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Abstrat

A tensor Hankel transform (THT) is de�ned for vetor �elds, suh as displaement, and seond-order tensor

�elds, suh as stress or strain. The THT establishes a bijetion between the real spae and the wave-vetor

domain, and, remarkably, annot be redued to a salar transform applied separately to eah omponent.

One of the advantages of this approah is that some standard elastiity problems an be onisely rewritten

by applying this tensor integral transform oupled with an azimuthal Fourier series expansion. A simple and

ompat formulation of the boundary onditions is also ahieved.

Thanks to the THT, we obtain for eah azimuthal wavenumber and eah azimuthal diretion exatly the

same wave equation as for a standard 2D model of elasti wave propagation. Thus, waves similar to the standard

plane P, SV and SH waves are naturally found.

Lastly, the THT is used to alulate the ultrasoni �eld in an isotropi ylindrial leaky waveguide, the walls

of whih radiating into a surrounding elasti medium, by using a standard sattering approah.

Keywords

Cirular symmetri waveguide, Cylindrial oordinates, Elasti Wave Sattering, P, SV and SH waves, Tensor

Hankel transform, 2D Fourier transform.

1 Introdution

The modeling of elasti wave propagation in irularly symmetri media an be done using spae integral

transform in ylindrial oordinates and does not neessitate a potential formulation. In this ontext, The

Hankel transform of a salar �eld has been well known for a long time. It appears when the 2D Fourier

transform of a salar �eld is rewritten in polar oordinates (e.g., [1℄, [2℄). Similarly, a tensor Hankel transform

(THT) an be naturally de�ned for vetor �elds and matrix �elds. Even if we believe that suh a tensor

integral transform was probably published between 1920 and 1960, we did not �nd in the literature neither the

elaboration of the onept of THT nor the Hankel transform of a seond-order tensor. In our knowledge, the

Hankel transform of a vetor �eld was introdued in eletromagnetism only thirty years ago ([3℄, followed by

[4℄, [5℄). We only found it in a reent book [6℄ in an impliit formulation for elastiity appliations. In the �rst

setion, de�nitions and properties of the THT are given for salar, vetor, and matrix �elds.

In the seond setion, the THT is applied to elastodynamis. By using it, some standard elastiity problems

an be onisely rewritten. A diret link is notably established between a ylinder in the radial-wavenumber( k )/

axial-position( z )/frequeny(ω ) domain and the standard 2D problem. Thus, the plane P, SV and SH waves

an be transposed for a irularly symmetri geometry, for eah azimuthal wavenumber and eah azimuthal

diretion.
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The THT is also onvenient for easily ahieving the ultrasoni �eld generated in an elasti half-spae by a

transduer in ontat with it. A diret appliation is the modeling of propagation in an isotropi ylindrial

leaky waveguide, the walls of whih radiating into a surrounding elasti medium. Indeed, the inident wave

generated at the end of the ylinder is �rstly alulated in the (k, z, ω)�domain and then rewritten in the

(r, kz , ω)�domain, kz denoting the axial wavenumber. Lastly, the re�eted (guided) wave in the ylinder and

the transmitted wave radiated into the surrounding media are dedued. Only priniples are desribed here.

Detailed alulation, approximations and numerial results are given in a related paper [7℄.

2 De�nitions

2.1 Hankel transform of a salar �eld

The standard 2D Fourier transform of a salar �eld φ is an integral transform whih establishes a orrespondene

between φ in the real spae and φ̂ in the wave-vetor domain, both in Cartesian oordinates (see Fig.1):

φ̂(k) =
1

2π

∫

R2

φ(x) e ik ·x
dx

︸ ︷︷ ︸

m
︷ ︸︸ ︷

φ(x) =
1

2π

∫

R2

φ̂(k) e− ik ·x
dk ,

(1)

where x, k and the dot denote the position

(
x
y

)

, the wave-vetor

(
kx
ky

)

, and the standard salar produt,

respetively.
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Figure 1: Cartesian and polar oordinates (a) in the real spae and (b) in the wave-vetor domain.

