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ABSTRACT

In this paper, we analyze the influence of the uadaties on the behavior constitutive laws of denagnetic
materials on the behavior of a turboalternator.impte stochastic model of anhysteretic non-lineéiflBcurve is
proposed for the ferromagnetic yokes of the statwd the rotor. The B(H) curve is defined by fivendam
parameters. We quantify the influence of the valitglof these five parameters on the flux linkagfeone phase of
the stator winding depending on the excitationenird. The influence of each parameter is analyzadhe Sobol
indices. With this analysis, we can determine thestminfluential parameters for each state of magatdn
(according to the level of 1) and investigate whtre characterization process of the B(H) curveukhéocus to
improve the accuracy of the computed flux linkage.

KEYWORDS: Uncertainties quantification, Non-linear behaviaws, Stochastic approach, Global sensitivity

analysis, Sobol coefficients, Polynomial chaos espm.

1. INTRODUCTION

Numerical model can be used to predict the behavioan electrical machine. Basically, the numerigaidel
requires as input data the geometry of the devickthe behavior laws of the materials. Uncertaintia the input
data can appear due to several factors like therfagtion of the manufacturing process, the ageirtge material,
the impacts of the environment (variation of tenapere, humidity)... Thus, the output data of thedelcare also
uncertain. Global sensibility analysis allows detiging the influence of the variability of each inpdata on the
variability of one or more observed output dataef,ithe most influential and the less influentigut parameters
can be distinguished. Thus, the sensitivity analysin be useful to several purposes like the redudf the
variability of the output data by reducing the waility of the most influential input data or theduction of the
computational cost by reducing the number of randoputs (the less influential input data can besidered
deterministic and equal to a fixed value)...

The probabilistic approach [1] that consists in elody the uncertain inputs by random variablesrémdom fields)
is one of the most popular among the methods fbr3lincertainty quantification. The outputs of thedel are then
also random variables or fields. Characterizatibthe random outputs can be obtained using sampéichnique
as Monte Carlo Simulation Methods. Random outpw#e be also approximated using well fitted space as

Polynomial Chaos Expansion [6-12]. In the probabdiapproach, the global sensitivity of an obséreatput can
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be quantified by an Analysis Of Variance (ANOVA}di the approach proposed by Sobol [4]. In the M&d€o
simulation method (MSCM), the Sobol coefficientg aalculated from a number of realizations of thsesved
output data [5]. In the chaos polynomial developtmaathod, the Sobol coefficients can be deduceectlyr from
the coefficients in chaos polynomial expansion [13]

In electromagnetism, few applications have beesadly processed to demonstrate the new possibjit@sded by
such approach especially for global sensitivitylgsia. In [14], the influence of the uncertaintielsthe measured
points used to characterize a B(H) curve on therriig field distribution created by accelerator metg is studied.
In this paper, based on a similar approach, weatianalyzing the influence of uncertainties of tio&-linear B(H)
curve used to model ferromagnetic material orutheertainty of the predicted behavior of a turbexalator.

The B(H) curve is defined by five parameters, (B, B,, Hy, a) which are the coordinates of two points P1 and P2
and the asymptotic slope of the curve for high @alaf H. We quantify the influence of the variapibf these five
parameters on the flux linkage through one of thasps of the stator in function of the excitationrent | in the
rotor. The influence of each parameter is analyzgidg the Sobol coefficients. For each state of matigation

(according to the level of I), we determine the tinBuential parameters among(BH;, B, H,, a).

2. STOCHASTIC MAGNETOSTATIC PROBLEM WITH UNCERTAINTIESON THE BEHAVIOR LAW

We consider a stochastic magnetostatic problenme@fon a domaif:
divB(x8)=0
curl H(x,8) =0 Q)
B(x,6) = g(H(x6), x8)

whereB(x,0) andH(x,0) are respectively the magnetic flux density are rfragnetic fieldf is an elementary event
referring to the randomness ax the spatial coordinates. The functgprepresents the material behavior law. The
problem (1) is supplemented by some boundary ciomdit We assume that the domdinis deterministic and is
composed by several sub-domains and in each subiddm the random curv8 = g;j(H,0) is independent of the
position x. Random geometries can also be considered [15,7,618] but they are out the scope of this paper.
the behavior law is assumed linear and randomgtinee B = g;j(H,0) is linear with a random slope which is the
random permeability;(0). In the general case, the random cuBre= gi(H,0) is a random field. To solve
numerically the problem (1), this curve should bpresented (or at least approximated by a KL exparigke in
[20]) by a function of a finite number of randomrgeterss(0) = (£1(0), &(0),..., &u(D)), that is to sayB = gi(H,
&1(8), £x(6),..., &m(8)). TheM random variableg;(6) have a known probability density function (normahiform,
etc.) that will be assumed to be independent. Wetde®,; [ R ; the set of value ofj(0), andf; its probability

