is either

a ylinder, a trunated one, or a hyperboli horn. It has been shown that in a ylindrial bore, the aoustial

pressure wave is the sum of two traveling plane waves whih propagate in opposite diretions; the same holds

for a onial bore with two traveling spherial waves

6,8
. Further, previous works show

18
that in ylindrial and

hyperboli bores, ��ow waves propagate without dispersion�. Thus, �A onvenient model of a waveguide [an
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also be built℄ using pieewise hyperboli elements�

18
. In the ontext of a step by step alulation in disrete time

domain, this approah gives the digital waveguide

4
model whih is used by almost all the authors

4,13−23
. This

method is e�ient due to its very low omputational load.

The digital waveguide model was �rst oneived for a ylindrial bore without losses

4
. It has been pro-

gressively improved by the addition of frational delays

24,23,25
, viso-thermal losses, and onial bores

13−23
.

Nevertheless, di�ulties are enountered as soon as the bore is non-ylindrial

9
. The onneting equations with

separate elements are indeed rather ompliated, showing integral terms that may generate growing exponen-

tials, for instane in the ase of two onial bores onneted with �a dereasing taper �

10
. From another point

of view

18
, these instability phenomena orrespond to the existene of �trapped modes� in addition to normal

�traveling modes�.

In this paper, Setion II summarizes the traveling-wave approah and points out the soures of instabilities

in models using pieewise element tehniques for waveguides. Setion III presents a new stable two-port whih

is usable not only for ylinders, trunated ones, and hyperboli horns but also for tubes of arbitrarily varying

ross-setion. Finally, detailed examples illustrating the potential of this model are given in Setion IV.

2 Instabilities in waveguide modeling

2.1 Traveling signals in lossless bores

2.1.1 Pressure waves in ylindrial and onial bores

In a bore with varying ross-setion, a ommonly used model for lossless propagation is based on the following

equation, usually named the �Horn Equation�

26−30
:

∂2p

∂x2
− 1

c2
∂2p

∂t2
=

−S ′(x)

S(x)

∂p

∂x
(1)

where p is the mean aousti pressure in a ross-setion S of the bore, depending on absissa x and time t,

and  the sound speed (usually 340m · s−1
). It is assumed that the wave fronts are planar and that the bore is

relatively wide.

After the transformation p(x, t) = [S(x)]−1/2 ψ(x, t), Eq. (1) beomes:

∂2ψ

∂x2
− 1

c2
∂2ψ

∂t2
=

1√
S(x)

∂2
√
S(x)

∂x2
ψ (2)

When the seond term of Eq. (2) is zero, mainly in the ase of either a ylinder or a trunated one, Eq. (2)

beomes the standard wave equation, the solution of whih is the sum of two traveling waves, giving:

p(x, t) =
ψ+(x− c t)√

S(x)
+
ψ−(x+ c t)√

S(x)
(3)

Using a ommon approximation for the Euler equation, where u is the aousti volume veloity through

ross-setion S(x), and ρ0 the air mean density (usually 1.21 kg ·m−3
):

ρ0
∂u

∂t
+ S(x)

∂p

∂x
= 0 (4)

Equations (3) and (4) now give the volume veloity u:

u(x, t) =
S(x)

ρ0 c

[
ψ+(x− c t)− ψ−(x+ c t)√

S(x)
+
c S ′(x)

2S(x)

∫ t

−∞
p(x, σ) dσ

]
(5)
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2.1.2 Volume veloity waves in ylindrial and hyperboli bores

Similarly, a �Horn Equation for volume veloity� an be given

18,Eq.(3.126)
:

∂2u

∂x2
− 1

c2
∂2u

∂t2
=
S ′(x)

S(x)

∂u

∂x
(6)

After the transformation u(x, t) =
√
S(x)φ(x, t) , Eq. (6) beomes

18,Eq.(3.137)
:

∂2φ

∂x2
− 1

c2
∂2φ

∂t2
=

√
S(x)

∂2
[
S(x)−1/2

]

∂x2
φ (7)

In the ase of either a ylinder or a hyperboli horn, the solution of Eq. (7) is the sum of two traveling waves

whih gives:

u(x, t) =
√
S(x)φ+(x− c t) +

√
S(x)φ−(x+ c t) (8)

The mass onservation law being:

S(x)
∂p

∂t
+ c2ρ0

∂u

∂x
= 0 (9)

The aousti pressure an be dedued:

p(x, t) =
ρ0 c

S(x)

(√
S(x) (φ+(x− c t)− φ−(x+ c t))− c S ′(x)

2S(x)

∫ t

−∞
u(x, σ) dσ

)
(10)

A numerial model using digital waveguides in onjuntion with a deomposition into a pair of traveling

waves is dedued from Eqs. (3) and (5) when the air olumn is ylindrial or onial, or from Eqs. (8) and (10)

when the air olumn is hyperboli.