In polar oordinates (see Fig.1), the azimuthal Fourier series expansion of the salar �eld φ leads to:

φ(x) = φ0 (r) +
+∞∑

n=1

cos (n θ) φ⊢
n (r) + sin (n θ) φ⊥

n (r) , (2.a)

with

φ0 (r) =
1

2π

∫ π

−π

φ(x)dθ , (2.b)

φ⊢
n (r) =

1

π

∫ π

−π

cos (n θ) φ(x)dθ , (2.)

φ⊥
n (r) =

1

π

∫ π

−π

sin (n θ) φ(x)dθ . (2.d)
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The 2D Fourier transform (1) beomes:

φ̂(k) =

∫ +∞

0

[
1

2π

∫ π

−π

φ(x) e ik r sin(α−θ)
dθ

]

rdr (3)

and, by using the integral representation (e.g., [8, �17.23℄) of the Bessel funtion of the �rst kind:

Jn(a) =
1

2π

∫ π

−π

e

i ( a sin(β)−n β )
dβ (4)

and the property J−n(a) = (−1)nJn(a), we obtain after some algebra the azimuthal Fourier series expansion of

φ̂:

φ̂(k) = Φ0(k) +

+∞∑

n=2
evenn

cos(nα) Φ⊢
n (k) + sin(nα) Φ⊥

n (k)

+ i

+∞∑

n=1
oddn

− cos(nα) Φ⊥
n (k) + sin(nα) Φ⊢

n (k) ,

(5)

the oe�ients of whih being the nth
-order Hankel transform (e.g., [1℄, [2℄) of the oe�ients in (2):

Φ⊥,⊢
n (k) =

∫ +∞

0

φ⊥,⊢
n (r)Jn(k r) rdr

︸ ︷︷ ︸

m
︷ ︸︸ ︷

φ⊥,⊢
n (r) =

∫ +∞

0

Φ⊥,⊢
n (k)Jn(k r) k dk .

(6)

Note the dependene on the parity of n in (5) beause the azimuth of the wave-vetor −k is α+π.

2.2 THT of a �rst-order tensor �eld

A vetor �eld u and its 2D Fourier transform û are written in ylindrial oordinates:

u(x) =





ur(x)
uθ(x)
uz(x)



 and û(k) =





iUk(k)
iUα(k)
Uz(k)



 =





i

i

1



⋆U(k) , (7)

the hange-of-basis matries being (see Fig.1):

R =

(
cos θ −sin θ 0
sin θ cos θ 0
0 0 1

)

and S =

(
sinα cosα 0
−cosα sinα 0

0 0 1

)

, (8)

and ⋆ denoting the elementwise produt.

Coe�ients i in (7) ensure that eah omponent Uξ of U satis�es Uξ(−k) = U∗
ξ (k) (omplex onjugate) if

the vetor �eld u is real-valued.

The 2D transform of the vetor �eld u is:

û(k) =

∫ +∞

0

[
1

2π

∫ π

−π

e

ik r sin(α−θ) STRu(x) dθ

]

rdr , (9)

Its azimuthal Fourier series expansion gives:

u(x) = u0(r) +

+∞∑

n=1

Cos(nθ) ⋆ u⊢
n (r) + Sin(nθ) ⋆ u⊥

n (r) , (10)
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where Cos(a)=

(
cos a
sin a
cos a

)

, Sin(a)=

(
sin a

−cos a
sin a

)

.

