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Abstract 

 

Measuring the relaxation time involved in the leveling of the free sur- 
face of a Newtonian fluid laid on a substrate can give access to material 
parameters. It is shown here how most favorable pattern geometries of 
the free surface and film thicknesses can be defined for the measures of 
viscosity and Navier slip length at the fluid-solid interface, respectively. 
Moreover, special emphasis is put on the conditions required to avoid 
shear-thinning by controling the maximum shear rate. For initially sinu- 
soidal patterns with infinitesimal amplitudes, an analytical solution in- 
cluding slip at the fluid-solid interface is used, and numerical simulations 
based on the natural element method allow to discuss the effect of finite 
amplitudes. This leads to the definition of a relevance domain for the 
analytical solution that avoids the need for numerical simulations in prac- 
tical applications. It is also shown how these results can be applied to 
crenelated profiles, where Fourier series expansion can be used, but with 
caution. 

 

Keywords polymers, leveling, viscosity, Navier slip, slip length 
 

 

1 Introduction 
 

Half a century ago, Orchard [1] published a paper where the analytical solution 
of the surface tension-driven leveling of a sinusoidally corrugated layer of an 
incompressible Newtonian fluid was given. The analysis, which covered layers 
of arbitrary thicknesses and mentioned brushmarks in paint coatings as an ap- 
plication, included the effect of gravity for a horizontal layer, but this restriction 
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was overtaken in a later article by the same author [2] on inclined substrates. 
Apparently, these papers stayed unnoticed by the physics community and are 
not mentioned in Jäckle’s later work [3], where viscoelastic behaviors are also 
included, still with the limitation to corrugations of infinitesimal amplitudes. 
In contrast, large amplitudes were accounted for in the numerical simulations 
by Degani and Gutfinger [4] and by Kheshgi and Scriven [5], who applied finite 
difference and finite element methods to Newtonian fluids, respectively, and in 
the finite element computations of Keunings and Bousfield [6] for viscoelastic 
behaviors. No slip was allowed at the fluid-substrate interface in all these works, 
but Henle and Levine [7] have recently extended Orchard’s solution to Navier 
slip at the interface between the substrate and a layer of Newtonian or Maxwell 
fluid, with even a double fluid layer. The possibility of slip at a fluid-solid in- 
terface, that Navier [8] suggested at the very beginning of fluid mechanics as 
a linear law that stayed unused for decades, is increasingly considered in mi- 
crofluidics [9]. A likely reason is the very small value of the slip length, which 
can be neglected in flows at the macro scale, where the usual no slip condition 
is preferred, but which becomes comparatively large at very small scales. Slip 
at fluid-solid interfaces is also mentioned in the literatures on moving contact 
lines [10] and on polymer injection [11]. A problem is still to measure the slip 
length precisely, and various elaborate techniques have been proposed [12]. It 
is the purpose of this paper to suggest a new and simple method to measure 
the slip length by studying the leveling of the free surface of the fluid of interest 
laid on the appropriate substrate. This requires a preliminary knowledge of 
the fluid viscosity, which can be obtained by applying the same method with 
a different geometry. Actually, leveling has already been used to measure vis- 
cosity ([13] and [14], for instance), assuming no slip at the fluid-solid interface 
and refering to the analytical solution for free surface profiles with infinitesimal 
amplitudes, but without an evaluation of the approximations involved. This 
point is analyzed here. 

The remainder of the paper is organized as follows. Section 2 extends the 
analytical solution of Orchard [1] to slip at the fluid-solid interface in the special 
case where gravity can be neglected for the Stokes flow of a Newtonian fluid, 
as is usual in microfluidics and nanofluidics [15]. This allows to define most 
favorable geometries for the measures of viscosity and slip length, with special 
emphasis put on the conditions required to avoid shear-thinning by controling 
the maximum shear rate. Section 3 discusses the assumption of an infinitesimal 
amplitude by using numerical simulations based on the natural element method. 
This delimits the relevance of the analytical solution and avoids the need for nu- 
merical simulations in practical applications with non infinitesimal amplitudes. 
Finally, the extension of the method to non sinusoidal profiles is discussed and 
illustrated in the case of an initially crenelated free surface in Section 4. 
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Figure 1: Notations used for the geometry of the problem considered with a 
sinusoidal free surface. For symmetry reasons (dashed lines define symmetry 
axes), the problem reduces to the dark gray area. 

 

 

2 Analytical solution for a sinusoidal profile with 
an infinitesimal amplitude 

 

2.1 Field equations 
 

Inspired by [1], where no slip at the fluid-substrate boundary was assumed, 
and by [7], where a viscoelastic fluid was considered, the solution to the two- 
dimensional surface tension-driven leveling of a sinusoidal free surface with an 
infinitesimal amplitude can be given in a direct and compact, nonetheless com- 
plete, manner as follows, for a Newtonian fluid with Navier slip condition at 
the fluid-solid interface. This presentation of a subcase of the general solution 
by Henle and Levine [7] involves simpler algebra, without complex numbers for 
instance, and allows a clear perception of the underlying assumptions. The no- 
tations used are defined in Fig. 1, where a cross section is shown. Consider the 
following velocity field in the (x, y) plane: 

 
 

vx = 
γak r 

2η 

 