2.2 Desription of the waveguide model

Consider both ends (x = 0 and x = L) of a onial bore. Substituting q+(x, t) and q−(x, t) for
[
S(x)−1/2

]
ψ+(x−

c t) and
[
S(x)−1/2

]
ψ−(x+ c t), respetively, Eqs. (3) and (5) beome:

q+(L, t) =
1

ζ
q+(0, t− τ)

q−(0, t) = ζ q−(L, t− τ)

p(0, t) = q+(0, t) + q−(0, t)

u(0, t) =
S(0)

ρ0 c

[
q+(0, t)− q−(0, t) +

c S ′(0)

2S(0)

∫ t

−∞
p(0, σ) dσ

]

p(L, t) = q+(L, t) + q−(L, t)

u(L, t) =
S(L)

ρ0 c

[
q+(L, t)− q−(L, t) +

c S ′(L)

2S(L)

∫ t

−∞
p(L, σ) dσ

]

(11)

where L is the length of the tube, τ = L/c the propagation delay between the extremities, and ζ =

[S(L)/S(0)]1/2 the radii ratio.
The �rst two equations of System (11) de�ne a waveguide �lter inluding a double delay line and ra-

dius orretors

31
. These equations onstitute the uniform transmission-line and transformer omponents of

Fig. 1. Viso-thermal losses an be lumped in additional �lters. The transfer funtion of these �lters is

G(s) = exp (−β L√
s/r) for ylindrial tubes

32,33,20
, where s is the omplex variable of the Laplae trans-

formation, r =
√
S/π the radius, β =

[√
lv + (γ − 1)

√
lt
]
/
√
c (usually 1.6 × 10−5 s1/2) a onstant represent-

ing the viso-thermal e�ets, γ the ratio of spei� heats, lv and lt the harateristi lengths of the visous

and thermal e�ets

e.g. 7,34,35,33,11
. It an be extended to trunated ones by taking r as an equivalent radius

(e.g.

14 r = (rL − r0) [log(rL/r0)]
−1

where r0 and rL are the radii at the two ends).

The integral terms

36,14
in System (11) explain the instabilities enountered in the ase of onial bores, as

detailed in the following setion.

Similarly, a waveguide model of a hyperboli bore an be de�ned by substituting q+(x, t) and q−(x, t)
respetively for

√
S(x)φ+(x− c t) and

√
S(x)φ−(x+ c t). Integral terms appear in this ase also.
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Waveguide model
of a cone
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Figure 1: Blok-diagram of a onial bore where both the usual waveguide state variables q+, q− and the new state

variables p+, p− an be observed.

2.3 Instabilities in a juntion of two onial tubes

The instability phenomena assoiated with onial bores have been demonstrated through various approahes

5,10,21,18
.

In the ase of two onial tubes onneted with a ontinuous radius (f. Fig. 2), ontinuity of mean pressure,

onservation of volume veloity, and System (11) give after a Laplae transform:

Q+
left(s) +Q−

left(s) = Q+
right(s) +Q−

right(s) = PJ(s)

Q+
left(s)−Q−

left(s) +
c r

′

left

rJ s
P (s) = Q+

right(s)−Q−
right(s) +

c r
′

right

rJ s
PJ(s)

(12)

where pJ(t) is the mean pressure at the juntion, r′ the taper (derivative of r with respet to x ), and the

following onvention is adopted: if w is a signal or a vetor of signals, W = L(w) is its Laplae transform

de�ned for all s by W (s) =
∫ +∞
−∞ w(t) e−s t dt. The other quantities are de�ned in Fig. 2.

PSfrag replaements

rJ
x

q+left(t)

q−left(t)

q+right(t)

q−right(t)

D(s)

r
′

left

r
′

right

⇔

Q+
left(s)

Q−
left(s)

Q+
right(s)

Q−
right(s)

Figure 2: A juntion of two onial tubes with radius ontinuity and its blok-diagram.

D(s) =
{
1 + 2 rJ s/

[
c
(
r
′

right − r
′

left

)]}
−1

is the transmittane of a �rst-order �lter whih is unstable provided

r
′

right < r
′

left.