After some algebra, (4), (9) and (10) yield the azimuthal Fourier series expansion of U(k):

U(k) = U0(k) +
+∞∑

n=2
evenn

Cos(nα)⋆U⊢
n (k) + Sin(nα)⋆U⊥

n (k)

+ i

+∞∑

n=1
oddn

−Cos(nα)⋆U⊥
n (k) + Sin(nα)⋆U⊢

n (k) ,

(11)

Eah vetor U⊥,⊢
n is the nth

-order vetor Hankel transform [3℄ [4℄ [5℄ of the vetor u⊥,⊢
n :

U⊥,⊢
n (k) =

∫ +∞

0

Jn(k r)u
⊥,⊢
n (r) r dr

︸ ︷︷ ︸

m
︷ ︸︸ ︷

u⊥,⊢
n (r) =

∫ +∞

0

Jn(k r)U
⊥,⊢
n (k) k dk ,

(12)

where the matrix Jn is de�ned by:

Jn(a)=







Jn+1(a)−Jn−1(a)
2

Jn+1(a)+Jn−1(a)
2

0
Jn+1(a)+Jn−1(a)

2
Jn+1(a)−Jn−1(a)

2
0

0 0 Jn(a)






. (13)

Note that the THT of a real-valued �eld is real-valued and that the Planherel-Parseval identity [3℄ beomes:

∫ +∞

0

un(r) · vn(r) rdr =

∫ +∞

0

Un(k) ·Vn(k) k dk . (14)

2.3 THT of a seond-order tensor �eld

A matrix �eld m and its 2D Fourier transform m̂ are written in ylindrial oordinates:

m(x) =

[
mrr(x) mrθ(x) mrz(x)
mθr(x) mθθ(x) mθz(x)
mzr(x) mzθ(x) mzz(x)

]

(15)

and

m̂(k)=

[
Mkk(k) Mkα(k) iMkz(k)
Mαk(k) Mαα(k) iMαz(k)
iMzk(k) iMzα(k) Mzz(k)

]

=

(
1 1 i

1 1 i

i i 1

)

⋆M(k) , (16)

suh that Mξζ(−k) = M∗
ξζ(k) if m is real-valued.

The 2D transform of the matrix �eld m is:

m̂(k)=

∫ +∞

0

[
1

2π

∫ π

−π

e

ik r sin(α−θ) STRm(x)RTS dθ

]

rdr . (17)

Its azimuthal Fourier series expansion yields:

m(x)=m0(r) +
+∞∑

n=1

Cos(nθ) ⋆m ⊢
n (r) + Sin(nθ) ⋆m⊥

n (r) , (18.a)
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where

Cos(a)=

(
cos a sin a cos a
sin a cos a sin a
cos a sin a cos a

)

(18.b)

and

Sin(a)=

(
sin a −cos a sin a
−cos a sin a −cos a
sin a −cos a sin a

)

. (18.)

With the same approah as above, the matrix Hankel transform an be de�ned as follows:

M⊥,⊢
n (k) =

∫ +∞

0

Jn(k r) :m
⊥,⊢
n (r) r dr

︸ ︷︷ ︸

m
︷ ︸︸ ︷

m
⊥,⊢
n (r) =

∫ +∞

0

Jn(k r) :M
⊥,⊢
n (k) k dk ,

(19)

where the olon denotes the tensor produt suh that (T :P )ij =Σ
k,l

Tijkl Pkl, T and P being fourth-order and

seond-order tensors, respetively. The fourth-order symmetri tensor Jn is de�ned by (�(a)� is omitted in

Jζ(a) ):

Jn,··11(a)=







−Jn−2+2Jn−Jn+2

4
Jn−2−Jn+2

4
0

Jn−2−Jn+2

4
Jn−2+2Jn+Jn+2

4
0

0 0 0






, (20.a)

Jn,··22(a)=







Jn−2+2Jn+Jn+2

4
−Jn−2+Jn+2

4
0

−Jn−2+Jn+2

4
−Jn−2+2Jn−Jn+2

4
0

0 0 0






, (20.b)

Jn,··33(a)=







0 0 0

0 0 0

0 0 Jn






, (20.)