(1 − f̃ky − g̃) cosh ky − g̃ky sinh ky 

γak r 

 
sin kx 

vy = − 
2η

 (1 − f̃ky) sinh ky + (f̃  − g̃ky) cosh ky cos kx   (1) 
 

with a and w denoting the profile amplitude and wavelength, k = 2π/w, γ is 
the surface tension and η the viscosity, f̃  and g̃ are non dimensional constants 
that will be deduced below from boundary conditions. This velocity field can 
readily be checked to preserve volume and to have a symmetrized gradient that 
gives the following strain rate components: 

 

 
Ėxx = −Ėyy = 

γak2 r 
2η 

(1 − f̃ky − g̃) cosh ky − g̃ky sinh ky) 

γak2 r 

 
cos kx 

 

  

Ėxy = Ėyx =  
2η

 
(1 − f̃ky − g̃) sinh ky − g̃ky cosh ky sin kx .   (2) 
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f̃  = 

 
 
 

 
Therefore, the equations of motion for the Stokes flow of a Newtonian fluid with 
viscosity η, which can be written as 

 

∂p 
= 2η 

∂x 

  
∂Ėxx 

∂x + 
∂Ėxy 

 
 

∂y 

 
and 

∂p 
= 2η 

∂y 

  
∂Ėyy 

∂y + 
∂Ėyx 

 
 

∂x 

 
(3) 

 

are fulfilled by the following field of hydrostatic pressure: 

p = γak2 (f̃ sinh ky + g̃ cosh ky) cos kx + p0 (4) 

when using (2), where p0 is a constant to be deduced from boundary conditions. 
The boundary conditions can now be considered. The x = 0 and x = w/2 = 

π/k lines are symmetry axes, where vx = 0 is immediately obtained from (1) 
indeed, as well as Ėxy = 0 from (2), which ensures a zero shear stress. The 
fluid-substrate interface is defined by y = −h, and two conditions apply: the 
no penetration relation vy = 0 on the one hand, and the Navier slip law on the 
other hand, which can be written as 

 
vx = b 

 
∂vx (5) 
∂y 

 

for y = −h and any x, since the substrate is fixed, where b denotes the Navier 
slip length, i.e., the extrapolation length of Brochard-Wyart et al. [16]. The 
slip length is assumed constant, which may be considered as a first step and 
allows analytical results. These two conditions lead to the following equations 
by using (1): 

 

(1 + f̃kh) tanh kh = f̃  + g̃kh and 
r
g̃kh − kb(1 + f̃kh − 2g̃) tanh kh = 1 + f̃kh − g̃ + kb(f̃  − g̃kh)  (6) 

 
which can be solved to obtain the expressions of the two unknown constants: 

 
  − 2k(h + b) + 2kb cosh 2kh + sinh 2kh   

1 + 2k2h(h + 2b) + cosh 2kh + 2kb sinh 2kh 
(7)

 
 

and 
 

 
g̃ = 

 
1 + cosh 2kh + 2kb sinh 2kh 

1 + 2k2h(h + 2b) + cosh 2kh + 2kb sinh 2kh 

 

 
. (8) 

On the free surface, defined by y = a cos kx, the Young-Laplace equation reduces 
to 

σxxnx + σxy ny = −γκnx and σyy ny + σyxnx = −γκny (9) 

where κ = ak2 cos kx/(1 + a2k2 sin2 kx)3/2 denotes the curvature. The compo- 
nents of the normal vector can be taken as nx = ak sin kx and ny = 1, and the 
above equations can also be written as: 

 
(p − 2ηĖxx − γκ)ak sin kx = 2ηĖxy and  p + 2ηĖxx − γκ = 2ηĖxy ak sin kx (10) 



6 

˜

 
 
 

 
by expressing the stress components σij with the strain rate and hydrostatic 
pressure. By taking p0 = 0, which specifies the last unknown, these two relations 
are fulfilled if the amplitude is much smaller than the wavelength, ak « 1 (which 
is called an infinitesimal amplitude in this paper), since this gives yk « 1 on 
the free surface, the curvature linearizes as κ ≈ ak2 cos kx, and therefore 

 
p ≈ γak2g̃ cos kx , 

 

 
Ėxx 

 

γak2 
≈ 

2η 

 

 
(1 − g̃) cos kx , 

 

 
Ėxy 

 

 
≈ 0 (11) 

 

yield from (2) and (4). Therefore, all the equations and boundary conditions of 
the problem are satisfied by the solution defined by (1) combined with (7) and 
(8), provided that the amplitude of the profile is infinitesimal. 

 
2.2 Profile evolution 

 

The above solution gives the rate of evolution of the maximum height a of the 
sinusoidal profile (at x = 0): 

 
γak 

ȧ = vy ≈ − 
2η 

f 

 
(12) 

 

using the ak « 1 condition. Consequently, the amplitude follows an exponential 
decrease with a relaxation time τ given by 

 

2η 
τ = 

γkf̃  = 

 

ηw 1 
πγ f̃  

 
(13) 

 

if the solution still applies at t > 0, which assumes that a sinusoisal profile is 
maintained. The same result is readily obtained if the minimum height of the 
profile (at x = w/2) is used, which is compatible with the profile keeping its 
sinusoidal shape, but it may be observed that the horizontal velocity on the 
free surface at x = w/4 is vx ≈ γak(1 − g̃)/(2η), which is not zero and is not 
expected if the sinusoidal shape is maintained. This point was not discussed 
in [1], [3], or [7]. As can be deduced from Fig. 2, 1 − g̃ is always positive and 
is small for either large h/w ratios (thick films), whatever the slip conditions, 
or for very small h/w ratios (thin films) if the slip length b is small. It may 
also be noted in Fig. 2 that g̃ does not depend on the slip conditions at the 
fluid-substrate interface and takes the value 0.695 if h/w = 0.191 (hk = 1.2), as 
can be derived from (8). This also corresponds to the minimum of g̃ for no slip 
(b = 0). 