Éri Duasse Two-port desription of aousti bores



5

If the taper is not ontinuous, Eq. (12) beomes:

Q−
left(s) = Q−

right(s)−
[
1 +

2 rJ
c (r

′

right − r
′

left)
s

]−1 [
Q+

left(s) +Q−
right(s)

]

Q+
right(s) = Q+

left(s)−
[
1 +

2 rJ
c (r

′

right − r
′

left)
s

]−1 [
Q+

left(s) +Q−
right(s)

]
(13)

This equation (13) an be translated into the blok-diagram of Fig. 2, ontaining a �rst-order �lter

21
. This

�lter is stable for inreasing taper (r
′

right > r
′

left) and unstable for dereasing taper (r
′

right < r
′

left), as shown in

previous work

10
. Even if viso-thermal losses are introdued, instabilities remain.

The next setion presents an alternative to the usual traveling-waves approah. This approah suppresses

instabilities.

3 A two-port with physially obtainable traveling waves as inputs

and outputs

In this approah, traveling waves are not formulated inside the modeled bore. Instead they are formulated

outside it, in ylinders whih are onneted to it so that the ross setion is ontinuous (see Fig. 3a). This

lumped approah has already been used in the �re�etion funtion� haraterization of a resonator given by

Shumaher

1
: when a ylinder with an anehoi termination at one end is onneted to the input of the resonator

with ontinuity of ross-setion, the re�etion funtion orresponds to a re�eted traveling wave whih is the

response of the resonator to an inoming impulse wave. This approah di�ers from the usual pieewise element

modeling tehniques. It has been already mentioned in Savone

23
(pp. 119-123 and Fig. 3.25) to solve an example

problem of instability. Sine inoming and outgoing waves are physially obtainable in ylinders, with anehoi

terminations at unonneted ends in this ase, the modeled bore is neessary seen as a passive two-port (see

Fig. 3b) without any stability problem. It should be notied that, in the �traveling and trapped modes� approah

(Berners

18
, Setion 3.1.3), trapped modes disappear as soon as the bore has ylindrial terminations at both

ends.

3.1 Hypotheses

The following hypotheses are made

11
: the bore setion is quasi-irular; its area S(x) whih is not too small

33

(α = β c/(2
√
S
√
f) ≪ 1, where f is the frequeny) or too large, is a ontinuous funtion with moderate variations

(S ′(x) is de�ned almost everywhere and bounded). The tube is also quasi-retilinear or has only very smooth

bends. Subjet to these onditions we an adopt the plane wave approximation: the aousti pressure p and

veloity v are onsidered uniform over the setion S(x) as well as funtions of absissa x and time t. This is in
fat the mean over the bore, (f. Fig. 3a) obtained by integration over the boundary layer.

3.2 Equations

The following system is adopted in aordane with Polak

11,Eq.(41)
: the �rst equation is the mass onservation

law where ρ is the aousti density, the seond one is an extended approximation of the Euler equation and the

last one is the equation of state for the air.

S(x)
∂ρ

∂t
+ ρ0

∂u

∂x
= 0

ρ0
∂u

∂t
+ 2 ρ0 c

√
π

S(x)
β
∂

1
2u

∂t
1
2

+ S(x)
∂p

∂x
= 0

p = c2ρ

(14)

Two state variables are hosen to determine a numerial solution in the disrete time-domain. These state

variables may di�er from the ones used in traveling-wave approahes.
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(a)

PSfrag replaements
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Aousti veloities

bore with varying ross-setion ylinderylinder

x = 0 x = L

S(0)

x

S(L)

p+0 (t− x
c
)

p−0 (t +
x
c
)

p+L(t− x−L
c
)

p−L(t +
x−L
c
)

(b)

PSfrag replaements p̂+(0, f)
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ζ
ĥT (f)
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ĥ00(f) ĥLL(f)

p̂−(0, f)

ζ ĥT (f)

p̂−(L, f)

Figure 3: (a) A bore with varying ross setion. Both extremities of this bore are onneted to ylinders without

ross-setion disontinuities. Eah ylinder has an anehoi termination at its unonneted end. p+0 , p
−

0 , p
+

L and p−L
are traveling waves. The typial boundary layer in the air olumn is shown with the aousti veloity distribution.

(b) Blok-diagram of a two-port modeling the air olumn inside the main bore, with the inputs p+(0, t) = p+0 (t) and
p−(L, t) = p−L (t), and the outputs p−(0, t) = p−0 (t) and p+(L, t) = p+L(t).

3.3 Choosing the suitable state variables

The hoie of state variables, inluding input and output signals, is fundamental to a onvenient desription of

a physial phenomenon. The following example shows how the e�et of suh a hoie an explain phenomena

like non-ausality or growing exponentials, as pointed out in previous studies

9,18,37,38
. Suitable state variables

are then given for a bore with varying ross-setion.