density function (pdf). We denote also

©=0,x0,x1Dd,, (2

the set of value of the random vect#) and
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its pdf. We then obtain a model with input random variabtexieled by a random vecté(0) = (£,(0), &(0),...,
&w(0)) with known pdf, then the fieldB andH are functions of both the positiomand the random vectd6). In

the following, to simplify the notations, the degency of the random vectéron6 will be removed.

We consider now a quantity of intere& = Q(¢) (magnetic energy, mechanic torque, magnetic .fluxTo
characterizeQ(&), sampling technique like the Monte Carlo SimwaatiMethod can be used. Another possibility
consists in approximatinQ(¢) in a finite dimension space of functionsgfSeveral methods were proposed in the
literature to approach this expression [7-11] &l®].[Among these methods, polynomial chaos [1®}idely used.

The approximation of(¢) is obtained in the following form:

QAH=Q () =2 W, (&) (4)

uoK

where W (&) are multivariate orthogonal polynomials [12],are the coefficients to determine and theksatf M-

tuples is defined by:

K, ={(u1,uz,...,uw ONY Yy < p} ®)

i=1

The multivariate polynomialsW¥  (§) are obtained from monovariate orthogonal polyndsnidf we denote

(W()uion the set of orthogonal polynomials according to wwEght functionf; (f; is the pdf of§), then the

multivariate polynomial is given by:

l'l',(ul,uz,mlqw )({1152!MM)= G l‘lJLl (5.) (6)

Example. Let &, & are standard normal random variables, the monovaripolynomials ¢;(y)),n are Hermite
polynomials and the 6 first polynomials of the Palyial Chaos are given by:

qJ(o,O)(C(li $) =P (S ) =1

Wio(§usa) =WV {§) =<,

LIJ(O,l)({l'{Z) =P (SIPLE)=¢,

Wioo(E082) = U AEND &) = %(Ei )y
LIJ(:Ll)(El'<(2) =P ()P (E)=¢¢€,

W (EnED) = W EN € ) = %(52—1)

In the general case, the analytical expressiohetoefficients, of the approximation (2) d@(¢&) is not available.
In [7-11], methods to determing are proposed. In our case, we will use the regmesmethod [7]. Once the
approximation (4) is available, the global seniitivanalysis ofQ(&) versus each random variabfe can be
performed easily by calculating Sobol coefficiefit8]. In the following section, we recall brieflyne method

proposed in [13] to calculate the Sobol indicesnfran approximation based on a polynomial chaosresipa.

3. SENSITIVITY ANALYSISBASED ON SOBOL INDICES

Sobol proposes in [4] to express the quantity tdriestQ(<) in the following form:



AO=Q+YQE* Y Q) IB Q.6 T ©

I<i;<i, <M
whereQo is a constant an@, ; (¢,,¢,,[IIK ), s< M, defined such that:

[ Qum (§,.€,.0 )OF, (€,)d¢, =0 with 1< k< s (9)

The decomposition (8) is unique (see [4] and [SienQ(¢) is integrable ove® (2). From (9) it can be shown that

the functionsQ, 5, (¢, < ,,[IIK ) are orthogonal in the sense that:

[Qum (€,.€,ME @, o (€€, YFE)dE=0 with (i, [T, )# G, j, 0§, ) (10)

According to the previous properties, it can bdlgahown that the variand® of Q(&) can be decomposed in the

following form:
M
D=>D+ » D, +0BD, g (11)
i=1 1<i; <i <M i z

where D, ; the partial variances defined by:

Dym, = [Qfm (€6, 00 ) (£)dE (12)

The term D, is the fraction of the variance & explained by the interaction between the randonebkes

(&<, 0K ). Then, the Sobol coefficients are defined by:

Dii2
Slizm =1Tm (13)

The Sobol coefficients are positive and their saraqual to 1. A significant value of a Sobol indgx;, versus the

others means that the interaction between the meas(< , < [ ) contributes significantly to the variability of

Q(®). The number of Sobol indices is equal ¥b612and can be very large if the numibéof inputs random is large.