Jn,··23(a)=JT
n,··32(a)=







0 0 Jn−1+Jn+1

2

0 0 −Jn−1+Jn+1

2

0 0 0






, (20.d)

Jn,··13(a)=JT
n,··31(a)=







0 0 −Jn−1+Jn+1

2

0 0 Jn−1+Jn+1

2

0 0 0






, (20.e)

Jn,··12(a)=JT
n,··21(a)=







Jn−2−Jn+2

4
−Jn−2+2Jn−Jn+2

4
0

−Jn−2−2Jn−Jn+2

4
−Jn−2+Jn+2

4
0

0 0 0






. (20.f)
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3 Appliation to elastodynamis

Let us apply now the THT to the displaement �eld u and the stress tensor σ in an isotropi elasti medium of

mass density ρ, longitudinal and transverse veloities cL , cT , submitted to an external fore density f .

3.1 Formulation in the ( k , z , ω ) domain

Beause the stress tensor is symmetri, the matrix Hankel transform an be rewritten by using Voigt notation:

σ⊥,⊢
n (r, z, ω)=















σ⊥,⊢
n,rr

σ
⊥,⊢
n,θθ

σ⊥,⊢
n,zz

σ
⊥,⊢
n,θz

σ⊥,⊢
n,rz

σ
⊥,⊢
n,rθ















=

∫ +∞

0

Jn(k r)















Σ⊥,⊢
n,kk(k, z, ω)

Σ⊥,⊢
n,αα(k, z, ω)

Σ⊥,⊢
n,zz(k, z, ω)

Σ⊥,⊢
n,αz(k, z, ω)

Σ⊥,⊢
n,kz(k, z, ω)

Σ⊥,⊢
n,kα(k, z, ω)















k dk , (21)

the (non-symmetri) matrix Jn(a) being:















−Jn−2+2Jn−Jn+2

4
Jn−2+2Jn+Jn+2

4
0 0 0 Jn−2−Jn+2

2

Jn−2+2Jn+Jn+2

4
−Jn−2+2Jn−Jn+2

4
0 0 0 −Jn−2+Jn+2

2

0 0 Jn 0 0 0

0 0 0 −Jn−1+Jn+1

2
Jn−1+Jn+1

2
0

0 0 0 Jn−1+Jn+1

2
−Jn−1+Jn+1

2
0

Jn−2−Jn+2

4
−Jn−2+Jn+2

4
0 0 0 −Jn−2−Jn+2

2
















. (22)

One an demonstrate that, by using the THT, the Hooke's law (23) and the Newton's seond law (24)

(e.g., [9℄ [10℄) an be simply expressed in the ( k , z , ω )-domain:

1

ρ
Σ⊥,⊢

n =











0 0 c2L−2c2T
0 0 c2L−2c2T
0 0 c2L
0 c2T 0
c2T 0 0
0 0 0











∂zU
⊥,⊢
n + k











c2L 0 0
c2L−2c2T 0 0
c2L−2c2T 0 0

0 0 0
0 0 −c2T
0 c2T 0











U⊥,⊢
n , (23)

− ρω2U⊥,⊢
n =





000010
000100
001000



 ∂zΣ
⊥,⊢
n + k





−10000 0
0 0000−1
0 0001 0



Σ⊥,⊢
n + F⊥,⊢

n . (24)

3.2 The standard 2D problem

Note that (23) and (24) are independent from n and, remarkably, exatly the same as for the standard 2D problem

(y-invariant) in Cartesian oordinates, � (k, z, ω)� being omitted in U⊢,⊥
2D (k, z, ω) and Σ⊢,⊥

2D (k, z, ω) :

u(x, z, ω)=

∫ +∞

0

(
sin kx
cos kx
cos kx

)

⋆U⊢
2D +

(
− cos kx
sin kx
sin kx

)

⋆U⊥
2D dk , (25)

and

σ(x, z, ω)=

∫ +∞

0









cos kx
cos kx
cos kx
cos kx
sin kx
−sin kx









⋆Σ⊢
2D +









sin kx
sin kx
sin kx
sin kx
−cos kx
cos kx









⋆Σ⊥
2D dk . (26)
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3.3 Solutions

In any ase, (23) and (24) leads to the ordinary di�erential system ( 2D, n, ⊢ and ⊥ omitted):







c 2
T ∂z 2Uk −k (c 2

L−c 2
T )∂zUz +(ω2−k2c 2

L)Uk = −1
ρ
Fk

c 2
T ∂z 2Uα,y +(ω2−k2c 2

T )Uα,y=
−1
ρ
Fα,y

c 2
L ∂z 2Uz +k (c 2

L−c 2
T )∂zUk+(ω2−k2c 2

T )Uz = −1
ρ
Fz .