For no-slip boundary conditions, the f̃  and g̃ functions given by (7) and (8) 
coincide with the f and g functions obtained by Orchard [1], hence the notation 
used here. Moreover, (7) can also be recovered from equation (15) of Henle and 
Irvine [7] when slip may occur at the interface.  The relaxation time given by 
(13) can be normalized by ηw/(πγ) and thus reduces to 1/f̃ . The variations 
of this normalized relaxation time are illustrated in Fig. 3. As expected, the 
influence of slip conditions vanishes for thick films, and this applies already for 
h/w = 1 (this is also true for g̃ in Fig. 2).  Of course, the result for infinite 
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Figure 2:  Evolution of parameter g̃ of the velocity field, as a function of the 
h/w aspect ratio, for various slip conditions defined by the b/w ratio. 
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Figure 3: Relaxation time normalized by ηw/(πγ) for the leveling of a sinusoidal 
profile of infinitesimal amplitude on the surface of a Newtonian fluid, for various 
slip conditions defined by the b/w ratio. The dashed lines correspond to the 
limit of very thin films and extreme slip conditions. The results of numerical 
simulations (symbols) with small but nonzero amplitude (a/h = 0.05) are also 
shown. 
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layer thicknesses recovers the classical expression τ = ηw/(πγ) that can be 
worked out from p. 548 of [17] and that is always exceeded for finite thicknesses, 
whatever the slip conditions. 

The relaxation time decreases when slip length increases, since this favours 
flow near the interface (it is recalled that b → ∞ corresponds to perfect slip with 
zero shear stress), and the difference between extreme slip conditions increases 
notably for very thin films, reaching a ratio of 8.9 between relaxation times for 
h/w = 0.05 for instance. This means that evaluating viscosity by measuring 
relaxation time may lead to significant errors if thin films are considered and 
slip conditions have not been recognized formerly. More precisely, the viscosity 
is underestimated if it is deduced from a no slip analysis whereas the actual slip 
length between the fluid and the substrate considered is not zero. 

The limit for very thin films h/w « 1 is obtained from (13) and (7) as 

3 ηw4 1 τ = (14) 
16π4 γh3 1 + 3b/h 

 

when b is bounded, and is shown on the left side of Fig. 3 for b = 0 (dashed 
straight line with a slope of −3), which illustrates that h/w « 1 is not a good 
approximation when h/w = 0.05, for instance. In contrast, the perfect slip case 
(b → ∞) for very thin films, i.e., τ = (w/h)/π, gives a very good approximation 
of the relaxation time for moderate film thicknesses (dashed straight line with 
a slope of −1 in Fig. 3). Obtaining the correct result, even for no slip, is 
not trivial since de Gennes et al. [18], using a simplified analysis, missed the 
leading constant and overestimated the relaxation time by a factor of 520 in 
the application given in page 114 of [18], consequently. These authors do also 
mention the correct formula, but without any derivation or reference, though. 

 
2.3 Maximum strain rate 

 

The analytical solution given above assumes the fluid has a Newtonian behavior, 
but this may be unfounded if high strain rates develop somewhere in the flow. 
In such cases, the fluid would more likely have a shear-thinning behavior, with a 
transition to a Newtonian behavior below a critical shear rate, as pertains when 
a polymer obeys a Carreau-Yasuda law, for instance. Therefore, the objective 
of this subsection is to evaluate the largest shear rate that appears in the flow 
defined by the analytical solution, in order to circumscribe its applicability. 

  The analysis follows the same lines as in [1], but with the slip length as an 
additional parameter. The generalized shear rate γ̇ = 

/
2Ėij Ėij can be evaluated 

from (2), which leads to 
 

    2 

γ̇ 
γ̇ ref 

 

= α(y)2 sin2 kx + β(y)2 cos2 kx (15) 

 

with the reference shear rate being defined as 

γ̇ ref = 4π2  γa
 

 
 
 

(16) 
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and with 

 

α(y) = (1 − f̃ky − g̃) sinh ky − g̃ky cosh ky and 

β(y) = (1 − f̃ky − g̃) cosh ky − g̃ky sinh ky .   (17) 

Therefore, an extremum of the generalized shear rate is obtained when 
1
α(y)2 − β(y)2

l 
sin 2kx = 0 (18) 

 

with three possibilities: either cos kx = 0, or sin kx = 0, or α(y) = β(y), 
inasmuch as α(y) = −β(y) can be shown to have no negative root. In the first 
case, where γ̇ /γ̇ ref = |α(y)| applies, an extremum is reached below an inflection 
point of the free surface (where the film thickness is equal to h) and its depth 
can be obtained by looking for the maximum of α(y), which can be performed 
numerically. In the second case, the extremum is reached simultaneously at the 
same depth below a crest and below a trough of the free surface, γ̇ /γ̇ ref = |β(y)| 
is relevant and the maximum of the β(y) function has to be found numerically. 
In the third and last case, an extremum is obtained at a depth 

 
w 

y = − 

 