3.3.1 Preliminary

Let a physial system be desribed by the following di�erential equation:

dw(t)

dt
− 500w(t) =

d v(t)

dt
+ 1500 v(t)

for all t < 0, v(t) = 0, w(t) = 0
(15)

Its input and output an a priori supposedly be hosen freely.

If v and w are respetively seleted as input and output, the system is unstable beause its impulse response

h1 ontains a growing exponential:

h1(t) = δ(t) + 2000 ǫ(t) e+500t
(16)

where δ is the Dira impulse pseudo-funtion

39
and ǫ the Heaviside step funtion.

On the ontrary, if w is the input and v the output, the system is stable beause its impulse response is:

h2(t) = δ(t)− 2000 ǫ(t) e−1500t
(17)
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It is also possible to take the input as sin = w + v and the output as sout = w − v. Equation (15) beomes:

d sout(t)

dt
+ 500 sout(t) = 1000 sin(t)

for all t < 0, sin(t) = 0, sout(t) = 0
(18)

In this third ase, the physial phenomenon is modeled as a stable �rst-order system and its impulse response

ontains neither growing exponentials nor pseudo-funtions. It an be notied that in any ase for a given input

ein and a given output s1 and for any number a, the output modi�ation s2(t) = s1(t)+ a ein(t) hanges neither
the stability nor the harateristi time of the model.

This example emphasizes that stability is not intrinsi to a given physial phenomenon but notably depends

on the hoie of the input, whih has to be physially obtainable. Pseudo-funtions an generally be eliminated

in the impulse response by modifying the output.

3.3.2 From the re�etion funtion to a two-port model

The re�etion funtion

1 hr of a woodwind resonator veri�es p−0 = hr ⋆p
+
0 where p+0 and p−0 are traveling pressure

waves in a lossless ylinder onneted to the entrane of the resonator, with ontinuity of ross-setion (f. the

left half of Fig. 3a), and the operator ⋆ is the onvolution (for all t, (hr ⋆ p
+
0 )(t) =

∫ +∞
−∞ hr(t− ξ) p+0 (ξ) dξ ). The

re�etion funtion is neessarily stable for physial reasons (the resonator is a passive system and the input is

physially obtainable) and an be onsidered as ausal if the following hypothesis is laid down: we an neglet

the thikness ε of the air slie between x = −ε and x = 0 (in the ylinder, just before the entrane of the

resonator) whih is diretly in�uened by the resonator shape.

Following this idea, the state vetor P =
(
p+

p−

)
is hosen to desribe the aousti state of the air olumn, the

signals p+ and p− being de�ned as follows:

p+(x, t) =
1

2

[
p(x, t) +

ρ0c

S(x)
u(x, t)

]

p−(x, t) =
1

2

[
p(x, t)− ρ0c

S(x)
u(x, t)

]
(19)

p(x, t) = p+(x, t) + p−(x, t)

u(x, t) =
S(x)

ρ0c

[
p+(x, t)− p−(x, t)

] (20)

These signals are traveling waves only in the model of a ylindrial bore without losses, i.e. p+(x, t) an be

written p+(x− c t) and p−(x, t), p−(x+ c t). In any other ase, p+ and p− are not traveling on the whole air

olumn but an be quali�ed as � loally-traveling� (in a slie of air of area S and in�nitesimal thikness). The

onneting equations of the bore with any other element of the instrument remain elementary (ontinuity of

mean pressure and �ow onservation) beause of Eq. (20), similar to the last four equations of System (11) but

without any integral term. Above all, the main advantage is that any piee of bore with a varying ross setion

an be modeled as a single two-port (f. Fig. 3b), whih is neessarily stable and ausal for reasons similar to

the re�etion funtion ase (f. Fig. 3a).

After a Fourier transform, Systems (14) and (20) give the following non-linear di�erential system:

∂

∂x
P̂ (x, f) = A [S(x), S ′(x), f ] P̂ (x, f) (21)

where P̂ (x, f) is the Fourier transform of the state vetor P at the frequeny f :

P̂ (x, f) =

[
p̂+(x, f)

p̂−(x, f)

]
=




∫ +∞

−∞
p+(x, t) e−2 i π f t dt

∫ +∞

−∞
p−(x, t) e−2 i π f t dt


 (22)
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and

A(S, S ′, f) =




−2 i π f

c
− (1 + i) β π

√
f√

S
− S ′

2S

(1 + i) β π
√
f√

S
+
S ′

2S
−(1 + i) β π

√
f√

S
+
S ′

2S

2 i π f

c
+

(1 + i) β π
√
f√

S
− S ′

2S


 (23)

Systems like Eq. (21) are generally solved by numerial tehniques. The transfer matrix T (f) =
[
T11

T21

T12

T22

]
of

the loally-traveling waves, from the end at x = 0 to that at x = L, veri�es P̂ (L, f) = T (f) P̂ (0, f) and an be

dedued from Eqs. (21) to (23).