(27)

The solutions of (27) without soure-term are:

U±
P (k, z, ω) = a±P (k, ω) e

∓ikz,L(k,ω) z

(
k
0

±i kz,L(k, ω)

)

, (28)

U±
SV (k, z, ω) = a±SV (k, ω) e

∓ikz,T (k,ω) z

(
±i kz,T (k, ω)

0
k

)

, (29)

U±
SH(k, z, ω) = a±SH(k, ω) e

∓ikz,T (k,ω) z

(
0
k
0

)

, (30)

where the axial wavenumber is:

kz,X(k, ω) =







sign(ω)

√

ω2

c2X
− k2 , k < cX |ω|

−i

√

k2 −
ω2

c2X
, k > cX |ω|

. (31)

The latter solutions orrespond in the 2D ase to the standard P, SV and SH waves, respetively. In the

initial problem, for eah azimuthal wavenumber n and for eah azimuthal diretion ⊢ or ⊥, equivalent waves
are de�ned and should be worthy of thorough study. Thus, they are used below to alulate the response of the

half-spae (z > 0) to a surfae fore-soure f0(x, ω) loated on the boundary (z = 0).

3.4 Response of a half-spae to a surfae fore-soure

After an azimuthal Fourier series expansion and a THT, the problem to solve in the ( k , z , ω )-domain is to

�nd the oe�ients a
⊢,⊥
n,P , a

⊢,⊥
n,SV , a

⊢,⊥
n,SH suh that the THT of the displaement u⊢,⊥

n (r, z, ω) (de�ned in (10)) is

rewritten as follows:

U⊢,⊥
n (k, z, ω)=





k e−ikz,L z
i kz,T e

−ikz,T z 0
0 0 k e−ikz,T z

i kz,L e
−ikz,L z k e−ikz,T z 0










a
⊢,⊥
n,P

a
⊢,⊥
n,SV

a
⊢,⊥
n,SH




 , (32)

and that the boundary ondition:

F⊢,⊥
0,n (k, ω)=ρ c2T





2 i k kz,L k2−k2
z,T 0

0 0 i k kz,T
k2−k2

z,T 2 i k kz,T 0










a
⊢,⊥
n,P

a
⊢,⊥
n,SV

a
⊢,⊥
n,SH




 . (33)

is satis�ed. This problem is easy to solve if the determinant of the square matrix in (33) is di�erent from zero,

i.e. the Rayleigh waves are not exited: F
⊢,⊥
0,n (k,±cRk)=

→

0 , cR being the Rayleigh-wave veloity (e.g., [9℄ [10℄).
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Figure 2: A half-ylinder surrounded by a half-in�nite elasti medium and exited at its end.

3.5 Case of a ylinder embedded in an elasti media

The previous setion summarizes the �rst step to alulate, by using a standard sattering approah, the �eld

generated into a irular half-ylinder surrounded by a half-in�nite elasti medium by a surfae fore-soure

loated at its end (see. Fig.2).

Indeed, the inident �eld in the ylindrial waveguide is given by (32) and (33). In a seond step, this inident

�eld is expressed in the (r, kz , ω)-domain to alulate the re�eted �eld (guided wave) and the transmitted �eld

(radiated into the surrounded medium). More details are given in a related paper [7℄.

Consequently, the THT is relevant for modeling irular problems as the latter beause eah ase harater-

ized by an azimuthal wavenumber n and an azimuthal diretion ⊢ or ⊥ an be treated separately and is similar

to the standard 2D problem.
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