1 − g̃   (19) 
2π g̃ − f̃  

 

for any x value, where the generalized shear rate is such that 
 

γ̇ 

γ̇ ref 

 

 
= g̃ 

 
1 − g̃ 

g̃ − f̃  

 

 
exp 

 
1 − g̃ 

 
 

− 
g̃ − f̃  

 

 
. (20) 

 

It may be noticed that, for no slip at the interface, this result differs from what 
was obtained by Orchard [1], but without consequence since this case is never 
selected when ordering the extrema obtained in the three possibilities above to 
get the overall maximum, whatever the slip conditions. This selection procedure 
generates the curves presented in Fig. 4. The curve for b = 0 coincides with 
the results of [1], where case 1 introduced above applies on the left side of the 
cusp and case 2 on the right side, but it can be observed that allowing slip at 
the interface leads to complex evolutions. As expected, the influence of slip 
vanishes for thick layers, and here again this applies for h/w ≥ 1. In these 
conditions, the maximum γ̇ /γ̇ ref = 1/e ≈ 0.368, where e denotes the base of 
the natural logarithm, is reached at a depth of w/(2π). Quite remarkably, the 
influence of slip is found to vanish also for a finite aspect ratio h/w = 0.388, 
where γ̇ /γ̇ ref = 0.431, which defines a point where all curves intersect in Fig. 4. 
Interestingly, the influence of slip conditions is very limited if h/w is larger 
than 0.388, but it is much more apparent for thinner layers, with the largest 
normalized strain rate value, γ̇ /γ̇ ref = 0.552, being obained for h/w = 0.191 
with perfect slip. Therefore, the following evaluation of an upper bound of the 
generalized shear rate can be used when slip conditions are unknown: 

γ̇ < 21.8 
γ a

 
 

(21) 
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Figure 4: Maximum generalized strain rate, normalized by 4π2γa/(ηw2), 
reached below the free surface for various slip conditions defined by the b/w 
ratio. 

 

 
for a fluid layer with average thickness h, viscosity η and surface tension γ, and 
for an initial sinusoidal profile with wavelength w and amplitude a (assumed 
small). The initial profile only is considered because amplitude decreases with 
time and, consequently, strain rate decreases too. 

 
2.4 Discussion 

 

An application of the leveling of a sinusoidal profile on a polymer film may be the 
evaluation of such material parameters as viscosity and slip length by measuring 
relaxation time. We consider here that the analytical solution described above 
applies, which requires that the polymer have a Newtonian behavior, that the 
amplitude be very small, and that the profile keep its sinuoidal shape during 
leveling. Surface tension γ is assumed to be known, but the discussion below 
about measuring η can be adapted readily if viscosity is known and surface 
tension is looked for, since these two quantities come into play through the η/γ 
ratio everywhere in the analysis. 

Consider first that slip conditions are unknown and viscosity is to be mea- 
sured. Obviously, Fig. 3 indicates that the geometry of choice is thick layers, 
for slip conditions have no influence in such cases, and a good compromise is 
chosing a layer thickness that is equal to the profile wavelength. The viscosity 
is obtained from η = π γ τ /w, and one may wish to analyze the effect of very 
thin layers on viscosity, expecting a possible confinement effect like in Teisseire 
et al. [19] for instance, by considering very small wavelengths w (and, accord- 
ingly, small thicknesses h), keeping in mind that the present analysis neglects 
Van der Waals interactions that may be significant for very thin films. This will 
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be limited first by relaxation times being shorter for smaller wavelengths, and 
therefore being more difficult to measure precisely. Moreover, a Newtonian be- 
havior may be relevant only if the strain rate does not exceed a critical value γ̇ c 

defined by the specific polymer used. Combining (21) and the simple expression 
of the maximum strain rate found in thick layers, this gives a condition to be 
fulfilled by the initial amplitude: 

 

 
a < 0.069 

 

ηw2 

γ 

 

 
γ̇ c (22) 

 

which excludes too small wavelengths w (and, therefore, small thicknesses) be- 
cause measuring a relaxation time amounts to following the amplitude decrease, 
which may be very imprecise for too small initial amplitudes. 

Consider now that viscosity is known and slip length is to be deduced from 
relaxation time.   A good sensitivity will be obtained if the latter, given by 
(13) combined with (7), is affected significantly by slip conditions, and this 
is obtained for h/w below 0.1, where the extreme relaxation times vary by 
a factor of 3.2, as suggested by Fig. 3. Chosing h/w = 0.05 is even better, 
because this factor is 8.9 and also because relaxation times are longer when 
h/w is smaller, which allows more precise measurements. This suggests using 
long profile wavelengths, but it may also be noted that the distribution of the 
curves in Fig. 3 is very uneven when b/w varies, and the best sensitivity in the 
measure of b will be obtained for, say, b/w between 0.01 and 1. If the slip length 
is expected to be small, this means that the wavelength should not exceed 100 
times the slip length and, accordingly, the film thickness should be about 5 times 
the slip length. Here again, the amplitude may be limited by the requirement 
of a Newtonian behavior, and (21) implies that 

 
ηw2 

a < 0.046 
γ 

γ̇ c (23) 
 

which excludes too small w values in order to have perceptible amplitude evo- 
lutions. 