In practice, only thé/ Sobol indices of first ordeg and theM total Sobol indiceSy; are calculated:

D.
S =_1
D (14)
SI'i :; %izm
where
7, ={(ii, (M) |k , 1<k <5 j, =1} (15)

From these both sets of indices, we can concluakeiftl§ is significant, the influence of is also significant. 15;;

is small, & has no significant influence. The Sobol indicea ba easily estimated using a MSCM by using two
distinct samples for the inputs. If an approximatioethod is used, from the truncated PCE, it &gitforward to
approximate the Sobol indices from the coefficiegis(see (16)) [13]. Indeed, the approximation (4) dmn
rewritten as the form (8) with:

Qm (&4, MK )= > ¥, ¢ 0K, ) (16)
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where
Tym :{u:(ul,uz,mmqﬂ YO K |y = 0if kO(j,i,0Mi) andy > 0if kO § i, [T, } (17)

From (16) the Sobol coefficients can be deduceetctlir from the coefficients,.

Example. If Q is written under the form
Q& &)= W2+ DW )66+ W o€ 1 W a6 £ V2V oo £ FW (F ¢)  (18)
Then, the function®, (¢ ., LK )are:

Q) =W (&4 E)+V2IW , o4 )
Q,(&,) =W 1(€1<) (19)
Qu(£.6,) =W 1 y(£,€)

The variance of Q i =] ) + €+ C& o Cupy=5. The Sobol coefficient§;, ; and the total Sobol coefficients

S;; are:

_ S * o _ 3, = Coy _ 1, S = Cly_ 1

D 5’ D 5 D 5 5
S, = Coo* Coo* Can_ 4. « _ Cont Cuy_ 2
' D 5 77 D 5

4. APPLICATION OF THE GLOBAL SENSITIVITY ANALYSISAPPROACH

In the following we will apply the stochastic appoh presented above to evaluate the influenceeofdhiability of
the behavior law of ferromagnetic materials on pleeformances of a turboalternator. First, we havedfine a
stochastic model for the non-linear behavior lalwef, a Stochastic Finite Element problem is soteedetermine
the flux linkage in function of the excitation cent. This characteristic depends on the excitatioment | and on
the random input, this is consequently a randoid fidhen, a global sensitivity analysis is carr@ad to determine
which random parameters of the behavior law arertbst influential.

4.1. PROBABILISTIC MODEL FOR A RANDOM NON-LINEAR BEHAVIOR LAW

To model the behavior law of the ferromagnetic matewe propose to use a parametrized curve with f
parameters (H B;, H,, B,, a) presented in Fig. 1.

B 25

B, P2(H2,B2) part3

P1(H1,B1)

partl

Fig. 1.Parametrized curve B(H)



The curve B(H) is split up in three parts. The fdait a straight line determined by the pointwith coordinates
(By,H4). The part 3 is also a straight line and deterchibg the point Pwith coordinate¢B,,H,) and the angle.
The part 2 is a part of an ellipsoid that verifies continuity of the curve B(H) and its first ordkerivative at point
P;and B. Indeed, the part 2 can be represented by thefoly expression:

B-y)' , (H-%)* _,
b? h?

(21)

wherex,, Yo, b, h are parameters determined in function @f8, B,, H,, a by imposing the continuity of the curve
and its first order derivative at point &1d B:
(Bl'yo) (Hl Xo) =1: (Bz yo) (H 2" X()z =1
2 2 -
b h b* 1

B, Z(Btl)z'yO)+H Z(Hh XO)-O sm(a)i( 2= Yo) os(r)(i")

(22)

One can notice that equation (22) can be solvetytisaly that provides an analytical expressionxgfyo, b, h in
function of B, H, By, H,, o (see Appendix I).

When 0 < B < By, 0 < H < H, 0 < tanf) < By/H;, the model presented in the Fig. 1 ensures tleafakowing
properties: 1. The curve B(H) is continue and #¥rimcreasing, 2. The first order derivation oétburve B(H) is
continue and decreasing.