The sattering matrix H(f) verifying

[
p̂−(0,f)

p̂+(L,f)

]
= H(f)

[
p̂+(0,f)

p̂−(L,f)

]
is then dedued from the transfer matrix:

H(f) =

[
ĥ00(f) ĥL0(f)

ĥ0L(f) ĥLL(f)

]
=

1

T22

[
−T21 1

T11T22 − T12T21 T12

]
(24)

where hjk is the impulse response from the end at x = j to the end at x = k, ĥjk its Fourier transform, and

Hjk its Laplae transform.

In the sattering matrix, reiproity implies the existene of a single transfer funtion ĥT (f):

ĥT (f) = ζ ĥ0L(f) =
1

ζ
ĥL0(f) (25)

(a)

PSfrag replaements

∅5mm ∅30mm ∅30mm

x = 0 x = 0.3m x = 1m

x

(b)

PSfrag replaements

P+
0 (s)

P−
0 (s)

1
1+σ1s

1
1−σ2s

1
6
G1(s)e

−τ1s

6G1(s)e
−τ1s G2(s)e

−τ2s

G2(s)e
−τ2s

R(s)

T (s)
Ur(s)

Figure 4: (a) A bore built with a trunated one and a ylinder (from Agulló et al.

9
, Fig. 10, p.1611) and (b) its

blok-diagram inluding the bell radiation.

It has to be notied that, in all simulated ases (f. e.g. Fig. 5), the four transmittanes in the sattering

matrix orrespond to ausal stable �lters with fast-dereasing impulse responses, ontrary to other methods

9,37,38
.

Aordingly, the present method is promising for time-domain simulations, all the more so as usual tehniques

of transfer matrix alulation

7
an be used for omplex resonators inluding disontinuities, side-holes or higher

modes.

In the ase of a onial bore, it an be observed in the next setion that these new state variables suppress

the instabilities pointed out above.

Éri Duasse Two-port desription of aousti bores



9

(a)

0 1 2 3 4 5 6

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

PSfrag replaements

t/τ
h
0
0
(t
)
(×

10
3
s−

1
)

(b)

0 1 2 3 4 5 6
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

PSfrag replaements

t/τ

h
T
(t
)
(×

10
3
s−

1
)

δ(t− τ)

()

0 1 2 3 4 5 6
-2

-1.5

-1

-0.5

0

0.5

1

PSfrag replaements

t/τ

h
L
L
(t
)
(×

10
3
s−

1
)

Figure 5: Continuous-time impulse responses (the alulation is made in Setion 3.4, Eq. (30)) for the onial part of

the bore whih is given in Fig. 4. τ ≈ 0.88ms and ζ = 6.

3.4 How instabilities vanish in the waveguide model of a onial bore

The blok-diagram of a onial tube in the waveguide approah is only the middle element of the blok-diagram

drawn on Fig. 1. In the present approah, the whole blok-diagram inludes juntions with virtual external

ylinders at both ends. On the left side rJ = r0, r
′
left = 0, r′right = (ζ−1) r0/L, and D(s) = [1 + 2 τ s/(ζ − 1)]−1

.

On the right side rJ = rL, r
′
left = (ζ − 1) rL/(ζ L) , r

′
right = 0, and D(s) = [1− 2 ζ τ s/(ζ − 1)]−1

.

The sattering matrix of the onial tube is dedued from Fig. 1:

H00(s) =
(ζ − 1) [ζ − 1− 2ζ τs+ (2τs− ζ + 1)G(s)2 e−2τs]

(2ζ τs− ζ + 1) (2τs+ ζ − 1) + (ζ − 1)2G(s)2 e−2τs

HT (s) =
ζ (2τs)2G(s) e−τs

(2ζ τs− ζ + 1) (2τs+ ζ − 1) + (ζ − 1)2G(s)2 e−2τs

HLL(s) =
(ζ − 1) [2τs+ ζ − 1− (2ζ τs + ζ − 1)G(s)2 e−2τs]