This discussion assumed that the amplitude is small enough for the analysis 
to apply, but also not too small for a measure to be possible, and that a sinu- 
soidal shape is maintained during leveling. The validity of these assumptions is 
investigated with numerical simulations in the following section. 

 

 

3 Numerical simulations for a sinusoidal profile 
with a nonzero amplitude 

 

A simulation code has been written [20], which applies the natural element 
method (NEM) to two-dimensional and incompressible Stokes flows. The NEM 
is a natural neighbor Galerkin method that has already been applied to fluid 
dynamics by Mart́ınez et al. [21] and González et al. [22], for instance. The 
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variational formulation that we use includes Navier slip along fluid-solid inter- 
faces and exploits the method of Ruschak [23] to circumvent the computation 
of surface curvature in the application of the Young-Laplace equation when the 
flow is two-dimensional. Our implementation uses a mixed formulation, where 
three variables are introduced at each node, namely two velocity components 
and a pressure value. The nodes are scattered in the fluid domain and along its 
boundary, using the free mesh generator developed by Geuzaine and Remacle 
[24], and a Voronöı cell results around each node. The integrations over the fluid 
domain involved in the variational formulation are performed by summing the 
integrals computed over all Voronöı cells.  The velocity components are interpo- 
lated with the Sibson [25] continuous interpolant and integration is performed 
with the stabilized  conforming  nodal  integration  scheme  defined  by  Chen  et 
al. [26], whereas the pressure is taken constant over each Voronöı cell. The 
integration procedure is simpler along the boundary of the fluid domain, since 
velocities vary linearly between adjacent nodes in the C-NEM variant [27] that 
we use and that applies to non convex free surfaces as well. The simulation pro- 
ceeds incrementally, by updating the nodal positions from the velocities with a 
simple explicit scheme, which implies that small time steps are used. 

 
3.1 Large amplitudes 

 

A first validation of the code is provided by comparison with the Lagrangian 
finite element results of Keunings and Bousfield [6], where the amplitude of the 
sinusoidal profile is very large and there is no slip at the interface. Three cases 
are considered, where a/h = 0.5 for a thickness of h/w = 0.05, a/h = 0.8 for 
h/w = 0.16, and a/h = 0.5 for h/w = 0.5. The histories of the maximum and 
minimum thicknesses are reported in Fig. 5, using the same normalizations as in 
[6]: thicknesses are normalized by the average thickness of the film, and time is 
normalized by the relaxation time (14) that would apply for very thin films with 
no slip (b = 0). This allows direct comparison with figures 3, 4 and 5 of [6], and 
an excellent agreement is observed. This comment also applies to Fig. 5a of this 
paper and figure 5b of Kheshgi and Scriven [5], who used another finite element 
scheme. As already noted in [5] and [6], the crests of the profile always level out 
more rapidly than the troughs (see Fig. 5), which is clearly incompatible with a 
sustained sinusoidal profile. This is consistent with the movement of the initial 
inflection point of the profile, which translates in the direction of the nearest 
trough, as noted by Khesghi and Scriven [5]. 

The effect of slip was not considered in [6] and [5], and therefore the limit 
case of perfect slip is included in Fig. 5. Similarly to the trend already observed 
in Fig. 3 for infinitesimal amplitudes, the effect of slip decreases when h/w 
increases, and it has almost vanished in Fig. 5c for h/w = 0.5. The same 
remarks as for the no slip case apply, and the seemingly better agreement with 
the analytical solution (in Fig. 5a, for instance) is due to the same normalized 
time being used to make the comparison between slip conditions consistent. By 
comparing with the analytical solution for infinitesimal amplitudes, shown as 
dashed lines in Fig. 5, it can be noticed that the evolutions of the highest and 
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Figure 5: Histories of the maximum and minimum film thicknesses when (a) 
a/h = 0.5 for h/w = 0.05, (b) a/h =102.8 for h/w = 0.16, and (c) a/h = 0.5 
for h/w = 0.5. Thicknesses are normalized by h and time is normalized by the 
relaxation time (14) that would apply for very thin films with no slip. Dashed 
lines: analytical result for infinitesimal amplitudes. Horizontal dotted lines refer 
to a profile decay by a factor of 1/e. 
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lowest points do not obey an exponential law, which is especially evident for 
the sigmoidal evolution of the lowest point. Therefore, a relaxation time is not 
relevant for such large amplitudes. One may nevertheless define a relaxation 
time from the leveling of the initial profile by a factor of 1/e, where e denotes 
the base of the natural logarithm, which is shown in Fig. 5, and the analytical 
solution would provide a better prediction for the highest point than for the 
lowest one with this definition, especially when slip occurs at the interface. 
The analytical solution provides a more accurate evaluation of the profile decay 
for much longer times, but with a limited interest for practical applications 
inasmuch as an almost flat profile is difficult to measure precisely. 