According to these parameterized model, we propos®chastic model of a non-linear behavior lanedamn the
parameters (K5B1,B,,H,,a) assumed to be independent uniform random vasable

4.2. ELECTRICAL MACHINE

We are interested in the turboalternator geomdtiyhich is given inFig. 3. The power rate and the nominal voltage
of the machine are respectively 1400MW and 20KVe Téitor excitation is fed by a current I. The stasoat no
load (no connection to the network). We are intex$n the value of the flu flowing through one phase. The
behavior of the ferromagnetic material of the staind the rotor are non-linear. They are represebie two
parametric B(H) curves presented in the previousim® The eddy current effects are neglected, schave to
solve a stochastic magnetostatic problem. Werdeedsted in the 3 following cases. In the cagbel behavior law
of the stator material is a random field whereasdhe of the rotor is considered deterministicthie case 2, the
B(H) curve of the rotor is assumed to be a randmtd fout not the one of the stator. Finally, in tese 3, we
consider that both B(H) curves are random but witbduced number of random parameters. In ordenatyze the
sensitivity of the flux versus the random paran®téhe flux ® is approximated by the expansion (4). The
coefficients are calculated using a regression awkeffi] for each value of the current I. While theeession of the
flux @(1,0) in the form (4) is available. It is quite easyduwaracterize the random flix The proposed scheme is

presented in the following flow chart:



B(H) curves of the raw ferromagnetic materialsha stator and the rotor have been measured. Vidudse five
parameters of the B(H) have been identified froeséhexperimental curves. These values are condidereéhe
mean of the 5 random parameters and are reportée itable | and Il for the stator and the rot@petively. To
take into account the uncertainties introducedhgyprocess of characterization, by the origin ef témv material
and also by the process of assembling, we havaédmesd these five parameters as uniform randonalbkes with a
variability of 15%. The range of variation for eaphrameter is reported in the table | and Il. THel)Bcurve

corresponding to the identified values for the Bapgeters and also the domain of variability aregsgnted in Fig.

Excitation
current I

Inputparameters (By; (£). Hy;(<), By(&), Hyx(0). 0:(5)

|

Curves B = g(H.&)

!

L Numerical model

Approximation of the flux

OO =D (LE) = D ¢, (DY, (&)

Informations on the flux (mean,
std. sensibility ...)

Fig. 2. Uncertainties propagation

3 and 4 for the stator and the rotor respectively.

Fig. 3. Geometry of the turboalternator

l
&

Uncertainties
propagation:
Regression
method

TABLE | : Information of random variablesB Hs1, Bss, Hso, as

Bs1 Hsy Bs2 Hsz Os
Mean value 1 233 1.94 19440 M2
Lower bound 0.85 198 1.65 16524 Ho
Upper bound 1.15 268 2.23 22356 Mo3




TABLE IlI: Information of random variables,B H,1, Bz, Hiz, o

Bn Hry Bz Hr Oy
Mean value 1.11 1639 2.01 13632 Mo2
Lower bound 0.96 1411 1.73 11739 Mo
Upper bound 1.26 1866 2.29 15525 Mo3
B 25
2 e
o

0 0.5 1 15 2 25

< H
x 10
Fig. 4. Curves B(H) of the ferromagnetic materiattaff stator with the mean (red) and the domairaagbility between the blue

and black curves
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e
/
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Fig. 5. Curves B(H) of the ferromagnetic materiatha rotor with the mean (red) and the domain oibdlity between the blue

and black curves.

A. Case1l

The behavior law of the ferromagnetic material led totor is assumed to be deterministic and cooredp to the
mean curve presented in Fig.4 . The B(H) curvehefdtator is a random field which model has beesqnted in
sections 4.1 and 4.2. First, 200 realizations ef ¢hrve®(l) obtained by a Monte Carlo Simulation Method are
presented in Fig. 6. We have generated a sam@@®frealizations of the 5-tuple {;) Hs1(0;), BsA0;), HsA6),
ag(0;)), i=1:200. For each realization {f;) Hsi(6;), BsA6:), HsA0:), a«(6)), the fluxd is calculated for each value of
| in order to obtain one curvg(l,6;). The red curves in the correspond to the envetdpe 200 realization®(l,;).
From Fig. 6, one can observe the magnitude of baitiaof the flux @ in function of current I. One can notice that
in the linear zone the variability df is very small whereas it is quite large in thausatied area. Fig. 7 represents the
mean value and the standard deviation of the @uthe excitation current I. One can notice that skendard
deviation (image of the flux variability) is an measing function of the excitation current | comfing the result
obtained with the Monte Carlo Simulation (see Fy. From the expansion (2), we also have calculaled

evolution of the Sobol indices versus the excitatimrrent. First, it should be noticed thataBd $; are almost
8



equal (see Fig. 8 and Fig. 9) meaning that theritanion to the flux variability of the interactisnbetween
parameters is very small. In the following, we witily consider the total Sobol indices that areegiin Fig. 8. We
can see that for low excitation currents; Hnd B, are the most influential parameters. Their infeeetbecomes
negligible in the saturation area wherg Becomes the most influential, followed by the slop We can see that
the magnetic field k has almost no influence even in the saturated avéa consider now the partial variandgs
defined by:

V. = §, D (23)

In Fig. 10, we represent the evolution of thesdiglarariances in function of the excitation currebhought B; and
H; are the most influential parameters at low exicitaturrents, their contribution to the variabiliv§ the field
remains small. The contribution of the parametgrt® the variability of the flux is large. Neverthesk, from the
value | = 4000 A, one can notice a decreasing émfte of B, and an increasing influence @fon the flux®. This
phenomenon can be explained intuitively by the thet in the saturated area, the ferromagnetic naatstate
moves progressively from the part 2 of the B(H)veufsee Fig. 1) to the part 3 where the influerfcg, increases.
The almost negligible influence of,BHs; and H, can be shown again by plotting the mean valuetl@dtandard
deviation of the fluxd in function of the current | in the case wherg &8das are fixed equal to their mean value

(see Fig. 11). One can notice that the variatio® &f much smaller than in the Fig. 7.

Flux ® (Wb) 100
80
60
40r

201

O Il Il Il Il Il Il Il Il
0 1000 2000 3000 4000 5000 6000 7000 8000 9000

Current | (A)
Fig. 6. 200 realizations of the flx versus the excitation current |
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Fig. 7. Mean value and standard deviation of tte & versus the excitation current |
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Variances of

20 T :
flux ® -0- H_,
g- B
s1
15 - H, b
v BsZ v
—+— anpha_
10 4
1~
/r
o v —"

0 71000 " 2000 3000 4000 5000 6000 7000 8000 9000

Current | (A)

Fig. 10. Partial variance contributed by each ramitgput data B, Hs;, Bsy, Hsp, 0
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Fig. 11. Mean value and standard deviation of line® versus the excitation current |gBasare fixed)

B. Case?2

In this case, the B(H) curve of the stator is asiito be deterministic and equal to the mean crepeesented in
Fig.3. The B(H) curve of the rotor is a randomdigthich model has been presented in sections 4.4 2h In Fig.
12, the evolutions of the mean and the standar@tiew of the flux in function of the current arevgn. This figure
can be compared to the Fig. 7 corresponding tedise 1. We can see that the evolution of the me#redlux is
almost the same. The difference appears on thdatameviation. The variability of the flux is highin the case 2
for excitation current | lower than 4000A. Thene tvariability of the flux becomes higher in the €ds We could
expect that the variability of the B(H) curve okthotor will contribute the most for the valuestbé excitation
current lower than 4000A.

Concerning the sensitivity analysis, the resultsinied in the case 2 are very similar to the cagéné fluxd is less
sensitive in the linear zone than in the saturated and the influence of;BH,;, H,» on the variability of the fluxp

is very small compared to the one 64,B,.

Flux ® (Wb) 100

s

9%
70 /’/‘
o~

60 —0- Mean value =
‘ @ Standard deviation*10
50
40
/’ a
30 / o a

N / H o o b
d H

10

0. o—pn—o&
0 1000 2000 3000 4000 5000 6000 7000 8000 9000

Current I (A)

Fig. 12. Mean value and standard deviation of lilme® versus the excitation current |

C. Case3
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The most influential random variable are, in casasd 2, the ordinate,Bf the point 2 and the slope (see Fig. 1).

In the case 3, we consider that both materialfiénstator and in the rotor are random but the nenméss of the
curves B(H) is borne only by the random variabig, o, and By, as. Other input parameters:BH,;, H;», Bs1, Hsy,

Hs, are assumed to be deterministic. This assumpsioroi mathematically rigorous but in practice,eéss to be
reasonable. It allows reducing the number of inparameters to 4 instead of 10 and so, it allowdr&matically
reduce the computation time. The input random patara B, a, and B, as are assumed to be uniform and are the
same as in the previous cases (see TABLES | and Il)

The steps of calculation are the same as in the tabkirst, we have simulated a sample of 200 zatidins of the
curved(1,0). The dispersion is a little higher than in theed (see Fig. 13 and Fig. 6) where the variakgitynly
borne by the B(H) curve of the stator. Afterwartf® flux ® is approximated by the expansion (4) and them, th
mean value, standard deviationd@find the Sobol coefficients can be deduced.