(2ζ τs− ζ + 1) (2τs+ ζ − 1) + (ζ − 1)2G(s)2 e−2τs

(26)
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If losses are ignored (i.e. G(s) = 1), H00, HT , and HLL are funtions ontinuous at s = 0: H00(0) =
(1− ζ2)/(1 + ζ2), HT (0) = 2ζ/(1 + ζ2), and HLL(0) = (ζ2 − 1)/(1 + ζ2). Eah pole (a+ i b)/τ (a 6= 0 or b 6= 0)
of H00, HT , or HLL veri�es:

(2ζa− ζ + 1 + i 2ζb) (2a+ ζ − 1 + i 2b) + (ζ − 1)2 e−2(a+i b) = 0 (27)

whih implies:

sin(2b)

2b
= e2a

[
1 +

4aζ

(ζ − 1)2

]
(28)

Consequently a < 0 and thus H00, HT , and HLL are transmittanes of stable �lters. System (26) an be written:

H00(s) =
ζ − 1

1− ζ − 2τs
− 4(τs)2

+∞∑

n=1

(ζ − 1)2n−1

(ζ − 1 + 2τs)n+1(ς − 1− 2ς τs)n
e−2n τs

HT (s) = −4ζ (τs)2
+∞∑

n=0

(ζ − 1)2n

(ζ − 1 + 2τs)n+1(ς − 1− 2ς τs)n+1
e−(2n+1) τs

HLL(s) =
1− ζ

ζ − 1− 2ζ τs
− 4ζ2(τs)2

+∞∑

n=1

(ζ − 1)2n−1

(ζ − 1 + 2τs)n(ς − 1− 2ς τs)n+1
e−2n τs

(29)

The initial parts of the three ausal impulse responses are dedued from Eq. (29) as follows:

h00(t) = 1−ζ
2τ

exp
[
1−ζ
2τ
t
]
, 0 6 t < 2τ

= ζ−1
4e τ(1+ζ)2

{
2
[
eζ(1 + ζ + ζ2)− e(1 + ζ)2

]
− eζ(ζ2 − 1) t

τ

}
exp

[
1−ζ
2τ
t
]

+ e(1−ζ)/ζ(ζ−1)
2τζ(1+ζ)2

exp
[
ζ−1
2ζτ

t
]
, 2τ 6 t < 4τ

. . . etc.

hT (t)− δ(t− τ) = 0 , 0 6 t < τ

= e(ζ−1)/2ζ (1−ζ)
2τ (ζ+1)

exp
[
1−ζ
2τ
t
]

+ e(1−ζ)/(2ζ)(ζ−1)
2τ ζ (ζ+1)

exp
[
ζ−1
2ζτ

t
]
, τ 6 t < 3τ

. . . etc.

hLL(t) = ζ−1
2ζτ

exp
[
ζ−1
2ζτ

t
]
, 0 6 t < 2τ

= 1−ζ
4e ζ τ(1+ζ)2

{
2
[
e1/ζ(1 + ζ + ζ2)− e(1 + ζ)2

]
+ e1/ζ(ζ2 − 1) t

τ

}
exp

[
ζ−1
2ζτ

t
]

+ eζ−1ζ2(1−ζ)
2τ(1+ζ)2

exp
[
1−ζ
2τ
t
]
, 2τ 6 t < 4τ

. . . etc.

(30)

A numerial example is given below.

4 Examples

Three ases are hosen to show the potential of this improved two-port model: the �rst one, taken from

Agulló et al.

9
, produes some instability e�ets using the traveling-wave approah

5
and inludes ylindrial and

onial tubes; the textbook ase of the exponential horn follows; and �nally, a omplex pro�le of a trumpet bore

taken from van Walstijn and Smith

17
is treated.

For a non-ylindrial bore, the numerial determination of the transfer matrix at frequenies lying between

0 and fs/2 (fs is the sampling frequeny), is made by the Fourth-Order Runge-Kutta Algorithm with an auto-

adaptive step

40
applied to Eqs. (21) and (23). This numerial method is omputationally rather expensive but

alulation has to be performed only one for a given bore. Exat and numerial alulations of the sattering

matrix are ompared below for both a onial bore and an exponential horn.
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Digital �lter design methods are numerous and generally pay great attention to the frequeny response

magnitude but do not take into aount the phase whih is very important in aousti looped systems. As

written in van Walstijn and Smith

17
, �there is a need for more e�etive digital �lter tehniques in this ontext�.

Thus, basi weighted least-squares (WLS) design for Finite Impulse Response (FIR) digital �lters

41−46
is used

in these examples to obtain time domain responses. It is obvious that other e�ient methods

17
of digital �lter

design an be used.