 
3.2 Moderate amplitudes 

 

Another validation of the code is performed by simulating the leveling of small 
amplitude sinusoidal profiles, namely with a equal to 5 percent of the average 
layer thickness h. Six values of the h/w ratio have been considered (0.05, 0.07, 
0.1, 0.14, 0.2 and 1), with either no slip or perfect slip at the fluid-solid interface, 
or with a slip length equal to 5 percent of the wavelength. An excellent fit with 
an exponential law could be performed for the evolution of the amplitude, with 
a straight line obtained in a semilog plot. The relaxation times obtained are 
shown in Fig. 3, and a very good agreement is noted with the analytical result. 
This validates a maintained sinusoidal profile in the analytical solution, since a 
constant relaxation time means independence with respect to amplitude. 

Similarly to the procedure applied for large amplitudes, two relaxation times 
have been obtained from each simulation actually, for the highest and lowest 
points, respectively, but the difference is less than 1 percent and is not percep- 
tible in Fig. 3. This also is consistent with a maintained sinusoidal shape. It 
may be noted, though, that the uppermost point was found to have system- 
atically a relaxation time slightly above the analytical result, whereas it was 
slightly below for the lowest point. Moreover, the displacement of the node that 
is located initially at the inflection point of the profile is shown in Fig. 6 for 
h/w = 0.1. Consistently with what was noted in 2.2, this point is not fixed and 
moves towards the nearest trough of the profile. This is combined with a much 
smaller vertical displacement below the initial free surface (note that different 
normalizations are used on the two axes in Fig. 6). In the case of a/h = 0.05, 
the relative magnitudes of these displacements, which decrease if slip is allowed 
at the interface, are less that 1.5 percent of the profile wavelength and ampli- 
tude, respectively, but they increase rapidly for larger profile amplitudes. This 
disagrees with a simple proportional variation of the initial sinusoidal height, 
keeping a fixed inflection point. 

It has thus been demonstrated that departures from the assumptions of the 
analytical solution are qualitatively similar for large and small profile ampli- 
tudes, but with significant quantitative differences. It is therefore possible to 
define the moderate amplitudes for which the analytical solution, with its pleas- 
ant ease of use and flexibility with respect to full field numerical simulations, can 
be applied with reasonable confidence. For this purpose, Fig. 7 shows the evo- 
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Figure 6: Displacements of the node that is located initially at the inflection 
point of the profile, for h/w = 0.1. Two amplitudes are considered (a/h = 0.05 
and a/h = 0.10), with either no slip (solid lines) or perfect slip (dashed lines) 
at the interface. 

 

 
lutions of the amplitude of the profile recorded at the highest and lowest points 
in the case of a thick layer (h/w = 1). This can be compared with Fig. 5c for a 
similar h/w ratio and different definitions of the axes. Since Fig. 7 is a semilog 
plot, an exponential decay appears as a straight line. The two points still have 
similar histories when the initial amplitude is 10 percent of the thickness, as this 
already applied for a/h = 0.05, but a clear difference is evident for 30 percent. 
Defining a relaxation time by a 1/e decay, as above, and taking 10 percent as 
a maximum admissible deviation from the analytical solution, a limit relative 
amplitude of a/h = 0.11 is obtained from additional simulations. Therefore, it 
can be concluded that the method discussed in 2.4 to deduce viscosity from re- 
laxation time can be applied with 10 percent confidence if the initial amplitude 
of the sinusoidal profile is no more than 11 percent of the film thickness when 
h/w = 1. 

Consider now the other situation mentioned in 2.4, where slip length is to 
be measured. The h/w = 0.05 aspect ratio was interesting in this respect, and 
Fig. 8 shows the results obtained for various initial relative amplitudes a/h, 
when either no slip or perfect slip applies at the interface. It is noticed first 
that a ratio of a/h = 0.3 is now still close to the solution for an infinitesimal 
amplitude, with a significant departure for a/h = 0.5. Additional simulations 
allow to define a limit of a/h = 0.37 to have a relaxation time (be it for the 
highest or the lowest point of the surface) within 10 percent of the analytical 
result. Moreover, Fig. 8b confirms that allowing slip at the interface decreases 
relaxation time and, consequently, the most severe limitations for amplitude 
apply in the no slip case.  A similar procedure has been followed with the 
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Figure 7: Histories of the amplitudes at the highest and lowest points of the 
profile for h/w = 1 and a/h = 0.05, 0.1 and 0.3. Amplitudes are normalized 
by h and time is normalized by the relaxation time ηw/(πγ) for infinitesimal 
amplitude and infinite layer thickness. Horizontal dotted line refers to a profile 
decay by a factor of 1/e. 

 
 

other aspect ratios considered in Fig. 3 and provided the following limits for 
the amplitude to have relaxation times at most 10 percent different from the 
analytical result, whatever the slip conditions: a/h ≤ 0.37 for h/w = 0.07 and 
h/w = 0.10, a/h ≤ 0.38 for h/w = 0.14, and a/h ≤ 0.36 for h/w = 0.2. Actually, 
the evolution of the set of values is much more regular if a/w is considered 
instead of a/h, as shown in Fig. 9, where additional h/w aspect ratios have 
been included for clarity. If less natural for thin layers, this choice of a/w is 
fully justified for thick layers, since the influence of h is negligible beyond h = w, 
with a limit value a/w = 0.115. 