Fig. 14 presents the evolution of the mean andstardard deviation in function of the excitationreat. We can
see that, compared to the case 1, the variability ihcreased for excitation current values betw2@00A and
5000A. It means that the contribution to the vailigbof ®(1,0) is mainly due to the variability of the B(H) cerof
the rotor for high excitation current in the rarig@00A, 5000A].

In this case, the difference between the first oedal the total Sobol coefficients is also very knTdherefore, we
consider only the Total Sobol coefficients (Fig).1&e have also drawn the evolution of the past@iances (see
(21)) in function of the current | in Fig. 15. lbrfirms the fact noticed above where the paraniieis the most
influential up to 1=4200A. Above this value of ha parameter B becomes the most influential. From I=6000A,
one can notice the increasing influencenpfind os with a decreasing influence of,Band B, meaning that the
saturated zone of the rotor and the stator mowes the part 2 toward the part 3 of the B(H) cusee(Fig. 1).

It appears, using this approach, that in ordeetiuce the variability of the outpd(l,0) in the range of the study
[0A, 9000A], one should reduce the variability twe pparameters,Band B, , meaning that the measurement of the
quantity B should be carefully done in the rangéT] 2.2T] for B, and [1.7T, 2.3T] for B. In the area [OA,
9000A], we can see that the parametegsadd H, have almost no influence on the variability of thex. We can
see also that the B(H) curve has few effects fowker than 2000A. This statement can be usefupexify a set up

in situ to characterize directly the B(H) in theahine like proposed [21] and [22]. The measuremeh® should
be accurate whereas a loss of precision on the urezaent of H can be accepted (due to parasitigair for

example ).
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Fig. 13. 200 realizations of the fl@xin function of the excitation current |
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Fig. 16. Total Sobol coefficients correspond tohesmdom input data o, By, o;

It should be mentioned that the results concertliegnfluence of the parameter could be qualitéfipeedicted just
considering physical considerations. However, tlelitional value of the stochastic approach relies the
guantitative evaluation of the influence. We cae skarly that the point P1 in its range of vafigbihas no
influence on the flux linkage. We could have expda fewer influence than the point P2 and theesdoput not no
effect. The fact that the parameters(Barticularly the one of the stator) are moreuafitial in the range of study
than a the slope was not predictable also. This reptaten of the B(H) curve coupling with the stochast

approach enables to determine which range of th# Bgrve should be modeled as accurately as pgedssibimit
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the uncertainty on the output. The stochastic apgraan be also used with other representationeoB{H) curve

(Langevin for example) and to determine which patms of the model should be carefully identified.

5. CONCLUSION

In this paper, the influence of the non-linear matéehavior law on the performance of a turbogetwe have been
analyzed. A stochastic model of the non-linear euB¢H) has been proposed. Using this model, theaiamess of
the curve B(H) can be borne only by a finite numb&random variables. From the proposed model,chail
sensitivity analysis based on Sobol coefficientgehizeen performed. The obtained results show hieaitifluence of
the input parameters on the performance is nosdinee for all the parameters and depend on the déwslturation
of the machine. At low excitation current, the aaility on the B(H) curve has almost no effect ba flux linkage.
The variability of the flux linkage is maximum whehe machine is saturated (at high excitation eujreThe
stochastic approach enables to characterize qatwdlly this variability by determining the standateviation. The
global sensitivity analysis based on the Sobol aggin allows to determine the most influential partars of the
B(H) curve. It appears that the magnetic flux dignBi value is the most influential but not the matjn field H in
the saturation area. The proposed approach prothéesrea where the input parameters are the mibsemtial and
then allows to act in order to reduce their vatigbiby increasing the accuracy of the measurenianthe

corresponding area.
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Appendix |

In this appendix, the expressions of the solutmin@2) are given. If we denote:

1

B,. 1 - !
WEgh N _py = = tan@ ) in gy =

1 1 2
c = H -H,. ::uz(Bl_Bz). - (B,-B)
M~ M, H—H in_p,—in_u, (24)
c = in_/uz(Hl_ Hz) — ,Ul(Bl— Bz) — in _,Ul(Hl— H 2)
“in_g-in_p, U~ in_u,—in _u,
k=G G +26(6-G)
G~ G +26(G-c)
The solutions of (22) are given by:
2
h:cfk+2q9+c—|j+(%+ G)
b=kCh (25)
Yo =k[G+B,+ ¢
X =%+C4+H1
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