Re�etion funtion alulation is performed entirely in the disrete time-domain, using the Levine and

Shwinger formulae

47
to design an FIR digital �lter for bell radiation

14
(f. Fig. 4b).
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)
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Figure 6: hr, the re�etion funtion of the bore (f. Fig. 4) at its small end, with a re�etion, at the other end, whih

is alulated by using the Levine and Shwinger formulae

43
. This funtion is ompletely alulated in the disrete

time-domain with ausal digital �nite impulse response �lters whih model the onial part of the bore, the ylindrial

one and the radiation. The propagation delay between both ends is τ ≈ 2.94ms.

4.1 Disrete time alulation of the re�etion funtion of a one-ylinder ombi-

nation

As mentioned in the introdution and shown above in Setion 2.3, when several bores are onneted with

�dereasing widening rate�

9
as in Fig. 4 taken from Agulló et al.

9
(Fig. 10), stability problems with growing

exponentials appear in the usual models. With the improved two-port model, these stability artifats vanish.

The impulse responses h00, hT , and hLL (f. Eq. (30)) of the onial part of the bore are drawn in Fig. 5. The

re�etion funtion of the bore at its small end is drawn in Fig. 6.

Several observations an be made on Fig. 5 about the onial part. For a non-ylindrial bore, it is qual-

itatively possible to onsider, in an air slie of in�nitesimal thikness dx, that every traveling wave has an

in�nitesimal re�etion whih is proportional to −dS/S. At the smaller end, the beginning of the impulse

response h00 (re�etion) is negative and inreasing with t beause −dS/S is negative and inreasing with x.
For similar reasons, at the larger end, hLL is positive and inreasing between 0ms and 2τ . Conerning the

transmission impulse response after the τ -delayed perfet impulse δ, whih is obtained in waveguide models

without losses, an additional e�et of the taper an be observed after τ . In frequeny domain, a good agreement

appears on Fig. 7 between the waveguide and numerial tehniques. Nevertheless, it seems that the equivalent

radius tehnique

14
in the waveguide approah of onial bores overestimates the viso-thermal losses in both

transmission and re�etion at the larger end.
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Figure 7: Moduli of transmittane for the onial part of the bore shown in Fig. 4, aording to the waveguide approah

(f. Setion 3.4, Eq. (26), dashed line) and the numerially alulated one from Eqs. (21) and (23) (unbroken line).

4.2 The exponential horn

Let an exponential horn be de�ned by the radius formulae r(x) = r0 exp(Λx/L) where Λ = log(ζ). In this

lassial ase, Eqs. (21) and (23) admit exat solutions, provided losses terms are negleted, and give the

following transmittanes in the sattering matrix:

HLL(s) = −H00(s) =
Λ

[
1− e−2

√
(τs)2+Λ2

]

√
(τs)2 + Λ2

[
1 + e−2

√
(τs)2+Λ2

]
+ τs

[
1− e−2

√
(τs)2+Λ2

]

HT (s) =
2
√
(τs)2 + Λ2 e−

√
(τs)2+Λ2

√
(τs)2 + Λ2

[
1 + e−2

√
(τs)2+Λ2

]
+ τs

[
1− e−2

√
(τs)2+Λ2

]
(31)

A omparison between numerial alulation with losses and Eq. (31) is made in Fig. 8 for a horn of 68 cm
length, 3mm and 3 cm radii (ζ = 10 and τ = 2ms), with a good agreement. The observed ut-o� frequeny
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Figure 8: Transmittane modulus of an exponential horn of 68 cm length, 3mm and 3 cm radii (ζ = 10 and τ = 2ms).
Comparison between exat (without losses, dashed line) and numerial (unbroken line) alulations.

agrees with the expeted value fc = Λ/(2π τ) ≈ 183.2Hz. In the time-domain, the impulse responses an

be given using the following property: the funtion de�ned for all s by

[
(
√
s2 + Λ2 − s)/Λ

]n
is the Laplae

transform of the signal Kn de�ned for all t by Kn(t) = (n/t) Jn(Λt) ǫ(t) provided n is a positive integer, where

Jn is the Bessel funtion of the �rst kind

48
.