In order to finalize our definition of the conditions that can be considered for 
a reliable measure of relaxation times during the leveling of sinuoidal profiles, it 
should be mentioned that the maximum generalized shear rate obtained in the 
numerical simulations were found in very good agreement with the analytical 
values when small amplitudes (a/h = 0.05) were considered either without slip, 
or with a Navier slip length such that b/w = 0.05, or with perfect slip. Moreover, 
equation (21) was still verified for the largest amplitudes considered in Fig. 9. 

 

 

4 Extension to non sinusoidal profiles 
 

Nanoimprint technology allows surface nanopatterning, but sinusoidal corru- 
gations are uneasy to obtain, although Hamdorf and Johannsmann [28] and 
Teisseire et al. [19] did use sinusoidal molds. In contrast, line patterns with 
crenelated profiles are common in this context, and they were central in the orig- 
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Figure 8: Histories of the amplitudes at the highest and lowest points of the 
profile for h/w = 0.05 and a/h = 0.05, 0.3 (in dashed lines for clarity) and 0.5, 
for (a) no slip or (b) perfect slip at the interface. Amplitudes are normalized by 
h and time is normalized by the relaxation time for an infinitesimal amplitude 
(13). Horizontal dotted lines refer to a profile decay by a factor of 1/e. 
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Figure 10: Notations used for an initially square-wave crenelated free surface. 
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inal paper on nanoimprint by Chou et al. [29] for instance, because crenelated 
molds are easily produced. Consequently, the analysis performed above for sinu- 
soidal profiles is extended here to initially crenelated profiles. The technique can 
be applied similarly to any periodic profile, as mentioned by Orchard [1] among 
others, but the specific example of a square-wave pattern is considered here, 
which can be defined solely by its wavelength w and amplitude a, in addition 
to its average level h, as shown in Fig. 10. 

Such a free surface can be defined by a Fourier series: 
 

∞ 
4 

y(x) = a 
π 

  
cos 

r
2π(2j + 1) 

x
 

2j + 1 w 
j 

   
(24) 

 

and the analytical solution can be obtained by summing the response obtained 
for each mode j provided that the amplitude a is infinitesimal. This is allowed 
because the assumption of an infinitesimal amplitude leads to a surface cur- 
vature that is proportional to amplitude, as mentioned in 2.1, and therefore 
all equations and boundary conditions can be fulfilled for each mode. Thus, 
the evolution of the initially crenelated profile will combine those of initially 
sinusoidal profiles of wavelength w and amplitude 4a/π, of wavelength w/3 and 
amplitude 4a/(3π), of wavelength w/5 and amplitude 4a/(5π), and so on, with 
every other profile shifted by half its wavelength to account for the minus signs 
in (24). This means for instance that the height change of the point that is 
located initially in the middle of an upper plateau will be the sum of the height 
change of the highest point of the sinusoidal profile with wavelength w and 
amplitude 4a/π, plus the height change of the lowest point of the sinusoidal 
profile with wavelength w/3 and amplitude 4a/(3π), and so on. This may be 
important, inasmuch as the evolutions of the highest and lowest points of a si- 
nusoidal profile may evolve differently when the amplitude is not infinitesimal, 
as mentioned in 3.1 and 3.2. It may also be noted that all modes have the same 
amplitude-over-wavelength ratio of 4a/(πw), which facilitates the application 
of the rules stated at the end of 3.2. In contrast, the modes have increasing 
thickness-over-wavelength ratios, i.e., decreasing relaxation times, and therefore 
the amplitude of the profile will not follow an exponential law, even for infinites- 
imal amplitudes. A representative relaxation time can nevertheless be defined, 
and is used below, by a 1/e decay of the initial amplitude at a point located in 
the middle of an upper plateau. 

Consider first a crenelated profile with a small aspect ratio, h/w = 0.05, 
and with the largest amplitude allowed by Fig. 9, namely a/w = 0.019 π/4 = 
0.015. Fig. 11 shows the evolutions given by the numerical simulations for the 
maximum height and depth of the profile, with no slip allowed at the fluid-solid 
interface. They correspond to points located initially at the centers of upper 
and lower plateaus, respectively. Both values are equal to the amplitude a of 
the profile initially, and it can be noticed that they increase before they start 
decreasing together to zero. A similar hump is also obtained from the Fourier 
series for infinitesimal amplitudes, as is evident in Fig. 11. Indeed, this Fourier 
series gives an initial amplitude increase for aspect ratios up to h/w = 0.4, 
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Figure 11: Evolutions of the maximum height and depth of an initially square- 
wave crenelated profile with h/w  = 0.05 and a/w  = 0.015, without slip at 
the fluid-solid interface. Comparison with the analytical Fourier series (dashed 
curve) and with an initially sinusoidal profile (dotted curve), both with in- 
finitesimal amplitudes. Height and depth normalized by the initial amplitude, 
and time normalized by the relaxation time of the sinusoidal profile. 