After the substitution of:

+∞∑

n=0

(−1)n
[√

(τs)2 + Λ2 − τs
]2n+1

Λ2n+2
e
−2n

[√
(τs)2+Λ2−τs

]

e−2nτs
(32)

for

{√
(τs)2 + Λ2

[
1 + e−2

√
(τs)2+Λ2

]
+ τs

[
1− e−2

√
(τs)2+Λ2

]}−1

, Eq. (31) beomes:

HLL(s) = −H00(s) =
1

Λ
(
√

(τs)2 + Λ2 − τs) + 2
+∞∑

n=1

(−1)n B2n e
−2nτs

HT (s) = 2

+∞∑

n=0

(−1)n B2n+1 e
−(2n+1)τs

(33)

where

Bm =
1

Λm+1

+∞∑

k=0

(−m)k

k !

{
Λ2

[√
(τs)2 + Λ2 − τs

]m+k−1

− τs
[√

(τs)2 + Λ2 − τs
]m+k

}
(34)
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After an inverse Laplae transform, Eqs. (33) and (34) give with the onvention K0 = 0:

hLL(t) = −h00(t) =
1

τ
K1

(
t

τ

)
+

2

τ

+∞∑

n=1

(−1)n b2n(t− 2n τ)

hT (t) = δ(t− τ) +
2

τ

+∞∑

n=0

(−1)n b2n+1 [t− (2n+ 1)τ ]

(35)

where

bm(t) =
+∞∑

k=0

(−mΛ)k

k !

[
Km+k−1

(
t

τ

)
− 1

Λ
K ′

m+k

(
t

τ

)]
(36)

The ontinuous-time impulse responses are drawn in Fig. 9. They are similar to disrete-time ones whih

are numerially obtained by inverse disrete Fourier transform.
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Figure 9: Continuous-time impulse responses of an exponential horn of 68 cm length, 3mm and 3 cm radii (ζ = 10
and τ = 2ms).
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4.3 A omplex bore pro�le
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Figure 10: (a) Pro�le of a trumpet bore (from Fig. 3 in van Walstijn and Smith

17
). The resonator is divided into three

parts, from left to right: the �mouthpipe� (from

1© to

2©) is a onial bore of 165mm length, 4.54mm and 5.65mm
radii; the �main bore� (from

2© to

3©) is a ylindrial bore, of 415mm length and 5.65mm radius; the third part (from

3© to

4©) is the beginning, whih radius is less than 10mm, of the ��ared bell �; the length of this trunated �ared bell

is 510mm. (b) Re�etion impulse response h00 of the �ared bell at its small end

3© (τ34 = 1.5ms). () Re�etion

funtion of the whole trumpet bore at the entrane of the mouthpipe

1© (τ14 ≈ 3.2ms).
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The two-port model an also be used for an arbitrarily varying bore: the pro�le of a trunated trumpet

bore, taken from van Walstijn and Smith

17
(Fig. 3), is given in Fig. 10a. The impulse response h00 (re�etion)

of the trunated �ared bell at its small end (mark

3©), is given in Fig. 10b. Beause �trajetories� with a single

re�etion are predominant, the pro�le of the bore an almost be followed on the urve of h00, by onverting

length into time (oe�ient 2/c). The propagation delay between both ends is τ34 = 1.5ms. It an be observed

that eah small pro�le irregularity produes a signi�ant e�et on the h00 urve.
The re�etion funtion of the whole trunated trumpet bore at the entrane of the mouthpipe (mark

1©) is

drawn on Fig. 10. The total propagation delay between both ends is τ14 ≈ 3.21ms. Between 0 and 0.3 τ14, the
negative re�etion inside the mouthpipe (divergent one) is pereptible. Between 0.3 τ14 and 1.06 τ14, re�etions
are negligible (ylindrial part). Between 1.06 τ14 and about 2 τ14, the re�etion impulse response h00 of the

trunated �ared bell is reognizable. The negative peak, whih appears at 2 τ14 and reahes a magnitude of about

1.5 × 104 s−1
, results from the re�etion at the opening end (mark

4©). After about 2 τ14, multiple re�etions

inside the tube are superimposed, the e�ets of the three parts of the bore are more di�ult to di�erentiate,

even if a kind of (2 τ14, 0)-entered symmetry an be observed and qualitatively explained by the predominane

of trajetories ontaining three re�etions.

5 Conluding remarks

This new two-port model is promising for aurate time-domain simulation of musial wind instruments with an

arbitrary bore shape. The present approah based on loally-traveling plane waves may be seen as an alternative

to waveguide �lter approahes whih inlude pieewise element modeling.

This approah improves time-domain modeling of bores with varying ross setion but it is only an element

of a omplete physial model. This global model ould lead to an implementation of a tool for instrument

makers, whih may enable them to listen to an instrument before it is manufatured. However, improvements

are still neessary in the physial modeling of other elements of wind instruments, inluding their interations

with the player.
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