 
 

with a decreasing peak value, and this was also observed in our simulations 
with finite amplitudes. It can also be observed in Fig. 11 that, after the initial 
hump, the upper part of the profile levels out more rapidly than the lower part, 
which is consistent with the observations of 3.1 and 3.2 for sinusoidal profiles. 
The amplitude evolution is slower than for a sinusoidal profile with the same 
aspect ratio, as also shown in Fig. 11. Finally, it may be noticed in this figure 
that the relaxation time of the largest height is evaluated by the Fourier series 
with a very good precision. With h/w and a/w unchanged, Fig. 12 confirms 
this is also true for other slip conditions, for which shorter relaxation times 
apply. Therefore, it can be concluded that the analysis of 3.2 can be extended 
directly to square-wave crenelated profiles as far as the maximum allowable 
amplitude is concerned, for small h/w aspect ratios. This can be useful for 
practical applications where slip conditions are investigated. Moreover, the 
analytical relaxation time can be computed very accurately by using the first 
two modes only of the Fourier series for such aspect ratios, since the next modes 
have negligible contributions at this time value, which may help reversing the 
analytical formulas in an identification procedure. 

Consider now a crenelated profile with a large aspect ratio, h/w = 1, which 
has been checked to be unaffected by slip conditions and is relevant to measure 
viscosity. Numerical simulations using the maximum amplitude that is deduced 
from Fig. 9, namely a/w = 0.115 π/4 = 0.090, give a representative relaxation 
time that is more than 10 percent larger than the value given by the Fourier 
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Figure 12: Evolutions of the maximum height of an initially square-wave 
crenelated profile with h/w = 0.05 and a/w = 0.015, with various slip con- 
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Figure 13: Evolutions of the height of an initially square-wave crenelated profile 
with h/w = 1 and either a/w = 0.090 or a/w = 0.045, without slip at the fluid- 
solid interface. Comparison with the analytical Fourier series (dashed curve) 
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series for an infinitesimal amplitude, as can be observed in Fig. 13. Therefore, 
the simple rules obtained for sinusoidal profiles in 3.2 cannot be applied directly 
for large h/w values. The reason may be some coupling between modes that 
affects a mere superposition. As shown in Fig. 13, the required precision on 
relaxation time is obtained nevertheless when the initial amplitude of the crenel 
is divided by 2, and therefore it is recommended to apply such a reduction if 
square-wave crenelated profiles are used to measure viscosity. The other h/w 
values shown in Fig. 9 have also been investigated for square-wave crenelated 
profiles by using either 100, 75, or 50 percent of the maximum amplitude given 
by the rules of 3.2. It appears that using 100 percent leads to less than 10 percent 
difference with the analytical relaxation time up to about h/w = 0.4, and that 50 
percent should be used beyond h/w = 0.7, with 75 percent allowed in between. 
This may be closely related to the specific crenel shape considered here, and 
extension to other crenel profiles, with lower and upper plateaus of different 
lengths, or to even more general profiles, should be performed with caution. 
It is worth mentioning finally that the maximum shear rate recorded in the 
simulations of crenel leveling reported in Fig. 9 have been found in agreement 
with condition (21) for small h/w aspect ratios only. 

 

 

5 Conclusion 
 

It has been shown how most favorable geometries can be defined for the measures 
of viscosity and Navier slip length from the relaxation time involved in the 
leveling of the free surface of a Newtonian layer. Special emphasis has been put 
on the conditions required to avoid shear-thinning by controling the maximum 
shear rate. For initially sinusoidal patterns with infinitesimal amplitudes, an 
analytical solution including slip at the fluid-solid interface could be used, and 
numerical simulations based on the natural element method allowed to discuss 
the effect of finite amplitudes. This has lead to the definition of a relevance 
domain of the analytical solution that avoids the need for numerical simulations 
in practical applications with non infinitesimal amplitudes. It has also been 
shown how these results can be applied to crenelated profiles, where Fourier 
series expansion can be used with caution. Of course, all these developments 
assume implicitly that continuum mechanics applies to the problem considered, 
and this sets a lower limit to the scale where they apply, below which molecular 
simulations must be used instead. 
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updated Lagrangian strategy for free-surface fluid dynamics. J. Comput. 
Phys. 223 127-150. 

 

[23] Ruschak KJ. 1980. A method for incorporating free boundaries with surface 
tension in finite element fluid-flow simulators. Int. J. Numer. Meth. Engng 
15 639-648. 

 

[24] Geuzaine C, Remacle JF. 2009. Gmsh: a three-dimensional finite element 
mesh generator with built-in pre- and post-processing facilities. Int. J. Nu- 
mer. Meth. Engng 79 1309-1331. 

 

[25] Sibson R. 1980. A vector identity for the Dirichlet tesselation. Math. Proc. 
Camb. Phil. Soc. 87 151-155. 

 

[26] Chen JS, Wu CT, Yoon S, You Y. 2001. A stabilized conforming nodal 
integration for Galerkin mesh-free method. Int. J. Numer. Meth. Engng 50 
435-466. 

 

[27] Yvonnet J, Ryckelynck D, Lorong P, Chinesta F. 2004. A new extension of 
the natural element method for non-convex and discontinuous problems: the 
constrained natural element method (C-NEM). Int. J. Numer. Meth. Engng 
60, 1451-1474. 

 

[28] Hamdorf M, Johannsmann D. 2000. Surface-rheological measurements on 
glass forming polymers based on the surface tension driven decay of im- 
printed corrugation gratings. J. Chem. Phys. 112 4262-4270. 

 

[29] Chou SY, Krauss PR, Renstrom PJ. 1995. Imprint of sub-25 nm via and 
trenches in polymers. J. Appl. Phys. Lett. 67 3114-3116. 


